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Abstract

We consider a multi-layer network design model arising from a real-life telecommunication application
where traffic routing decisions imply the installation of expensive nodal equipment. Customer requests
come in the form of bandwidth reservations for a given origin destination pair. Bandwidth demands are
expressed as a multiple of nominal granularities. Each request must be single-path routed. Grooming
several requests on the same wavelength and multiplexing wavelengths in the same optical stream allow
the packing of more traffic. However, each addition or withdrawal of a request from a wavelength requires
optical to electrical conversion for which a specific portal equipment is needed. The objective is to min-
imize the number of such equipment. We deal with backbone optical networks, therefore with networks
with a moderate number of nodes (14 to 20) but thousands of requests. Further difficulties arise from
the symmetries in wavelength assignment and traffic loading. Traditional multi-commodity network flow
approaches are not suited for this problem. Four alternative models relying on Dantzig-Wolfe and/or Ben-
ders’ decomposition are introduced and compared. The formulations are strengthened using symmetry
breaking restrictions, variable domain reduction, zero-one decomposition of integer variables, and cutting
planes. The resulting dual bounds are compared to the values of primal solutions obtained through hier-
archical optimization and rounding procedures. For realistic size instances, our best approaches provide
solutions with optimality gap of approximately 5% on average in around 2 hours of computing time.
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Introduction

To accommodate the increase of traffic in telecommunication networks, today’s optical networks have huge

capacity (tens of Tb/s) thanks to new technologies. The wavelength bandwidth utilization is increased

by packing several requests on the same wavelength, a technique called traffic grooming [18]. Moreover,

several streams can be multiplexed on an optical signal, each of them supported by a different wavelength,

a technique called wavelength division multiplexing (WDM). However, packing multiple requests together on

the same optical stream still requires to convert the signal in the electrical domain at each traffic aggregation

or disaggregation, at an origin or a destination node or at a switch. These so-called opto-electronic or o/e/o

conversions require the installation of expensive optical ports. Hence, traffic grooming and routing decisions

along with wavelength assignments must be optimized to reduce opto-electronic system installation cost,

while satisfying quality of service requirements (like limiting end-to-end delay). This optimization problem

is known as the grooming, routing and wavelength assignment (GRWA) problem.

The telecommunication backbone network that we consider is defined by a physical network with given

nodes and edges. We assume that (i) each edge is made of two optical fiber links with opposite signal

transportation directions, (ii) each link has a fiber capacity made of a uniform number of wavelengths

and (iii) each wavelength has the same transport capacity. Traffic demands take the form of bandwidth

reservations. Each request is defined by its origin and destination and a bandwidth requirement that is

selected from a discrete set of standard granularities (larger granularities are multiple of smaller ones).

Because of transmission protocols (ATM, MPLS...), a request must be single-path routed. Its optical route,

or lightpath, is defined by a sequence of optical hops, each of which is defined by a path in the physical network

along which the signal remains into the optical domain with no electrical conversion at intermediate nodes

(that are optically bypassed).

Hence, traffic routing can be viewed as defining a lightpath for each request in a logical network whose

nodes are those of the physical network and whose arcs represent optical hops, each of which is associated

with a physical path. The logical network is a multi-digraph containing as many arcs between two nodes as

the number of physical paths between them. A sequence of arcs of the logical network defines a lightpath

(with associated physical paths in the underlying physical network for each optical hop). In the sequel, we

sometimes model traffic in the aggregate logical network, where different optical hops with the same end-nodes

are represented by a single aggregate optical hop. This aggregate network holds a single arc between two

nodes if there exists at least a physical path between them along which one can establish an optical hop.

Hence, we call it the connectivity network. A path is the connectivity network is called a virtual route as the

associated physical routing is not defined.

The bandwidth capacity of an arc of the connectivity network is the sum of the capacties of the logical

network arcs between these nodes. Thanks to wavelength division multiplexing, each optical hop (i.e., each

arc of the logical network) can carry a separate stream for each wavelength. However, the feasibility of a

wavelength assignment must be checked in the underlying physical network. Each physical fiber link can

carry at most one stream per wavelength. Using grooming, multiple requests can share the same optical

hop on the same wavelength provided their cumulative bandwidth requirement does not exceed wavelength

capacity. For the o/e/o conversion, an optical port must be installed at each end-nodes of the optical hops.

The overall optical port installation cost is therefore measured by twice the number of optical hops that are

used.

When routing a request, one must make sure that the end-to-end delay remains reasonable. The conversion

delay at o/e/o nodes plus the fiber link transmission delay must satisfy quality of service (QoS) criteria,

especially for real time applications like voice or video-conference ones [29]. Furthermore, one should also

account for the fact that, if an optical hop is too long, the stream must be regenerated using repeaters that also

imply o/e/o conversions. As we only deal with backbone networks, we cannot control the accumulated delay

into the access and the metropolitan networks. Hence, we can only attempt to limit delay in the backbone

network; we use two business rules: (i) we limit the o/e/o conversion delay by restricting lightpaths to

involve at most 2 optical hops (i.e., at most one o/e/o at an intermediate node); (ii) the physical path used
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by a request must be one of the three elementary shortest paths that exists in the network between its origin

and destination nodes.

In summary, the specific restrictions assumed in this study are:

Assumption 1 (single-path routing) Each request must be single-path routed (no “bifurcation” is al-

lowed). This assumption makes the problem harder because one must follow individual flows for each origin-

destination and granularity by defining separate “commodities” for which an integer flow solution is required.

One cannot aggregate these commodities or relax the problem to continuous flow.

Assumption 2 (Divisibility of request granularities) Each request takes the form of a bandwidth reser-

vation that takes value in a discrete set of standard granularities; each possible granularity is a multiple of

smaller granularities and a divider of the wavelength transport capacity. In our study, request granularities

are selected in {1, 3, 12, 48}; they are measured in OC (1 OC = 51,84 Mb/s); the wavelength capacity is

U = 192 OC. Because of this property, the bin packing problem underlying the bandwidth capacity check is

trivial to solve.

Assumption 3 (2-hop routing) The number of optical hops on a lightpath is bounded by two in order to

limit the o/e/o delay. This restriction has limited impact on the port installation cost. Indeed, we observed

that imposing single-hop routing results in a significant increase in port installation costs, while allowing 3 or

more optical hops results in only very marginal decrease in optical port installation costs and may increase

the delay [24].

Assumption 4 (Physical path length) The overall length of the physical route of each request is at most

the length of the third elementary shortest path between its source and destination. In practice, for each origin

destination pair (s, d), we restrict our attention to the three shortest paths as physical support to the lightpath

for routing (s, d)-requests.

In addition, some models developed herein rely on the following restrictive assumptions.

Assumption 5 (Restrictive grooming configurations) We further limit the solution space by restricting

our attention to simple grooming scenarios (as detailed later and illustrated in Figure 2) such as a single-hop,

the fusion of two single-hop streams, or their bifurcation, etc.

Assumption 6 (Wavelength continuity) We sometimes consider a further restriction, requiring wave-

length continuity on each lightpath. If the signal is assigned to a given wavelength on an optical hop, it must

be re-sent on the same wavelength on the next optical hop.

Many variants of the GRWA problem have been studied in the literature that differ by their objective

function and constraints; a classification can be found in [5]. Maximization of the throughput was studied

in [26, 27, 28] under a restricted optical port resource. However, in view of the large available capacity,

minimizing the network cost, for which the optical port cost is a major component, is a more meaningful

objective as studied in [8, 12, 15]. When every request has the same granularity, as assumed in [15] and [28],

a grooming ratio is defined as the number of requests that can be groomed on the same optical hop and

Assumption 1 is naturally satisfied [11]. However, in real-life applications, bandwidth requirements follow

a discrete value distribution as modeled in [27]. To the best of our knowledge, no study has yet enforced

a maximum number of optical hops for each request (except in [25] for IP over WDM networks with the

objective of maximizing the throughput). However, multi-hop routing without any restriction may lead to

unacceptable end-to-end delays. To obtain an easier GRWA problem, some decisions are sometimes fixed

a priori. When the set of optical hops is given in advance [12], it removes the issue of defining a physical

routing for each optical hop. When the number of wavelengths/links is assumed sufficiently large [8, 15], the

connectivity topology can always be implemented on the physical topology and the wavelength assignment

becomes trivial. Finally, some studies do not assume single-path routing and therefore deal with continuous

flow models (see, e.g, [16]).

The GRWA problem is proved NP-hard in [27] (for its simplest variants). Greedy heuristics have been

proposed in [26] and [27] (where an oracle is used that does shortest path routing in an auxiliary graph),
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and in [15] (that assumes a given set of optical hops and exploits a multi-commodity flow dual formulation).

A tabu search, a genetic algorithm and a multi-objective evolutionary algorithm have also been considered

respectively in [14] and [21]; but these publications offer no lower bounds to evaluate the heuristic solutions

quality. A hierarchical optimization procedure is used in [12], where the GRWA problem is decomposed

into two parts, GR and WA, that are solved sequentially. To obtain primal solutions of the GR problem,

a multi-commodity flow formulation is solved, where optical hop design variables are not restricted to take

integer values (linear relaxation); then, the fractional solution is rounded up.

Exact solution approaches have mostly been based on multi-commodity flow formulations [12, 15, 27].

However, the size of the resulting mathematical program is too large for medium to large instances. Indeed,

the GRWA model implies many more commodities than standard telecommunication routing problems. The

single-path routing assumption imposes integer flows and the definition of a separate commodity for each

origin-destination pair and for each granularity; this leads to a hard integer capacitated network design

problem on the logical network where arcs represent optical hops. Moreover, multiple wavelengths implicitly

duplicate this support graph in as many layers as the number of available wavelengths. Capacitated network

design problems are already very hard to solve when the number of commodities is lower than 100 on non

complete graphs with less than 30 nodes as shown in [3, 4, 6, 7]. On instances with 435 commodities, the

authors of [6] report an average gap of around 30 % after one hour of computation using CPLEX [13] and an

extra hour of post-processing. Most of the GRWA instances are on networks with 10 to 30 nodes but involve

hundreds of requests. The number of wavelengths is often greater than 10. This leads to instance sizes that

are beyond what can be solved using exact capacitated network design approaches. The instances considered

in this study imply backbone networks with 14 and 21 nodes, thousand of requests, real-life granularity

distribution (see [19]), and tens of wavelengths.

In this study, we compare four exact optimization based approaches, two models rely on Benders’ decompo-

sition, one model on Dantzig-Wolfe decomposition, and the fourth on a combination of these two approaches.

When using Benders’ decomposition, the first stage decisions are either the grooming and virtual routing, or

the grooming and physical routing. When using Dantzig-Wolfe decomposition, the subproblems are either

associated with feasible traffic loading for the restricted set of grooming configurations (under Assumption 5),

or traffic loading for a single wavelength (under Assumption 6). Dual bounds are obtained by solving the

LP relaxation of Benders’ (resp. Dantzig-Wolfe) master program. However, in Benders’ approaches, we only

solve a relaxed master where no Benders’ cuts are generated (the sub-problem is an integer linear program).

Thus, in practice, we carry on a simple hierarchical optimization with no feedback loop. Benders’ approaches

give rise to compact formulations that can be handled directly by CPLEX. Dual bounds can then be im-

proved through a branch-and-bound method and integer solutions to the master are derived through CPLEX
build-in heuristics. It remains to solve the second stage problems to recover a primal solution if feasible.

For Dantzig-Wolfe approaches, we develop our own column generation procedure to solve the master LP and

obtain primal solutions using a rounding heuristic.

The rest of the paper is organized as follows. In Section 1, we formally describe the GRWA problem, pro-

vide an initial formulation, review the impact of our assumptions, and explain the symmetries. In Sections 2

and 3, we present the Dantzig-Wolfe and Benders’ decomposition approaches. Section 4 outlines ways to

reduce symmetries, to restrict the domains of the variables, to derive a zero-one reformulation that enables

tighter relations between the variables and to strengthen the formulations with cutting planes. Then, in

Sections 5 and 6, we summarize the algorithms used for each of the four solution approaches and compare

the numerical results.

1 Description of the GRWA Problem

Let graph G = (V,A) represents the physical network with n = |V | nodes and m = |A| arcs. Each arc a ∈ A
is associated with a directional optical fiber link of the physical network, whose length is denoted by la. Each

optical fiber link can carry up to W wavelengths. Let Λ = {1, . . . ,W}. Each wavelength has a transport

capacity U = 192 OC. A request r ∈ R is defined by a triplet r = (s, d, t) where (s, d) ∈ V 2 denotes its

origin and destination nodes, respectively, and t ∈ T = {1, 3, 12, 48} is the granularity of the bandwidth
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reservation. Let Dsdt ∈ IN be the number of (s, d, t)-requests and Dsd =
∑
t∈T t Dsdt be the aggregate

traffic demand between s and d expressed in OC. Let K be the set of distinct (s, d, t) requests, each of

which is a request-commodity that is defined by a quadruplet k = (s, d, t,D), where s and d represent origin

and destination nodes of the traffic, t the bandwidth granularity, and D = Dsdt > 0 the (s, d, t) demand.

Notation sk (resp. dk, tk, and Dk) stands for the source node of request-commodity k (resp. destination

node, granularity, and demand). Ksd (resp. Ksdt) denotes the set of request-commodities with source s and

destination d (and granularity t). Let Lsdmax be the maximum length of the physical paths of requests that go

from s to d. Given Assumption 4, Lsdmax is the length of the third shortest (s, d)-path.

The GRWA problem can be viewed as a 2-layer multi-commodity capacitated network design problem.

The first layer models grooming and virtual routing in the connectivity network, where there is one flow

type for each request-commodity k ∈ K. The second layer models the design of the connectivity network in

the physical network and the wavelength assignment. To properly model wavelength clash and path length

constraints, one must indeed associate a path in the physical network to each optical hop and assign a specific

wavelength to this physical path. We formulate the problem in terms of variables x representing flows on

lightpaths and design variables y defining the optical hops that are put in place and their associated physical

path and wavelength assignment. Let Psd be the set of feasible paths from s to d. The associated polyhedron

is

Psd =

z ∈ {0, 1}m :
∑

(u,v)∈A

luv zuv ≤ Lsdmax (1)

∑
v∈V :(s,v)∈A

zsv = 1 =
∑

u∈V :(u,d)∈A

zud;
∑

u∈V :(u,v)∈A

zuv −
∑

u∈V :(v,u)∈A

zvu = 0 ∀v ∈ V \ {s, d}

 , (2)

where variable zuv = 1 if arc a = (u, v) is in the path. Given Assumption 4, Psd is restricted to the three

shortest paths from s to d. We assume that the network does not contain two paths of the same length. Let

P = ∪sdPsd; note that |P| = 3 n(n− 1).

Let Lsd be the set of feasible lightpaths from s to d. Its polyhedral description is:

Lsd =

(y, w) ∈ {0, 1}|P|×(n−2) :
∑
p∈P

∑
a∈A

la z
p
a yp ≤ Lsdmax (3)

∑
v∈V \{s}

∑
p∈Psv

yp = 1 =
∑

v∈V \{d}

∑
p∈Pvd

yp;
∑
p∈Psv

yp = wv =
∑
p∈Pvd

yp ∀v ∈ V \ {s, d} (4)

∑
v∈V \{s,d}

wv ≤ 1

 , (5)

where variable yp = 1 if path p forms an optical hop of the lightpath; wv = 1 if v is an intermediate node of

the lightpath where a o/e/o conversion takes place; zpa are not variables but fixed arc indicators that define

path p: zpa = 1 if path p ∈ P uses arc a ∈ A. Let L = ∪sdLsd; note that |L| ≤ |P|(n − 2) (each path p ∈ P
can yield a lightpath for each of its intermediate nodes).

The GRWA can be formulated using variables:

xk` = the amount of request-commodity k that is routed along lightpath ` ∈ Lskdk ;

yλp = 1 if an optical hop is routed along path p ∈ P and assigned with wavelength λ.

Then, the problem takes the form:

min
∑
p∈P

∑
λ∈Λ

yλp (6)

∑
`∈Lskdk

xk` = Dk ∀k ∈ K (7)
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∑
p∈P

zpa y
λ
p ≤ 1 ∀λ ∈ Λ, a ∈ A (8)

∑
k∈K

∑
`∈Lskdk

tk y
`
p x

k
` ≤ U(

∑
λ∈Λ

yλp ) ∀p ∈ P (9)

xk` ∈ IN ∀k ∈ K, l ∈ Lskdk (10)

yλp ∈ {0, 1} ∀λ ∈ Λ, p ∈ P, (11)

where y`p is not a variable but the indicator of a solution of (3–5) defining lightpath ` ∈ L and zpa describes

the path p of the associated solution of (1–2).

The shortest path routing constraints are modeled by (3). The Single-path routing are modeled by (4)

and (10). The 2-hop restrictions are modeled by (5). The objective (6) is to minimize the number of optical

hops that are used (equivalent to half the number of installed o/e/o ports). Constraints (7) model demand

satisfaction. Constraints (8), together with the restriction of the wavelength index to the set Λ, model Link

capacity and Wavelength clash constraints. Each link can carry at most W wavelengths and hence, it can

be part of at most one optical hop for each wavelength. The bandwidth of the stream that is carried on an

optical hop for a given wavelength is bounded by U . These wavelength capacity constraints are modeled by

(9) although they seem to model only a surrogate relaxation. One would a priori need to measure individual

traffic assignment for each physical link and each wavelength stream. However, wavelength clash constraints

(8) guarantee that optical hops are arc disjoint for a given wavelength. Hence, it is enough to check capacity

for each optical hop and wavelength pair. Furthermore, because of the traffic granularity and divisibility

(Assumption 2), one can aggregate the traffic load for all wavelengths and yet correctly enforce wavelength

bandwidth capacity:

Proposition 1 Under Assumption 2, a solution satisfying the surrogate capacity constraints (9) can be

decomposed into wavelength assigned flows that satisfy bandwidth capacity constraints.

Proof: Consider the traffic through a given optical hop p. Decomposing this traffic per wavelength λ

while obeying individual knapsack constraints amounts to solving a bin packing feasibility problem, with

yp =
∑
λ∈Λ y

λ
p ≥

⌈∑
k∈K

∑
`∈Lskdk

tky
`
px

k
`

U

⌉
available bins of capacity U (the latter inequality being implied

by constraints (9)). Under Assumption 2, this bin packing problem can be solved using a trivial first fit

decreasing greedy procedure (see [20]). It consists in (i) sorting the xk` traffic bundles, for k ∈ K and ` such

that y`p = 1, in the decreasing order of their granularities; (ii) assigning traffic bundles in that order to the
yp bins each of which is indexed by a λ. All the bins are filled at full capacity U , but the last one whose load

is
∑
k∈K

∑
`∈Lskdk

tky
`
px
k
` −

⌊∑
k∈K

∑
`∈Lskdk

tky
`
px

k
`

U

⌋
U .

The flow disaggregation argument used in the above proof can be extended to a flow redistribution

argument that shall be used throughout the paper:

Observation 1 (bandwidth re-assignment) Given the traffic granularity set and their divisibility outlined

in Assumption 2, the total bandwidth reservation made on an optical hop p, noted xp, can be aggregated and

re-partitioned between the yp =
⌈xp

U

⌉
wavelengths in any fashion that meets the wavelength capacity U , with

no consequences on the rest of the solution nor its cost.

Hence, the are many symmetries in the feasible solution set, not only among possible wavelength assignments,

but also due to possible granularity exchanges. Our reformulations shall aim at reducing these symmetries.

For now, note that the wavelength index on the y variables are required to model wavelength clash constraints.

Let us review Assumptions 1 to 6 and discuss their impact on the problem formulation. If we relax

Assumption 1, the x variables can take continuous values. We can omit constraints (10). If we do not make

Assumption 2, the surrogate capacity constraints (9) are no more enough to enforce bandwidth capacity;

we have to set a capacity constraint for each wavelength and optical hop. Then, one would need to specify

the wavelength used on each optical hop that is part of a lightpath. This implies a dramatic increase in
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Figure 1: Stack of independent wavelength traffic routing

the number of variables. If Assumption 3 is relaxed, one would have to modify the definition of the routed

lightpath to allow more than 2 hops. To enforce Assumption 6, one would need to use variables xkλ` to

represent the amount of request-commodity k routed on ` and assigned to wavelength λ; furthermore one

need to disaggregate capacity constraints (9). The resulting formulation would be:

min{
∑
p∈P

∑
λ∈Λ

yλp :
∑

λ,`∈Lskdk

xkλ` = Dk ∀k ∈ K;
∑
p∈P

zpa y
λ
p ≤ 1 ∀λ ∈ Λ, a ∈ A; (12)

∑
k

∑
`∈Lskdk

tk y
`
p x

kλ
` ≤ Uyλp ∀λ ∈ Λ, p ∈ P; xkλ` ∈ IN ∀λ, k ∈ K, l ∈ Lskdk ; yλp ∈ {0, 1} ∀λ, p ∈ P}. (13)

Then, a solution to GRWA can be decomposed into W independent traffic routings, each of them using its

own wavelength (this is illustrated in Figure 1).

Relaxing the path length restriction (Assumption 4) significantly eases the problem. One can then use a

formulation in terms of arc flow x in the connectivity network and design variables y defining aggregate optical

hops, while physical paths are modeled using arc flow variables z. Let xkij be the amount of request-commodity

k = (s, d, t,D) that is routed on aggregate optical hop (i, j) ∈ V 2 (because of the 2-hop constraints, these

variables are only defined for i = sk or j = dk). Let yij be the number of aggregate optical hops (i, j) ∈ V 2

that are used and must be physically established. Let zijλuv = 1 if a stream is assigned to wavelength λ on

aggregate optical hop (i, j) ∈ V 2 and it uses a route passing through physical arc (u, v) ∈ A. The resulting

model (when Assumption 4 is relaxed) takes the form:

min
∑

(i,j)∈V 2

yij (14)

∑
j∈V \{sk}

xkskj =
∑

i∈V \{dk}

xkidk = Dk ∀k ∈ K (15)

xkski − x
k
idk

= 0 ∀k ∈ K, i ∈ V (16)∑
k∈K

tk x
k
ij ≤ U yij ∀(i, j) ∈ V 2 (17)∑

v∈V \{j}

∑
λ∈Λ

zijλvj =
∑

v∈V \{i}

∑
λ∈Λ

zijλiv = yij ∀(i, j) ∈ V 2 (18)

∑
u∈V \{v}

zijλvu −
∑

u∈V \{v}

zijλuv = 0 ∀(i, j) ∈ V 2, λ ∈ Λ, v ∈ V \ {i, j} (19)
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∑
(i,j)∈V 2

zijλuv ≤ 1 ∀λ ∈ Λ, (u, v) ∈ A (20)

xkij ∈ IN ∀k ∈ K, (i, j) ∈ V 2 : i = sk or j = dk (21)

yij ∈ IN ∀(i, j) ∈ V 2 (22)

zijλuv ∈ {0, 1} ∀(i, j) ∈ V 2, λ ∈ Λ, (u, v) ∈ A. (23)

Another useful relaxation of formulation (6–11) comes from the relaxation of the wavelength clash con-

straints (8). Then, the wavelength index on the y variables is no longer required and the optical hops with

the same end-nodes can be aggregated. Let yij be the number of optical hops established between nodes i

and j. It is defined for each arc (i, j) of the connectivity network. Lightpaths with the same end-nodes and

o/e/o node can also be aggregated. The resulting aggregate lightpaths set is denoted by L̃. The relaxed

problem can be formulated in terms of virtual routing in the connectivity network and aggregate optical hop

selection. We shall refer to this relaxation as the virtual routing formulation. It takes the form:

min
∑

(i,j)∈V 2

yij (24)

[VR]
∑

`∈L̃skdk

xk` = Dk ∀k ∈ K (25)

∑
k∈K

∑
`∈L̃skdk

tk y
`
ij x

k
` ≤ U yij ∀(i, j) ∈ V 2 (26)

xk` ∈ IN ∀k ∈ K, l ∈ L̃skdk (27)

yij ∈ IN ∀(i, j) ∈ V 2. (28)

The LP relaxation of this formulation provides the same dual bound as the LP relaxation of formulation (6–

11). Moreover, these bounds are not better than the trivial combinatorial bound on the number of required

optical hops given wavelength capacity: d
∑
k tkDk/Ue.

Proposition 2 The dual bounds obtained from the linear relaxations of (6–11) and (24–28) both give the

trivial dual bound
∑
k∈K tkDk/U .

Proof: An optimal solution to the LP relaxation of (24–28) is obtained by routing each request on a single-

hop aggregate lightpath. Indeed, setting yij =
∑
k∈Kij

tkDk/U , (i, j) ∈ V 2 yields a feasible solution. Any

other feasible LP solution can only cost more. Actually, if a request was routed over a two-hop aggregate

lightpath, port installation cost would be incurred at the intermediate node. As formulation (24–28) is a

relaxation of formulation (6–11), its LP solution
∑
k∈K tkDk/U is also a lower bound for formulation (6–11).

Thus, to obtain the bound result for formulation (6–11), it is enough to exhibit an LP solution reaching that

bound. In fact, we show that we can recover the “single-hop solution” from any feasible LP solution (ȳ, x̄) to

(6–11). The idea is to keep the same physical routing while modifying the virtual routing so that each request

is routed on a single-hop lightpath. Assume, w.l.o.g., that ȳp =
∑

`,k y
`
p tk x̄

k
`

U . We build a “single-hop solution”

(x̃, ỹ) as follows. For each (s, d) ∈ V and p ∈ Psd, let x̄kp be the total k demand that is physically routed on

(s, d)-path p (some of this traffic might be two-hop traffic). Then, set x̃k` = x̄kp for ` ∈ Lsd such that y`p = 1,

and set ỹp =
∑

k∈Ksd
tk x̄

k
p

U , so as to satisfy wavelength capacity constraints, while ỹλp =
ỹp
W . Observe that∑

p∈P z
p
aỹp =

∑
p∈P z

p
aȳp ∀a ∈ A, since we have not changed the physical path traffic assignment. Hence,

the wavelength clash constraints remain satisfied by solution ỹ. Moreover, the demands remain satisfied and

the total cost can only decrease since some intermediate electrical conversions have been removed.

2 Dantzig-Wolfe Reformulations

Here, we consider two possible Dantzig-Wolfe decomposition approaches to the GRWA problem (also known

as price or constraint decomposition [23]) under restrictive Assumptions 5 or 6. Note that formulation (6–11)
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expressed in terms of flows on lightpaths can itself be viewed as a reformulation resulting from a Dantzig-

Wolfe decomposition. A compact “original” formulation in terms of flows on connectivity and physical arcs

generalizing (14–23) could be derived and applying Dantzig-Wolfe reformulation to this original formulation

would give (6–11). However, formulation (6–11) can be handled directly (it does not require the use of a

column generation approach) because the path length constraint significantly restrict the number of feasible

physical paths and lightpaths which can therefore be enumerated.

2.1 Grooming Pattern Formulation

Under Assumption 5, the grooming is restricted to simple optical hop configurations that are listed below

and illustrated in Figure 2.

Single-Hop configuration: This is the simplest case, it consists in an optical hop p ∈ Psd, where the traffic

is only accepted on the origin-destination pair (s, d).

Two-hop configuration: It is composed of two optical hops p1 ∈ Psi and p2 ∈ Pid, (s, i) with distinct nodes

s, i and d. The grooming can only involve traffic on origin-destination pairs (s, d), (s, i) and (i, d). The

generation of two-hop configurations is done so as to guarantee that the path length constraint is

satisfied. We select one of the three shortest (s, d)-paths and consider its internal nodes as potential

intermediate node i, while checking if the corresponding physical paths p1 and p2 satisfy path length

constraints.

Three-hop splitting configuration: It is composed of three optical hops p1 ∈ Psi, p2 ∈ Pid1 and p3 ∈ Pid2
with distinct nodes s, i, d1 and d2. The traffic can be groomed on origin-destination pairs (s, d1), (s, d2),

(s, i) (i, d1), and (i, d2). To guarantee that the path length constraints are satisfied, we generate a three-

hop splitting configuration for a given pair of paths (p1 ∈ Psd1 , p2 ∈ Psd2) that happens to split at an

intermediate node i. We then verify that resulting induced sub-paths satisfy path length constraints.

Three-hop merging configuration: It is the symmetric of the previous case where the support is made

of three optical hops p1 ∈ Ps1i, p2 ∈ Ps2i and p3 ∈ Pid with distinct nodes s1, s2, i and d. The only

traffic is on origin-destination pairs (s1, d), (s2, d), (s1, i) (s2, i), and (i, d). The generation of three-hop

merging configuration is similar to the generation of three-hop splitting configurations.

Three-hop interlaced-lightpaths configuration: It is composed of three optical hops p1 ∈ Ps1s2 , p2 ∈
Ps2d1 and p3 ∈ Pd1d2 with distinct nodes s1, s2, d1 and d2. The only traffic is on origin-destination

pairs (s1, d1), (s2, d2), (s1, s2) (s2, d1), and (d1, d2). The generation of three-hop interlaced-lightpaths

configuration is similar to the generation of three-hop splitting configurations.

An optical hop configuration defines the way in which lightpaths can share their optical hops and hence the

cost of installing o/e/o converter ports at nodes. It fixes the routing pattern but not the traffic load. A

grooming pattern is defined for a fixed optical hop configuration by fixing the amount of traffic for each

origin-destination pair concerned carried out by the optical hop configuration, in such a way that wavelength

capacity U is not exceeded. A global solution can then be expressed in terms of a grooming pattern selection

whose total traffic meets the demand and for which there exists a feasible wavelength assignment avoiding

clashes (we enforce the latter by selecting optical hop configurations that are arc disjoint). This reformulation

arises from a relaxation of constraints (7–8) in formulation (6–11). Then, the solution of the remaining

problem decomposes into independently routed traffic on grooming patterns. The optical hop configuration

determines the way in which different traffic may interact with each other, but they are no interactions among

grooming patterns. We have further restricted the solution space by limiting the number of interaction modes

to the 5 optical hop configuration types presented in Section 2.1.

Let O denote the restricted set of optical hop configurations that has been pre-generated by enumeration

from the shortest path lists. Each optical hop configuration o ∈ O is defined by an optical hop indicator

vector yo with yop = 1 if optical hop p is used in the optical hop configuration o. Let G(o) denote the set of

feasible grooming patterns build from optical hop configuration o ∈ O and G = ∪o∈OG(o). Each grooming

pattern g ∈ G is defined by a traffic flow and an optical hop indicator vector (xg, yg) where xgk gives the

number of demands k ∈ K that are routed over g (note that due to the optical hop restrictions, very few

components are positive), and ygp = 1 if optical hop p is used in the optical hop configuration underlying
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Figure 2: Optical hop configurations that define the supports of grooming patterns

grooming pattern g. For a fixed optical hop configuration o ∈ O, G(o) admits a polyhedral description. For

instance, for a two-hop configuration between nodes s and d with an o/e/o at node i,

G(sid) = {x ∈ IN3|T | :
∑
k∈Ksd

tk xk +
∑
k∈Ksi

tk xk ≤ U ;
∑
k∈Ksd

tk xk +
∑
k∈Kid

tk xk ≤ U}, (29)

saying that the traffic must share the wavelength capacity U on each optical hop (the full capacity, U , can be

used because grooming patterns will be assigned a wavelength in such as way that the corresponding signal

does not share links with any other signal). We further restrict traffic load to carry at least some traffic of each

type, for otherwise the grooming pattern could be decomposed into simpler grooming patterns with possibly

lower cost, and we do not load more traffic that the demand. In the example of the polyhedral description

for the two-hop configuration (s, i, d), we add the constraints:
∑
k∈Ksd

xgk ≥ 1,
∑
k∈Ksi

xgk +
∑
k∈Kid

xgk ≥ 1

and xgk ≤ Dk ∀k ∈ Ksd ∪Ksi ∪Kid.

The reformulation of the GRWA problem in terms of variables µg, that counts the number of times the

grooming pattern g ∈ G is used, is as follows:

min
∑
g∈G

∑
p∈P

ygp µg (30)

∑
g∈G

xgk µg = Dk ∀k ∈ K (31)

∑
g∈G

ygp µg =
∑
λ∈Λ

yλp ∀p ∈ P (32)

∑
p∈P

zpa y
λ
p ≤ 1 ∀λ ∈ Λ, a ∈ A (33)
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yλp ∈ {0, 1} ∀p ∈ P, λ ∈ Λ (34)

µg ∈ IN ∀g ∈ G. (35)

The LP relaxation of this formulation can be solved by column generation. The pricing problem takes the

form:

min
o∈O
{
∑
p∈P

(1− ρp) yop − max
g∈G(o)

{
∑
k∈K

πk x
g
k}}, (36)

where (π, ρ) are the dual variables associated with constraints (31) and (32) respectively. For a fixed optical

hop configuration, o ∈ O, the pricing problem reduces to a loading problem subject to knapsack constraints.

This problem can be solved in pseudo-polynomial time under the divisibility Assumption 2 (as presented

in Section 4). The dual bound given by the LP relaxation is in theory better than that of formulation

(6–11) because the subproblem captures the knapsack capacity constraints. However, the dual bound is

subject to restrictive Assumption 5. The clash constraints remain in the master program and require the

use of wavelength indexing on the y’s, leading to symmetry in the representation of the solutions. Moreover,

enforcing integrality is not easy as it requires to fix both grooming pattern selection and optical hop variables.

Hence, we shall not use this reformulation directly.

2.2 Wavelength Routing Configuration Formulation

Under the wavelength continuity Assumption 6, the routing on a given wavelength is independent from the

routing on other wavelengths. Then, after relaxing the demand covering constraints in formulation (12–13),

the problem decomposes into a subproblem for each wavelength whose solution defines the traffic carried by

this wavelength and the associated optical hops that are used (as illustrated in Figure 1). The subproblem

solutions shall be called wavelength routing configurations. If we further make the grooming restriction

Assumption 5, the solution to this subproblem can itself be decomposed into arc disjoint grooming patterns.

This leads to a nested decomposition approach.

Let C be the set of feasible wavelength routing configurations. Each configuration c ∈ C is defined by a

grooming pattern indicator vector µc, with µcg = 1 if grooming pattern g is used. The polyhedral description

of C is:

C = {µ ∈ {0, 1}|G| :
∑
g∈G

∑
p∈P

zpa y
g
p µg ≤ 1 ∀a ∈ A;

∑
g∈G

xgk µg ≤ Dk ∀k ∈ K}

where we make sure that the total traffic load does not exceed the demand for each commodity k. Alterna-

tively, a wavelength routing configuration can be defined by the traffic load and the number of used optical

hops: (xc, yc) = (
∑
g∈G x

g µcg,
∑
g∈G y

g
p µ

c
g). Then, the GRWA problem can be reformulated as:

min
∑
c∈C

∑
p∈P

ycp νc (37)

[WRC]
∑
c∈C

xck νc = Dk ∀k ∈ K (38)∑
c∈C

νc ≤ W (39)

νc ∈ IN ∀c ∈ C, (40)

where variable νc = 1 if configuration c ∈ C is used. This Wavelength Routing Configuration reformu-

lation eliminates the symmetry in the wavelength assignment. The LP relaxation of this formulation can

be solved using a nested column generation approach where the pricing problem is itself solved by column

generation. Wavelength routing configurations are generated by solving a pricing problem of the form:

min{
∑
g∈G

(
∑
p∈P

ygp −
∑
k∈K

πk x
g
k)µg : µ ∈ C} − σ, (41)

where (π, σ) are the dual variables associated with constraints (38) and (39), respectively. When solving

problem (41) by column generation, the pricing sub-problem is:

min
o∈O
{
∑
p

yop − max
g∈G(o)

{
∑
k∈K

πk x
g
k}}. (42)



Les Cahiers du GERAD G–2010–12 11

The LP relaxation bound is in theory better than that given by grooming pattern formulation (30–35) as

more constraints are included in the definition of C than G. But this dual bound is only valid under two

restrictive assumptions: Assumptions 5 and 6.

Note that other decompositions than the ones presented before are possible. For instance, after relaxing

constraints (7) and (9), the problem decomposes into one topology design problem for each wavelength. The

subproblem consists in finding paths that can be assigned to the same wavelength (it is a maximal weight

stable set problem). Although the subproblem is not trivial, the master LP relaxation bound is typically the

same as that of Proposition 2, because the wavelength clash constraints are fairly easy to satisfy given the

large number of wavelengths that are available.

3 Benders’ Decomposition and Hierarchical Optimization

Another form of decomposition is Benders’ (also known as resource or variable decomposition [23]). One

adopt an hierarchical approach fixing first the “important” decision variables that set the resource levels for

the second stage problem.

3.1 Grooming and Physical Routing First, Wavelength Assignment Second

In formulation (6–11), when one fixes first the traffic flow decisions, xkl , and the aggregate decisions of

establishing hops, yp =
∑
λ y

λ
p , the GRWA problem is reduced to a wavelength assignment feasibility problem.

The traditional Benders’ reformulation approach consists in projecting (6–11) onto the space of the important

variables. The so-called Benders’ master program takes the form:

min
∑
p∈P

yp + φ(y) (43)

[GPR]
∑

`∈Lskdk

xk` = Dk ∀k ∈ K (44)

∑
k∈K

∑
`∈Lskdk

y`p tk x
k
` ≤ U yp ∀p ∈ P (45)

xk` ∈ IN ∀k ∈ K, ` ∈ Lskdk (46)

yp ∈ IN ∀p ∈ P, (47)

where φ(y) =∞ if the optical hop establishment decisions y cannot be associated with a wavelength assign-

ment that satisfies clash constraints and zero otherwise. This master problem captures the Grooming and

Physical Routing (GPR) decisions of the GRWA problem. Note that, having dropped the wavelength

indexing, the master does not suffer the symmetry in wavelength assignment that was present in (6–11). To

improve the model, one can add further necessary (but not sufficient) conditions for the existence of a feasible

wavelength assignment: ∑
p∈P

zpa yp ≤W ∀a ∈ A (48)

that states that on each link there is at most W optical hops. Given a feasible fixed master integer solution

(x̄, ȳ) to (43–47), the feasibility check entails solving a wavelength assignment (WA) sub-problem:

[WA]
∑
λ∈Λ

yλp = ȳp ∀p ∈ P (49)∑
p∈P

zpa y
λ
p ≤ 1 ∀λ ∈ Λ, a ∈ A (50)

yλp ∈ {0, 1} ∀p ∈ P, λ ∈ Λ. (51)

This second stage problem captures the wavelength assignment decisions (WA) of the GRWA problem.

Observe that the WA problem is not trivial (it does not reduce to an application of the flow decomposition

theorem) because it involves multiple commodities (one for each hop p) that are linked by constraints (50).
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Benders’ approach entails a polyhedral characterization of the set {y : φ(y) = 0}. The master is iteratively

augmented with feasibility cuts when its solution ȳ does not lead to a feasible second stage problem. When

the second stage problem is an LP, Farkas Lemma can be invoked to obtain a cut in the y variables from

the dual solution to the feasibility subproblem when the latter is infeasible [23]. However, there is no such

generic procedure when the second stage problem is an integer program as in our case (for examples of ad-hoc

Benders’ approaches with integer subproblems, see [10]). In this application, the sub-problem is either feasible

(and optimality of the master is reached), or infeasible (and master feasibility cuts should be generated). Note

that solving the LP relaxation of the sub-problem is of no use because it is always feasible (this can be proved

using the same argument than in the proof of Proposition 2) and thus would never return feasibility cuts. In

[12], a sufficient property on the set of selected optical hops for the feasibility of the WA problem has been

presented. They might be used to generate Benders’ feasibility cuts but we did not investigate on this issue.

Hence, we only consider a relaxation where no feasibility cuts are added to the master. In other words, we

ignore the term φ(y). Solving this relaxed problem provides a valid dual bound. When a primal solution to

the first stage problem is found, we check whether the associate WA subproblem is feasible, otherwise we

discard it. Thus, the Benders’ approach considered here reduces to a hierarchical optimization procedure.

Benders’ decomposition can also be applied to formulation (30–35), leading to the master problem:

min
∑
g∈G

∑
p∈P

ygpµg + φ(µ) (52)

[BGP]
∑
g∈G

xgk µg = Dk ∀k ∈ K (53)

µg ∈ IN ∀g ∈ G, (54)

that we call Benders’ Grooming Pattern formulation. Let φ(µ) = ∞ if the decisions of establishing

optical hops implied by solution µ cannot be associated with a wavelength assignment that satisfies clash

constraints, and zero otherwise. For a fixed first stage solution µ̄, the second stage problem is again [WA]

given in (49–51), where ȳp =
∑
g∈G

ygpµ̄g.

3.2 Grooming and Virtual Routing First, Path and Wavelength Assignment
Second

Note that, if we aggregate optical hops with the same end-nodes in formulation (43–47) without the term

φ(y), we obtain formulation (24–28). Then, the second stage problem differs from [WA] given in (49–51).

Because the physical routing of the optical hops is not fixed in the first stage problem, the second stage

problem also involves finding a feasible physical path assignment for the aggregate lightpaths. A primal

solution of the first stage problem (24–28) is often infeasible for the second stage problem. Instead, we make

use of a relaxed two-step procedure to attempt to recover a feasible primal solution to the original problem.

We start by solving the Grooming and Path Assignment problem:

min
∑
p∈P

yp (55)

[GPA]
∑
p∈Pij

yp ≥ ȳij ∀(i, j) ∈ V 2 (56)

∑
`∈Lskdk

xk` = Dk ∀k ∈ K (57)

∑
k∈K

∑
`∈Lskdk

y`p tk x
k
` ≤ U yp ∀p ∈ P (58)

xk` ∈ IN ∀k ∈ K, ` ∈ Lskdk (59)

yp ∈ IN ∀p ∈ P. (60)

Constraints (56) set a lower bound on the number of optical hops that are established between each pair of

nodes while other constraints are the same as in [GPR]. Note that we allow a modification of the routing
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of the flows to get more flexibility. Then, if problem (55–60) is feasible, we solve the feasibility check WA

problem (49–51) in a second step.

In formulation [BGP] given in (52–54), one can also aggregate the optical hop configuration that are logi-

cally equivalent (same end nodes and o/e/o node) leading to the set Õ of aggregate optical hop configurations

and associated set G̃ of aggregate grooming patterns. This relaxation leads to formulation:

min
∑
g∈G̃

∑
p∈P

ygpµg + φ(µ) (61)

[BGPA]
∑
g∈G̃

xgk µg = Dk ∀k ∈ K (62)

µg ∈ IN ∀g ∈ G̃. (63)

Given a fixed master integer solution µ̄ to (61–63), φ(µ̄) = 0 if there exists associated physically routed

grooming configurations and feasible wavelength assignment. Let ῑo =
∑
g∈G̃(0) µ̄g be the number of times

the aggregate optical hop configuration o ∈ Õ is used. The feasibility check sub-problem takes the form of a

grooming pattern and wavelength assignment (GPWA) problem:

[GPWA]
∑
λ∈Λ

yλp =
∑
o∈O

yopιo ∀p ∈ P (64)∑
o′∈O:o′≡o

ιo′ = ῑo ∀o ∈ Õ (65)∑
p∈P

zpa y
λ
p ≤ 1 ∀λ ∈ Λ, a ∈ A (66)

ιo ∈ IN ∀o ∈ Õ (67)

yλp ∈ {0, 1} ∀p ∈ P, λ ∈ Λ. (68)

where o′ ≡ o means that optical hop configuration, o′ ∈ O, is virtually equivalent to aggregate optical hop

configuration, o ∈ Õ. Constraints (64) states that the number of wavelengths reserved for physical path

p depends on the selected optical hop configurations. Constraints (65) enforce a selection of optical hop

configurations that reproduce the connectivity selection.

4 Implementation Features

The above models share some similarities. In this section, we present some formulation strengthening through

partial reformulation, variable domain reduction, an extended 0-1 formulation, and valid inequalities that

can be useful for several models. They can result in better LP bounds, eliminate the symmetries resulting

from bandwidth re-assignment as outlined in Observation 1, bring stability in the solution process, or help

our primal heuristics. We also detail the pricing procedures for the column generation approaches.

4.1 Enhanced Demand Covering Constraints

Due to the divisibility of the granularities, they can exist many ways to cover the overall demand on a given

pair of end-nodes. For instance, an aggregate demand of OC − 48 can be covered by either a OC − 48

bandwidth reservation or four reservations of OC − 12, etc. More formally, given Assumption 2, for each

t ∈ T , t′ ∈ T , such that t ≥ t′, we have t
t′ ∈ IN . Hence, if we have reserved t units of capacity on a lightpath

for a demand k ∈ Ksdt, this capacity may be used to either route demand k or, equivalently, t
t′ demands

k′ ∈ Ksdt′ . These symmetric representations of the same solution and the resulting instability in the solution

process can be avoided by reformulating demand covering constraints.

The idea is to build granularity exchanges in the formulation. One simply needs to give another meaning

to xk` . It represents the number of bandwidths streams of capacity tk that are reserved for (sk, dk)-traffic

on lightpath ` ∈ L. This capacity reservation can be used to cover any (sk, dk)-traffic with granularity tk
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or lower. Then, the demand constraints can be aggregated. The capacity reservation for (sk, dk)-traffic of

granularity tk or higher must be sufficient to cover the associated demands, but not greater than the total

(sk, dk)-demand converted in granularity tk. Thus, demand covering constraints (7) can be replaced by: ∑
k′∈Kskdk

tk′

tk
Dk′


︸ ︷︷ ︸

LHSk

≥
∑

`∈Lskdk

∑
k′∈Kskdk

:
tk′≥tk

tk′

tk
xk

′

` ≥
∑

k′∈Kskdk
:

tk′≥tk

tk′

tk
Dk′

︸ ︷︷ ︸
RHSk

∀k ∈ K. (69)

Along the lines of the bandwidth re-assignment Observation 1, we note that

Observation 2 Under Assumption 2, any solution to (6, 69, 8–11) can be transformed into a solution of

formulation (6–11) by disaggregating granularity reservations that exceed their associated demands in order

to cover lower granularity demands.

4.2 Domain Reduction for Bandwidth Reservations

For bandwidth reservation variables xk` and their aggregate value xk =
∑
` x

k
` , we define both lower and

upper bounds, denoted b`k and b
`

k, bk and bk, respectively, with

b`k ≤ bk and b
`

k ≤ bk ∀k ∈ K, ` ∈ Lskdk . (70)

Moreover,

bk ≥
∑

`∈Lskdk

b`k and bk ≤
∑

`∈Lskdk

b
`

k ∀k ∈ K. (71)

At the outset, the lower bounds are set to 0 and the upper bounds to ∞. Strengthening one of these bounds

(as those presented below) may imply strengthening the others through relations (70–71). We also define a

domain of discrete values with the same index convention. The default domain for xk` is Q`k = {b`k, . . . , b
`

k}
and similarly for Qk.

Tightening these bounds allows us to strengthen the formulation and to eliminate some symmetries

resulting from the bandwidth re-assignment property of Observation 1.

Observation 3 (selected representative of the symmetry class of bandwidth reservations on an
optical hop) On a given optical hop, we assume, w.l.o.g., that at least yp − 1 wavelengths are used at their

full capacity U . Moreover, we define the capacity reservation in the largest possible granularities.

Hence, we may forbid a capacity reservation of xk` ≥
t+k
tk

units of tk, where t+k , defined for tk ∈ T , is the

successor of tk in the set T ∪ {U} sorted by increasing granularities: t+k = min{t ∈ T ∪ {U} : t > tk}.
Indeed, we rather use the symmetric solution where a global capacity reservation t+k is made instead of the
t+k
tk

reservations of capacity tk.

An interesting special case arises when a physical path p can only be used by a single (s, d) commodity:

Observation 4 (Bandwidth reservation on a dedicated single-hop lightpath) If p ∈ Psd while for

all (i, j) 6= (s, d) and all ` ∈ Lij, y`p = 0, then, we can restrict our attention to solutions where the total flow

on optical hop p, xp, satisfies xp mod U = 0 or xp = Dsd mod U .

Another symmetry breaking restriction consists in bounding the capacity reservation level on multi-hop

lightpaths:

Observation 5 (non-degenerated multi-hops) The maximum (s, d) reservation routed over a multi-hop

lightpath can be restricted, w.l.o.g., to be strictly lower than U .
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Indeed, we can remove U units of (s, d) flow from a multi-hop lightpath and route it on a single-hop lightpath

without increasing the cost of the solution.

Such considerations allow us to refine capacity reservation bounds. Let tmax
sd be the largest t ∈ T for

which Dsdt is positive: tmax
sd = max{t ∈ T : Dsdt > 0}. Then, given k ∈ K, ` ∈ Lskdk , we can derive valid

upper bounds:

b
`

k ≤
t+k
tk
− 1 if tk < tmax

skdk
(72)

b
`

k ≤ U

tk
− 1 if ` is a multiple-hop lightpath (73)

bk =

 ∑
k′∈Kskdk

:
tk′≤tk

tk′

tk
Dk′

 . (74)

Bound (72) specifies that, when tk < tmax
skdk

the capacity reserved by k must be strictly lower than
t+k
tk

following

Observation 3. Bound (73) considers the case of a multi-hop lightpath where the capacity reservation cannot

cover the wavelength capacity U as stated in Observation 5. Bound (74) specifies that a capacity reservation

cannot exceed the cumulative demand for that granularity and lower granularities. Regarding lower bounds,

we can state:

bk = Dk, if tk = tmax
skdk

; (75)

bk = max

{
0, Dk − (LHSk+ − RHSk+)

t+k
tk

}
, if tk < tmax

skdk
, k+ = (sk, dk, t

+
k ). (76)

Aggregate bound (75) imposes that the number of capacity reservation of granularity tk is greater than the

(sk, dk, tk)-demand when it cannot be met with larger granularities. Aggregate bound (76) imposes that the

minimum number of capacity reservations for granularity tk is equal to the (sk, dk, tk)-demand minus the

surplus of larger granularities expressed in tk units. We use the tightest of these upper and lower bounds

and propagate them through relations (70–71).

Another tightening can come from preprocessing the demand vector. Indeed, observe that if, for k ∈ K
such that tk < tmax

k , we have Dk > bk, then some fraction of the demand k must be covered using larger

granularities. Hence,
⌈
tk(Dk−bk)

t+k

⌉
can be added to demand (sk, dk, t

+
k ) and

t+k
tk

⌈
tk(Dk−bk)

t+k

⌉
units of demand

can be removed from demand k. We perform these preprocessing operations for each (s, d) ∈ V 2, starting

with the smallest granularity. Table 1 gives an example of demand and the associated bounds, as well as left

and right hand-side values of the aggregate demand constraints (69). Note that all these bounds are also

valid when dealing with aggregate lightpath set L̃ used in virtual routing formulation (24–28). (73) are valid.

4.3 Zero-One Extended Formulation

A 0-1 extended formulation for (6–11) enables us to tighten the model with valid inequalities that have been

proposed for capacitated network design problems in the binary case [3]. We shall use these tightening when

Table 1: An example of demand vector for different granularities and associated capacity reservation bounds

single-hop lightpath multi-hop lightpath

tk Dk bk bk b
`
k b

`
k RHSk LHSk

48 5 7 5 7 3 5 7
12 3 8 0 3 3 23 28
3 6 21 0 3 3 98 113
1 47 47 2 2 2 341 341
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dealing with model [VR] given in (24–28) and model [GPR] given in (43–47). The 0-1 reformulation arises

from the unary decomposition of capacity reservation variables xk` . We implement the change of variables:

xk` =
∑
q∈Q`

k

q xk`q with
∑
q∈Q`

k

xk`q = 1, xk`q ∈ {0, 1} ∀q ∈ Q`k, (77)

where xk`q = 1 if a capacity reservation of q units of granularity tk is made over lightpath ` ∈ Lskdk . Observe

that it is sufficient to consider q ∈ Q`k \ {0}, as xk` = 0 can be achieved by setting all xk`q = 0. In the sequel,

when dealing with 0-1 transformations, we shall consider that 0 has therefore been omitted from the value

domain Q̃`k = Q`k \ {0} and
∑
q∈Q̃`

k
xk`q ≤ 1.

Note that for a single-hop aggregate lightpath ` ∈ L̃ and tk = tmax
skdk

, b
`

k can be quite large as it is not

constrained by bounds (72) or (73). To avoid dealing with too many xk`q variables in such a case, we introduce

a refined variable decomposition. If on a single-hop lightpath xk` = q with q mod U
tk

= 0, there are exactly
q tk
U wavelengths for the single-hop lightpath that are fully loaded at capacity U and are fully dedicated to

this bandwidth reservation. The idea is to count these dedicated single-hop wavelength-assigned lightpaths

apart and to define xak` as the residual reservation. Then, xk` = xak` + xbk` with

xak` ∈ Qa`k = {0, . . . , U
tk
− 1} and xbk` ∈ Qb`k = {0, U

tk
, 2
U

tk
, . . . ,

⌊
b
`

k tk
U

⌋
U

tk
}. (78)

We then apply the classical unary decomposition (77) to xak` and xbk` separately. Note that we can omit

the subscript a or b and note xkq` for q ∈ Qa`k ∪ Qb`k without any confusion as Qa`k ∩ Qb`k = {0}, i.e., the

0-1 transformation is xk` =
∑
q∈Qa`

k ∪Q
b`
k
qxkq`,

∑
q∈Qa`

k ∪Q
b`
k
qxkq` = 1. With this refined decomposition, and

given the divisibility Assumption 2, where U and T are fixed, the above defined unary decompositions are

technically polynomial. Note that for a single-hop lightpath ` ∈ Lsd such that its underlying optical hop

p ∈ Psd fits the case of Observation 4, Q̃a`k is either empty or a singleton.

4.4 Valid Inequalities

We present valid inequalities of the literature that we have found useful for the GRWA problem. Their

linearization and dynamic generation is specific to the model in which we use them (it shall be presented in

Section 5 where we discuss the practical solution procedure for the four models that we selected).

The cut set inequalities are well-known valid inequalities for the network loading problem [2, 7, 16].

There is an exponential number of such inequalities, but we restrict our attention to a polynomial subset

(that is the most helpful computationally) that sets lower bounds on the number of outgoing and incoming

optical hops for each node:

∑
d∈V \{s}

∑
p∈Psd

yp ≥

⌈∑
d∈V \{s}Dsd

U

⌉
∀s ∈ V ,

∑
s∈V \{d}

∑
p∈Psd

yp ≥

⌈∑
s∈V \{d}Dsd

U

⌉
∀d ∈ V. (79)

Beyond the cut set inequalities, one can derive lower bounds on the number of wavelengths reserved over all

lightpaths ` ∈ Lsd that need to be setup for each (s, d) pair. These (s, d)-lightpath cuts are expressed as

non linear constraints for now:

∑
`∈Lsd

⌈∑
k∈Ksd

tk x
k
`

U

⌉
≥
⌈
Dsd

U

⌉
∀(s, d) ∈ V 2. (80)

The model can be refined by counting separately the number of wavelengths reserved for each granularity tk.

The k-lightpath cuts take the form:∑
`∈Lsd

⌈
tk x

k
`

U

⌉
≥
⌈
tk bk
U

⌉
∀k ∈ K. (81)
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Note that for k such that tk < tmax
skdk

and bk > 0,
⌈
tk bk
U

⌉
= 1.

We also consider cuts that enforce upper bounds on the number of lightpaths with high bandwidth

reservation. Let

αsd = min{u ∈ [1, U ] : u× (1 + max{
⌊
Dsd

U

⌋
, 1}) > Dsd} =

⌊
Dsd

max{
⌊
Dsd

U

⌋
, 1}+ 1

⌋
, (82)

be the largest “average” (s, d)-bandwidth that could be reserved on a lightpath. Then, all lightpaths cannot

have higher than average bandwidth reservation. Hence, we define the following bandwidth reservation

upper bound cuts:

∑
`∈Lsd

(

⌊∑
k∈Ksd

tk x
k
`

U

⌋
+ δ((

∑
k∈Ksd

tk x
k
` ) mod U > αsd)) ≤ max{

⌊
Dsd

U

⌋
, 1} ∀(s, d) ∈ V 2, (83)

where
∑

`∈Lsd

⌊∑
k∈Ksd

tk x
k
`

U

⌋
counts the number of wavelengths at full capacity dedicated to (s, d) traffic and

δ(x` mod U > αsd) = 1 if extra wavelength is used for lightpath ` to carry larger than average bandwidth.

The 0-1 transformation allows us to enforce tighter relations between flow (bandwidth reservation) and

design variables. The so-called strong linking inequalities are standard in network design problems with

binary variables. They state that if flow variable x uses a link, the latter must be setup as measured by

the associated design variable y. In our model, design variables, yp =
∑
λ∈Λ y

λ
p , are not binary but general

integer, hence strong linking inequalities take the form of GUB constraints:∑
q∈Q̃`

k

⌈
q tk
U

⌉
xk`q ≤ yp ∀k ∈ K, p ∈ P, ` ∈ Lskdk : y`p = 1. (84)

One can also derive Gomory cuts and cover cuts from knapsack type constraints. For instance, from the

flow bound constraints bk ≤
∑

`∈Lskdk

∑
q∈Q̃`

k
q xk`q ≤ bk we derive Gomory cuts, so-called k-demand cuts, of

the form ∑
`∈Lskdk

∑
q∈Q̃`

k

⌊q
ε

⌋
xk`q ≤

⌊
bk
ε

⌋
and

∑
`∈Lskdk

∑
q∈Q̃`

k

⌈q
ε

⌉
xk`q ≥

⌈
bk
ε

⌉
, (85)

for all k ∈ K and integer ε ∈ {1, . . . ,max`∈Lskdk
b
`

k}. Similarly, we can derive Gomory cuts from the enhanced

demand constraints (69). These aggregated k-demand cuts take the form∑
`∈Lskdk

∑
k′∈Kskdk

:
tk′≥tk

∑
q∈Q̃`

k′

⌊
q tk′

ε tk

⌋
xq`q ≤

⌊
LHSk
ε

⌋
and

∑
`∈Lskdk

∑
k′∈Kskdk

:
tk′≥tk

∑
q∈Q̃`

k′

⌈
q tk′

ε tk

⌉
xq`q ≥

⌈
RHSk
ε

⌉
, (86)

for all k ∈ K : tk 6= tmax
skdk

, bk > Dk or bk ≥
t+k
tk

and all integer ε ∈ {2, . . . ,max`∈Lskdk
b
`

k} (the conditions on

k are there to avoid generating cuts identical to (85)). We also use Lifted Knapsack Cover and ε-split

and c-strong inequalities proposed by [3]. Details and further inequalities are presented in [24].

4.5 Optimizing Bandwidth Reservation on a Grooming Pattern

The pricing problem (36) or (42) relies on a core sub-problem consisting in making optimal bandwidth

reservation for a fixed single-hop lightpath. Given the symmetry breaking restrictions outlined in Observation

3, there is a unique way to reserve a total bandwidth b ≤ U for a given (s, d)-commodity. We further restrict

bandwidth reservation to ensure that the resulting grooming patterns define so-called proper columns, i.e., a

pattern that do not carry more traffic than the aggregate demand bound defined in (69). Generating proper
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columns is known to strengthen the column generation formulation as shown in [22]. Thus, given a lightpath

` on a (s, d) pair, a bandwidth reservation b ≤ U is feasible if the following polyhedron is not empty:

Xsd(b) = {xk ∈ IN |Ksd| :
∑
k∈Ksd

tk xk = b (87)

∑
k′∈Ksd:tk′≥tk

tk′

tk
xk′ ≤ LHSk ∀k ∈ Ksd (88)

xk ≤
t+k
tk
− 1 ∀k ∈ Ksd : tk 6= tmax

sd }. (89)

If Xsd(b) is not empty, it admits a unique solution. This feasibility problem can be solved in O(|T |), after

sorting the items in the decreasing order of their granularities, using a first fit decreasing procedure.

Then, given the reward vector π, computed from the dual variables associated with demand constraints

(69), the function

ψsd : u ∈ {0, . . . , U} → ψsd(u) = max{
∑
k∈Ksd

πk xk : 0 ≤ b ≤ u, Xsd(b) 6= ∅, x ∈ Xsd(b)}, (90)

can be computed in O(U |T |). Now, for any optical hop configuration, o ∈ O, one can determine the optimal

traffic loading, ψo = maxg∈G(o){
∑
k∈K πkx

g
k}, using the solutions of the pre-computed function ψsd as follows.

For a (s, d)-single-hop configuration, ψo = ψsd(min{Dsd, U}) is computed in O(1).

For a (s, i, d)-two-hop configuration, ψo = max1≤u≤min{Dsd,U}{ψsd(u) + ψsi(U − u) + ψid(U − u)} is

computed in O(U).

For a (s1, s2, i, d)-three-hop merging configuration,

ψo = max{ψs1d(u1) + ψs2d(u2) + ψid(U − u1 − u2) + ψs1i(U − u1) + ψs2i(U − u2) :

1 ≤ u1 ≤ min{Ds1d, U − 1}, 1 ≤ u2 ≤ min{Ds2d, U − 1}, u1 + u2 ≤ U}

is computed in O(U2).

For three-hop splitting configuration and three-hop interlaced-lightpaths, the computation are

equivalent to that of a three-hop merging configuration.

4.6 Generating Wavelength Configuration

The pricing problem of wavelength routing configuration that is given in (41) can be formulated in terms

of grooming patterns. For each optical hop configuration, o ∈ O, consider the optimal grooming pattern,

g?o , with minimum reduced cost, c̄g =
∑
p y

g
p −

∑
k∈K πk x

g
k, only if c̄g < 0. Then, wavelength routing

configuration pricing problem (41) can be written as:

min{
∑
o∈O

c̄g?o µg?o :
∑
o∈O

∑
p∈P

zpa y
o
p µg?y ≤ 1 ∀a ∈ A}, (91)

where the constraints formulate wavelength clashes on physical arcs. It is a maximum weight stable set

problem in a conflict graph where nodes represent the optimal grooming patterns that are linked by a

conflict edge if they share a physical arc. In our computational experiments it can be solved in reasonable

time using a MIP solver.

In practice, we consider a tighter pricing problem that yield proper columns, i.e., columns that do not

carry an aggregate traffic higher than the aggregate demand bound LHSk defined in (69). If the solution of

(91) does not satisfy the proper column bound constraints:∑
k′∈Kskdk

:tk′≥tk

tk′

tk
xck′ ≤ LHSk ∀k ∈ K, (92)
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we have to consider alternative grooming patterns that do not correspond to the minimum possible reduced

cost for a given optical hop configuration. We have developed two methods for solving the wavelength routing

configuration pricing problem with traffic bounds (92): a greedy heuristic and an exact method making use

of an in-situ column generation technique [17].

The greedy approach works as follows. At each iteration, we keep a list of the most negative reduced cost

“proper” grooming pattern for each hop configuration (if any). Then, we select the optical hop configuration

solution, arg mino∈O{c̄g?o}, and we update the solution: (i) We mark the arcs used by the selected optical

hop configuration, (ii) we update the demand vector according to the flow on the selected grooming pattern

g?o , and (iii) we update the list of optical hop configurations by regenerating the optimal “proper” grooming

pattern for each o ∈ O for which the current optimum carries a traffic exceeding the modified bounds,

or uses arcs that are marked. The greedy algorithm stops when all arcs are marked or there is no more

optical hop configurations such that c̄g?o < 0. When selecting the best optical hop configuration solution,

arg mino∈O{c̄g?o}, we first test if not selecting it frees up arcs that can then be used by a subset of other

patterns leading to a better reduced cost; if so, we move on to the next optical hop configuration.

The in-situ column generation is a method to generate columns (grooming patterns in our case) directly

in the master program (which is defined by the wavelength configuration pricing problem in our case) [17].

Note that, for a given o ∈ O, an alternative to g?o must be considered only if g?o carries traffic that is involved

in some violated proper column constraints (92). Let K̄ be the set of demands for which constraints (92) are

violated. Let Õ ⊂ O be the optical configurations for which g?o is involved in some violated constraints (92),

and Ō = O \ Õ. For each o ∈ Õ, we define an indicator variable ιo = 1 if we chose to use a grooming pattern

(defined by xok) for this optical hop configuration. Then, the wavelength configuration pricing problem can

be written as:

min
∑
o∈Ō

c̄g?o µg?o +
∑
o∈Õ

(
∑
p

yopιo −
∑
k∈K

πk x
o
k) (93)

∑
o∈Ō

∑
p∈P

zpa y
o
p µg?o +

∑
o∈Õ

∑
p∈P

zpa y
o
pιo ≤ 1 ∀a ∈ A (94)

∑
o∈Õ

∑
k′∈K:tk′≥tk

tk′

tk
xok ≤ LHSk ∀k ∈ K̄ (95)

ιo ∈ {0, 1} ∀o ∈ Õ (96)

(xok, ιo) ∈ G(o) ∀k ∈ K, o ∈ Õ (97)

µg?o ∈ {0, 1} ∀o ∈ Ō. (98)

The mathematical programming formulation involves replacing (xok, ιo) ∈ G(o) by the polyhedral description

of G(o) as given in a specific example in (29) where bound constraints are transformed into variable bounds

implying setup variable ιo.

5 Selected Models and Algorithms

Four of the above models have been found tractable for computational purposes. We now describe briefly

the overall algorithm used for each of them. We discuss how the elements of the previous section are used in

combination and the selected implementation strategies.

5.1 A Cutting Plane Approach for the Virtual Routing Formulation

The Virtual Routing formulation (24–28) is denoted by [VR]. It models a relaxation of the GRWA problem,

considering only the first stage of the Bender’s approach of Section 3.2 that involves grooming and virtual

routing decisions. Its LP optimum provides a valid dual bound, although it is the trivial bound of Propo-

sition 2. We tackle (24–28) directly by branch-and-bound using CPLEX with default cut generation and

primal heuristics. We also test the impact of the cut set constraints (79).
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A variant denoted by [VR 0-1] is to consider the 0-1 form of (24–28), making use of the unary decom-

position presented in Section 4.3 and strengthening it with the valid inequalities of Section 4.4. Observe

that, following the variable split (78), when xbk`q = 1 for q ∈ Qb`k , we can count the q tk
U dedicated single-hops

directly in the cost function and write the capacity constraints only in terms of the xak`q variables, q ∈ Qa`k .

This in turn leads to a smaller domain for the yij . Hence, the valid inequalities presented next in Section 4.4,

shall typically be more efficient (in particular strong linking inequalities [1] for a 0 − 1 reformulation of the

bifurcated capacitated network design problem using strong linking inequalities). The resulting formulation

is:

min
∑

(i,j)∈V 2

yij +
∑
k∈K

∑
`∈L̃skdk

∑
q∈Q̃b`

k

q tk
U

xbk`q (99)

[VR 0-1] LHSk ≥
∑

k′∈Kskdk
:

tk′≥tk

∑
`∈L̃skdk

∑
q∈Q̃`

ak′

tk′

tk
q xak

′

`q ≥ RHSk ∀k ∈ K (100)

∑
k∈K

∑
`∈L̃skdk

∑
q∈Q̃a`

k

y`ij tk q x
ak
`q ≤ U yij ∀(i, j) ∈ V 2 (101)

∑
q∈Q̃a`

k

xak`q ≤ 1 ∀k ∈ K, ` ∈ L̃skdk (102)

∑
q∈Q̃b`

k

xbk`q ≤ 1 ∀k ∈ K : tk = tmax
skdk

, ` ∈ L̃skdk (103)

xk`q ∈ {0, 1} ∀k ∈ K, ` ∈ L̃skdk , q ∈ Q̃a`k ∪ Q̃b`k (104)

yij ∈ IN ∀(i, j) ∈ V 2. (105)

We use the cut set constraints (79), strong linking cuts (84), Gomory cuts (85) and (86), lifted cover cuts

on constraints (100) and (101) and ε-split c-strong cuts on constraints (101) with 1 ≤ ε ≤ 4. Cut set, strong

linking and Gomory cuts can be enumerated at each iteration of the cutting plane method, whereas for lifted

knapsack cover and ε-split c-strong inequalities, we use the separation method presented in [3] and [9]. The

cuts can sometimes bring better primal solutions as well. Note that each of the above presented cuts admits

a linear expression in terms of the xk`q. For instance, the strong linking cuts takes the form:∑
q∈Q̃a`

k

xk`q ≤ yij ∀(i, j) ∈ V 2, k ∈ K, ` ∈ Lskdk : y`ij = 1. (106)

Primal solutions to [VR] or [VR 0-1] that are obtained with CPLEX, need to be check for feasibility using

the two-step procedure described in Section 3.2. We first solve (55–60) and then (49–51). We observed that

adding constraints to enforce request-commodity upper bounds (74) helps CPLEX primal heuristic to find

better primal solutions.

5.2 A Column and Cut Generation Approach for the Wavelength Routing Con-
figuration Formulation

The Wavelength Routing Configuration formulation (37–40) is denoted by [WRC]. Its LP relaxation is solved

using a nested column generation approach which requires a large computing time. The enhanced demand

covering constraints take the form:∑
c∈C

∑
k′∈Kskdk

:
tk′≥tk

tk′

tk
xck′ νc ≥ RHSk ∀k ∈ K. (107)

Aggregate bounds bk and bk and LHSk are not explicitly formulated in [WRC] because they induce difficulties

for finding a feasible solution of the LP relaxation. However, omitting these bounds shall result in weaker

dual bounds.
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The master LP is initialized with a set of artificial columns that are later eliminated from the solution

by increasing their cost if needed. The pricing problem is initially solved by the greedy heuristic. As the

number of optical hop configurations can be large, we first restrict the set of optical hop configurations to the

single-hop and two-hop configurations, then when there is no more negative reduced cost wavelength routing

configurations, we add the splitting and merging and finally, we add the interlaced configurations. The exact

pricing method is only applied when the heuristic fails to identify a negative reduced cost column; only then,

in the latter iterations, the pricing problem solution value can be used to compute strong Lagrangian dual

bounds on the master LP.

To improve the dual bound, we use cut set inequalities (79) that takes the form∑
d∈V \{s}

∑
c∈C

∑
p∈Psd

ycp νc ≥

⌈∑
d∈V \{s}Dsd

U

⌉
∀s ∈ V

and ∑
s∈V \{d}

∑
c∈C

∑
p∈Psd

ycp νc ≥

⌈∑
s∈V \{d}Dsd

U

⌉
∀d ∈ V,

where indicator ycp is one if configuration c uses path p. We also use the (s, d)-lightpath inequalities (80):∑
c∈C y

c
sd νc ≥

⌈
Dsd

U

⌉
∀(s, d) ∈ V 2, where indicator ycsd is equal to the number of grooming patterns on c

that carry (s, d) traffic, and k-lightpath cuts (81):
∑
c∈C y

c
k νc ≥

⌈
tk bk
U

⌉
∀k ∈ K : bk > 0, where indicator

yck is equal to the number of grooming patterns on c that carry a bandwidth reservation of granularity tk.

Bandwidth reservation upper bound cuts (83) become:
∑
c∈C y

c
sdαsd

νc ≤ max{
⌊
Dsd

U

⌋
, 1} ∀(s, d) ∈ V 2 where

indicator ycsdαsd
is equal to the number of grooming patterns on c that carry more than αsd unit of (s, d)

flow. The dual variables associated with these cuts either result in modified dual values πk or in fixed cost

linked with the choice of optical hops in the pricing problem and sub-problems. Each time the master LP is

solved to optimality we enumerate the valid inequalities and add the violated ones.

As restrictive Assumptions 5 and 6 are made, the resulting dual bound is not strictly valid for GRWA but

can be taken as an estimation of the port installation cost. The primal bounds are valid. They are obtained

using a rounding heuristic. At each iteration, we get the LP solution ν̄ and we first attempt to round down

the master LP solution. For all wavelength routing configurations with ν̄c ≥ 1, we fix νc = bν̄cc in the current

partial primal solution. If there are no candidate c with ν̄c ≥ 1, we select a wavelength routing configuration

to be rounded-up and fix νc = dν̄ce in the primal solution. We use a selection criterion based on the largest

ratio of granted demand over cost among the tenth wavelength routing configurations with the largest ν̄c. It

helps to avoid selecting columns with low traffic. After fixing a partial solution, the residual master program

is re-optimized by column generation but using the heuristic pricing solver only. The procedure is reiterated

until all demands are covered or the residual master is infeasible.

5.3 A Cutting Plane Hierarchical Optimization Approach for the Grooming and
Physical Routing Formulation

We consider a relaxation of the Grooming and Physical Routing formulation (43–48) denoted by [GPR] where

we ignore the term φ(y), considering only the first stage decision of the Benders’ approach of Section 3.1. Its

LP relaxation is solved using CPLEX. The resulting dual bound is that of Proposition 2. As for the [VR]

formulation (24–28), we use the 0-1 reformulation, denoted by [GPR 0-1], and cutting planes to improve the

dual bound. We implemented the restrictions presented in Observation 4, and it slightly improves the dual

bound. Primal solutions are obtained using CPLEX default primal heuristics. We check a posteriori the true

feasibility of the proposed primal solution by solving the [WA] problem (49–51) using CPLEX.

5.4 A Column and Cut Generation Hierarchical Optimization Approach for the
Grooming Pattern Formulation

Benders’ reformulation (61–63) of the Grooming Pattern formulation is denoted by [BGPA]. We obtain

dual bounds by solving the master LP using a column generation procedure, ignoring the term φ(y) (we
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consider only the grooming and virtual routing decisions corresponding to the first stage of the approach

of Section 3.2). The master LP is initialized with a set of single-hop configuration grooming patterns that

define a feasible integer solution. We strengthen the formulation using the upper bound on the aggregate

traffic in the enhanced demand constraints:
∑
g∈G̃

∑
k′∈Kskdk

:
tk′≥tk

tk′
tk
xgk′ µg ≤ LHSk ∀k ∈ K. The solution of the

grooming pricing problem was discussed in Section 4.5. At each iteration of the column generation procedure,

we add multiple columns to the master (all the grooming patterns with a negative reduced cost). The LP

dual bound is not strictly valid for the GRWA problem as it is obtained under Assumption 5. To improve the

dual bound, we use the same valid inequalities as for [WRC] formulation given in (37–40). However, in this

case, we add all of them a priori to the initial master LP as their number is relatively small. Valid primal

bounds are obtained using a rounding heuristic similar to the one used for [WRC]. To check if there exists

a feasible wavelength assignment for the selected aggregate optical hop configurations of the master primal

solution, we use CPLEX to solve the second stage [GPWA] problem defined in (64–68).

6 Numerical Results and Comparison

The four approaches have been tested and compared on realistic size data sets. We have generated four

different instances for NSF network (14 nodes and 21 edges) and the EON network (20 nodes and 39 edges).

Table 2 summarizes the characteristics of each instance and gives the total number of requests, the overall

required bandwidth, the number of wavelengths per fiber link (it is the minimal number of wavelengths

required by the trivial single-hop primal solution). We also include the trivial dual bound of Proposition 2

rounded-up, tDB, the traditional cut set dual bound, csDB:

csDB = max

{∑
s∈V

⌈∑
d∈V \{s}Dsd

U

⌉
,
∑
d∈V

⌈∑
s∈V \{d}Dsd

U

⌉}
,

our best truly valid dual bound (in the absence of any restrictive assumption), DB, our best primal bounds

over all four approaches, PB, and the single-hop routing solution primal bound, shPB. The number between

brackets along side the best bounds refer to the model that releases this best truely valid bound: [1] denotes

model [VR], [2] denotes model [VR 0-1] and [3] denotes model [GPR 0-1].

In Table 3 we compare the four approaches in terms of dual bounds at the root node, rDB, and dual

bounds obtained at the root after adding cuts, rcDB, until no more cuts can be generated from our separation

procedure (with no time limit). The last row provides the average computation time in seconds. A “*”

indicates that the bound is only valid under restrictive Assumptions 5 or 6. In Table 4, we present the dual

bounds that can be obtained through CPLEX default branching and automatic cut generations run with a

time limit of 1 hour, bDB, and those obtained when running CPLEX default branch-and-cut with a time

limit of 1 hour after adding all the cuts of Section 4.4 at the root node, cbDB. This can only be done for the

direct formulations that do not require dynamic column generation. In Tables 5 and 6, we compare primal

bounds and gaps to the best dual bound (in percent) obtained with our primal heuristics (either hierarchical

optimization or rounding procedure). In Table 5 we do not use the cuts of Section 4.4, while the results of

Table 6 are obtained making use of our cutting plane procedure. We give the average computational time

Table 2: Instances characteristics and associated dual and primal bounds

Instance
∑

k Dk
∑

k tk Dk W tDB csDB DB PB(gap) shPB (gap)
NSF 1 1,667 34,007 19 178 185 198 [1] 209 [1] (5.5) 269 (35.8)
NSF 2 1,332 26,918 13 141 149 159 [1][2][3] 170 [2] (6.9) 182 (14.4)
NSF 3 1,949 40,064 25 209 216 227 [1][2] 246 [1] (8.3) 364 (60.3)
NSF 4 60,303 114,328 47 596 603 614 [1] 624 [1] (1.6) 685 (11.5)
EON 1 6,639 78,837 33 411 420 461 [3] 484 [1] (4.9) 605 (31.2)
EON 2 2,292 36,547 18 191 201 237 [2][3] 258 [1] (8.8) 380 (60.3)
EON 3 3,667 79,592 36 415 425 468 [3] 493 [2] (5.3) 741 (58.3)
EON 4 120,676 217,337 67 1,132 1,143 1,188 [3] 1211 [1] (1.9) 1,329 (11.8)
average 24,816 78,454 32.2 409.1 417.7 444 461.8 (5.4) 569.3 (35.5)
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Table 3: Comparing dual bound at the root node

Instance [VR] [VR 0-1] [WRC] [GPR 0-1] [BGPA]
rDB rcDB rDB rcDB rDB* rcDB* rDB rcDB rDB* rcDB*

NSF1 178 185 178 196 192 199 178 195 194 199
NSF2 141 149 141 159 160 161 141 159 161 161
NSF3 209 216 210 225 209 234 210 221 215 236
NSF4 596 603 597 610 596 604 596 604 597 604
EON1 411 420 423 454 440 441 429 457 447 457
EON2 191 201 205 236 258 261 205 236 261 262
EON3 415 425 419 443 415 425 454 465 427 475
EON4 1,132 1,143 1,144 1,173 1,132 1,143 1,161 1,177 1,144 1,152
average 409.13 417.75 414.63 437.00 425.25 433.50 421.75 439.25 430.75 443.25

time 0.02 0.05 0.16 1,845 35,828 >100,000 0.31 80,312 441 5,573

Table 4: Comparing dual bounds obtained after running CPLEX default branch-and-cut for 1 hour

Instance [VR] [VR 0-1] [GPR 0-1]
bDB cbDB bDB cbDB bDB cbDB

NSF1 198 198 196 197 190 196
NSF2 159 159 158 159 151 159
NSF3 227 227 224 227 216 224
NSF4 614 614 610 613 599 607
EON1 457 457 451 456 447 461
EON2 236 236 234 237 229 237
EON3 444 444 438 444 459 468
EON4 1,179 1,180 1,170 1,177 1,169 1,188
average 439.25 439.38 435.13 438.75 432.5 442.5

time 3,614 3,612 3,623 1,845 3,656 83,923

Table 5: Comparing primal bounds PB obtained with the primal heuristics of this paper without adding
cutting planes before hand

Instance [VR] [VR 0-1] [WRC] [GPR 0-1] [BGPA]
NSF1 212 (7.1) 212 (7.1) 240 (21.2) ∞ 220 (11.1)
NSF2 173 (8.8) 170 (6.9) 190 (19.5) ∞ 175* (10.1)
NSF3 246 (8.3) 254 (11.8) 269 (18.5) 265 (16.7) 258 (13.6)
NSF4 627 (2.1) ∞ 643 (4.7) ∞ 642 (4.5)
EON1 484 (4.9) ∞ 526 (14.1) ∞ 512 (11.1)
EON2 258 (8.8) 261 (10.1) 309 (30.3) 272 (14.7) 292 (23.2)
EON3 494 (5.5) 493 (5.3) 557 (19.1) 564 (20.5) 528 (12.8)
EON4 1,230 (3.5) ∞ 1,239 (4.2) ∞ 1,236 (4.1)
average 465.50 (6.1) 496.63 (16.4) 482.88 (11.3)

time 10,571 5,447 57,954 3,282 6,128

Table 6: Comparing primal bound PB obtained with the primal heuristics of this paper applied after running
the cutting plane procedure of this paper

Instance [VR] [VR 0-1] [GPR 0-1] [BGPA]
NSF1 209 (5.5) 212 (7.1) 223 (12.6) 218 (10.1)
NSF2 172 (8.1) 172 (8.1) 171 (7.5) 174 (9.4)
NSF3 246 (8.3) 259 (14.1) 274 (20.7) 255 (12.3)
NSF4 624 (1.6) ∞ ∞ 637 (3.7)
EON1 484 (4.9) ∞ ∞ 501 (8.6)
EON2 258 (8.8) 262 (10.5) 291 (22.7) 285 (20.2)
EON3 494 (5.5) 753 (60.9) 671 (43.3) 524 (11.9)
EON4 1,211 (1.9) ∞ ∞ 1,221 (2.7)
average 462.25 (5.6) 476.88 (9.9)

time 8,477 6,973 83,923 36,090

on last row. For the feasibility subproblems, CPLEX is called with its default settings without a time limit.

The analysis of the results can be summarized as follows:
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1. With the Virtual Routing formulation (24–28), [VR], the LP dual bound is equal to the trivial bound.

Cut set inequalities only allow to get the trivial cut set dual bound, but they help to find good primal

solutions. During the one hour of CPLEX default branch-and-cut, the dual bounds are greatly improved,

mostly by the built-in cutting plane method, whereas the improvement of the dual bound due to a pure

branch-and-bound (without CPLEX built-in cut generation) is marginal. Adding the cut sets before

calling on CPLEX MIP solver does make a slight difference in terms of the quality of dual bounds. The

primal solutions obtained by the three stage procedure, with a time limit of one hour for each of the

first 2 stages, are very good on average. The computational time is around 6000 (resp. 7000) seconds

on average when solving the three stage procedure without (resp. with cut set) inequalities. The second

stage alone takes less than 3600 seconds in average. The valid solution obtained in the second stage

has often the same cost as the first stage incumbent.

For [VR 0-1], we observe that the LP relaxation value is better than the trivial dual bound thanks

to our bound preprocessing. The dual bounds obtained applying CPLEX default branch-and-cut to

the original formulation (without the cuts of Section 4.4) are not better than for the integer [VR]

version. However, adding the cuts of Section 4.4 greatly improves the dual bound at the root node at

the expense of largely increasing the computation time (we did not set any time limit on the cutting

plane procedure and we consider all the feasible inequalities of Section 4.4 when generating cuts). Note

that the dual bound after our cutting plane method is better than the dual bound obtained after one

hour of CPLEX branch-and-cut without using our cutting plane procedure. It shows the interest of the

cuts of Section 4.4. Combining these cuts with those generated with the built-in cutting plane method

of CPLEX yields extra improvements. The dual bounds obtained from the [VR 0-1] formulation are

very close to those obtained from [VR]. Because of the large number of variables in [VR 0-1], CPLEX

primal heuristics tend to be less effective (we are not always able to find integer solutions to the first

stage problem [VR 0-1]). However, it gives two of the best primal bounds. For many instances, no

primal solutions were found at the first stage and the second stage problem is not called. Hence, in

Table 5, the average computational time is smaller for [VR 0-1] than for [VR]. However, when using all

the families of valid inequalities of Section 4.4, the average time is multiplied by 4 (the cutting plane

procedure takes as much as 12,000 seconds in average). This computational time could be reduced by

letting CPLEX use its own lifted cover cut inequalities as their separation method should be better

than our trivial separation method.

2. For the Wavelength Routing Configuration formulation (37–40), [WRC], the LP relaxation is very hard

to solve to optimality. The computational times are very large. The resulting dual bound is not as good

as that of formulation [BGPA], given in (52–54), because we do not use all the possible formulation

strengthening such as the aggregate flow upper bound LHSk. The cutting plane method was stopped
prematurely after 100,000 seconds of computing time. The primal bounds have a poor quality because

fixing wavelength configuration are very aggregate decisions that often end up with little flexibility at

the end of the rounding procedure. (We do not report on combining the primal heuristic with cut

generation, as the computing times are too large.)

3. For the Grooming and Physical Routing formulation (43–47) in its 0-1 form, [GPR 0-1], the LP re-

laxation bound is better than the trivial bound. This is due to the domain restriction of the traffic

reservation variables on single-hop lightpaths. The dual bounds that are obtained at the end of the

CPLEX branch-and-cut procedure (within one hour) are very good. When it is combined with our

cutting plane procedure, it gives the best average dual bounds. However, with this formulation, very

few primal bounds were obtained and, moreover, their costs are not as good as for the [VR] formulation.

This can be explained by the fact that [GPR 0-1] has many more variables than [VR], which makes

CPLEX heuristics less efficient. The computing times of the root dual bound with our cutting plane

method are quite large: [GPR 0-1] involves more constraints and more induced cuts than [VR]. How-

ever, a close look to the results shows that the average time is greatly affected by the EON4 instance

that takes more than 500,000 seconds. We have use all the families of valid inequalities of Section 4.4

and we perform separation exactly. Considering a restricted set of valid inequalities and developing

heuristic separation could allow us to reduce the computational times (while we could expect to keep

very good dual bounds).
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4. For the Benders’ reformulation (61–63) of the Grooming Pattern formulation, [BGPA], using cuts not

only improves the dual bound but also helps in getting better primal bounds on average. Even though

the dual bounds are subject to restrictive Assumptions, they are very close to the best dual bounds

obtained by the formulation based on the original variables. The primal bounds are weaker than the

ones obtained from [VR], but the procedure is robust as the primal solutions were always validated in

the second stage feasibility check. The computing times are distributed as follows. Optimizing the LP

relaxation takes around 400 seconds without cuts and 5500 seconds using all the cuts of Section 4.4;

the primal bound computation takes in average 6000 seconds without cuts and 36000 when using all

the cuts (re-optimizing the residual master LP using the cutting plane procedure takes up to 170 000

seconds for EON3). Even though this formulation is based on a restriction, the model is far from trivial

to solve.

Conclusion

The grooming, routing and wavelength assignment (GRWA) problem is quite challenging to solve given

the large number of requests and the inherent symmetry in wavelength assignment and alternative traffic

loading patterns. To derive dual bounds we have developed and compared (i) relaxations (considering only

the first stage decisions of a Benders’ approach), (ii) Dantzig-Wolfe reformulations, and (iii) an original

hybridization of these two techniques. An important feature in our approaches is the symmetry breaking by

way of restricting the solution set to solutions involving large granularity reservations and favoring single-hop

routing. Further enhancements are obtained through a 0-1 decomposition with variable domain reduction

(the refinement (78) is original and quite helpful computationally) and cut generation inspired from the

literature. Primal bounds are obtained using (i) a hierarchical optimization procedure based on CPLEX

build-in primal heuristics, (ii) a rounding procedure (equivalent to a depth first plunging into a branch-and-

price tree), or (iii) a combination of these two. For both dual and primal bounds, we manage to exploit

CPLEX capabilities rather than compete with it.

The best dual bounds are obtained with the hybrid Dantzig-Wolfe / Benders’ approach (formulation

[BGPA]) when comparing root node results (even though they rely on a restrictive assumption). Comparing

what can be obtained with CPLEX default MIP solver, the best dual bounds, in average, are obtained from

Benders’ [GPR 0-1] formulation that takes advantage of the bound strengthening and the valid inequalities.

The best primal bounds are derived from the [VR] formulation that shows the efficiency of the built-in

CPLEX heuristics, while the hybrid Dantzig-Wolfe / Benders’ approach provides good primal solutions and

also shows its robustness. Zero-One extended formulation provides better dual bounds at the root node

and more opportunity to derive cutting planes, but they demand (much) larger computing times. Moreover,

primal heuristics are not as efficient in these larger variable spaces. Our pure column generation approach,

using [WRC], is comparatively much more time consuming. Even though its LP value defines good dual

bound, applying branching and cutting to a compact formulation can yield better bounds much faster.

Computing times could probably be much improved by developing more efficient separation procedure for

the cuts of Section 4.4. Further developments would also include ad-hoc branching schemes for the column

generation approach to examine whether branching could improve dual bounds significantly (although the

root node computing time is already quite large).
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