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a Université Lille Nord de France, F-59000 Lille, France
b UVHC, LAMIH, F-59313 Valenciennes, France

c CNRS, UMR 8530, F-59313 Valenciennes, France
d Brunel University, West London UB8 3PH, UK

e Mathematical Institute, Serbian Academy of Sciences and Arts,

Kneza Mihaila 36, 11000 Belgrade, Serbia
f and GERAD

December 2009

Les Cahiers du GERAD

G–2009–87

Copyright c© 2009 GERAD





Abstract

In this paper we propose new matheuristics for solving multidimensional knapsack problem. They are
based on the variable neighbourhood decomposition search (VNDS) principle. The set of neighbourhoods
is generated by exploiting information obtained from a series of relaxations. In each iteration, we add
pseudo-cuts to the problem in order to produce a sequence of not only lower, but also upper bounds of
the problem, so that integrality gap is reduced. General-purpose CPLEX MIP solver is used as a black
box for solving subproblems generated during the search process. With this approach, we have managed
to obtain results comparable with the current state-of-the-art heuristics on the set of large scale multi-
dimensional knapsack problem instances. Moreover, we have reached a few new lower bound values for
some of the test instances.

Key Words: 0-1 Mixed Integer Programming, Multidimensional Knapsack Problem, Matheuristics,
Variable Neighbourhood Search.

Résumé

Dans ce papier nous proposons de nouvelles métaheuristiques pour résoudre le problème du sac
à dos multidimensionnel. Elles sont basées sur le principe de la recherche à voisinage variable avec
décomposition. L’ensemble des voisinages est généré en exploitant l’information obtenue à partir d’une
série de relaxations. À chaque itération, nous ajoutons des pseudo-coupes au problème de façon à produire
une séquence de bornes inférieures et supérieures pour le problème et réduire l’écart entre ces bornes. Le
solveur CPLEX est utilisé comme bôıte noire pour résoudre les sous-problèmes générés durant le processus
de recherche. Avec cette approche nous avons obtenu des résultats comparables à ceux des heuristiques
efficaces récentes sur un ensemble d’instances de grande taille du problème du sac à dos multidimen-
sionnel. De plus, nous avons atteint quelques nouvelles valeurs de borne inférieure pour certaines des
instances tests.
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1 Introduction

Multidimensional Knapsack Problem (MKP) is a resource allocation problem which can be formulated as

follows:

(P )





max
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ M = {1, 2, . . . , m}
xj ∈ {0, 1} ∀j ∈ N = {1, 2, . . . , n}

Here, n is the number of items, m is the number of knapsack constraints. The right hand side bi (i ∈ M)

represents capacity of knapsack, A = [aij ] is the weights matrix, whose element aij represents the resource

consumption of the item j ∈ N in the knapsack i ∈ M , and cj (j ∈ N) is the profit income for the item
j ∈ N . The optimal objective function value of problem (P ) is denoted as ν(P ):

ν(P ) = {max

n
∑

j=1

cjxj |
n

∑

j=1

aijxj ≤ bi, ∀i ∈ M, xj ∈ {0, 1}, ∀j ∈ N}.

Being a special case of the 0-1 Mixed Integer Programming (0-1 MIP) problem:

(0-1 MIP ) max{cT x | x ∈ X}, (1)

where X = {x ∈ R
n | Ax ≤ b, xj ≥ 0 for j = 1, . . . , n, xj ∈ {0, 1} for j = 1, . . . , p ≤ n}, MKP is often used as

a benchmark model for testing general purpose combinatorial optimisation methods.

Wide range of practical problems in business, engineering and science, can be modeled as a MKP problems.

They include capital budgeting problem, cargo loading, allocating processors in a huge distributed computer

system, cutting stock problem, delivery of groceries in vehicles with multiple compartments and many more.

Since MKP is known to be NP-hard [13], there were numerous contributions over several decades to the

development of both exact (mainly for the case m = 1, see, for instance, [25, 31, 32], and for m > 1, see, for
instance [2, 11, 14]) and heuristic (for example [3, 18, 39]) solution methods for MKP. For a complete review

of these developments and applications of MKP, reader is referred to [9, 41].

Mathematical programming formulation of MKP is especially convenient for the application of some
general purpose solver. However, due to the complexity of the problem, sometimes it is not possible to obtain

an optimal solution in this way. This is why huge variety of problem specific heuristics has been tailored,

their drawback being that they cannot be applied to a general class of problems. An approach for generating

and exploiting small sub-problems was suggested in [15], based on selection of consistent variables, depending

on how frequently they attain particular values in good solutions and on how much disruption they would
cause to these solutions if changed. More recently, a variety of neighbourhood search heuristics for solving

optimization problems have emerged, such as Variable Neighbourhood Search (VNS) proposed in [27], Large

Neighbourhood Search (LNS) introduced in [33] and the large-scale neighbourhood search in [1]. In 2005,

Glover proposed an adaptive memory projection (AMP) method for pure and mixed integer programming
[16], which combines the principle of projection techniques with the adaptive memory processes of tabu

search to set some explicit or implicit variables to some particular values. This philosophy gives a useful

basis for unifying and extending a number of other procedures: LNS, local branching (LB) proposed in [8],

the relaxation induced neighbourhood search (RINS) proposed in [4], VNS branching [21], or the global

tabu search intensification using dynamic programming (TS-DP) [40]. LNS and RINS have been applied
successfully to solve large-scale mixed integer programming problems. TS-DP is a hybrid method, combining

adaptive memory and sparse dynamic programming to explore the search space, in which a move evaluation

involves solving a reduced problem through dynamic programming at each iteration. Following the ideas of

LB and RINS, another method for solving mixed integer programming problems was proposed in [24]. It
is based on the principles of Variable Neighbourhood Decomposition Search (VNDS) [20]. This method

uses the solution of the linear relaxation of the initial problem to define sub-problems to be solved within

the VNDS framework. In [34], a convergent algorithm for pure 0-1 integer programming was proposed. It

solves a series of small sub-problems generated by exploiting information obtained through a series of linear

programming relaxations. Hanafi and Wilbaut have proposed several enhanced versions of the Soyster’s exact
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algorithm (see [19, 39]). In further text, we refer to this basic algorithm as the Linear Programming-based
Algorithm (LPA).

In this paper we propose new heuristics for solving 0-1 MIP, which dynamically improve lower and upper

bounds on the optimal value within VNDS. Different heuristics are derived by choosing a particular strategy of

updating lower and upper bounds, and thus defining different schemes for generating a series of sub-problems.

We also propose a two-level decomposition scheme, in which sub-problems derived using one criterion are
further divided into subproblems according to another criterion. The proposed heuristics have been tested

and validated on the MKP. The results obtained on two sets of available and correlated instances show that

our approach is efficient and effective:

• our proposed algorithms are comparable with the state-of-the-art heuristics

• a few new best known lower bound values are obtained.

This paper is organised as follows. In Section 2, we give a brief overview of the LPA [34] and VNDS

algorithms [24], since they are directly related to the new heuristics proposed in this paper. We also present

needed mathematical notations and definitions. In Section 3, we present the new heuristics based on the

mixed integer and linear programming relaxations of the problem and VNDS principle. Next, in Section 4,
computational results are presented and discussed in an effort to assess and analyse the performance of the

proposed algorithms. In Section 5, some final outlines and conclusions are provided.

2 Related Work

The new heuristics we propose later in this paper are mainly based on the further development of the ideas

of LPA [34] and basic VNDS [20]. In this section we provide description of these two algorithms and needed
mathematical notation.

The fixation of variables is essential for both LPA and VNDS and therefore needs to be formulated more

precisely. This is why we introduce the notion of reduced problem. Given an arbitrary binary solution x0 and

an arbitrary subset of variables J ⊆ N , the problem reduced from original problem P and associated with

x0 and J can be defined as:

P (x0, J)









max cT x
s.t. Ax ≤ b

xj = x0
j ∀j ∈ J

xj ∈ {0, 1} ∀j ∈ N

Obviously, the reduced problem is derived from the original one by setting variables with indices in J at values

of x0. We further define the sub-vector associated with the set of indices J and solution x0 as x0(J) = (x0
j )j∈J ,

the set of indices of variables with integer values as B(x) = {j ∈ N | xj ∈ {0, 1}}, and the set of indices of

variables with value v ∈ {0, 1} as Bv(x) = {j ∈ N | xj = v}. We will also use the short form notation P (x0)
for the reduced problem P (x0, B(x0)). Apparently, P (x0) = P if x0 ∈ ]0, 1[n. The LP-relaxation of problem

P is denoted as LP(P ), i.e. :

LP(P )





max cTx
s.t. Ax ≤ b

xj ∈ [0, 1] ∀j ∈ N

If C is a set of constraints, we will denote with (P | C) the problem obtained by adding all constraints in
C to the problem P . Let x and y be two arbitrary binary solutions of the problem P , the distance between

x and y is then defined as δ(x, y) =
∑

j∈N | xj − yj |. If J ⊆ N , then we define partial distance between x

and y, relative to J , as δ(J, x, y) =
∑

j∈J | xj − yj | (obviously, δ(N, x, y) = δ(x, y)). More generally, let x̄ be

an optimal solution of the LP relaxation LP(P ) (not necessarily MIP feasible), and J ⊆ B(x̄) an arbitrary
subset of indices, the partial distance δ(J, x, x) can be linearized as follows:

δ(J, x, x) =
∑

j∈J

xj(1 − xj) + xj(1 − xj).
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Now we can also introduce the following subproblem notation for k ∈ N ∪ {0}:

P (k, x0, J)













max cT x
s.t. Ax ≤ b

xj = x0
j ∀j ∈ J

δ(J, x, x0) ≤ k
xj ∈ {0, 1} ∀j ∈ N

Let X be the solution space of the problem P considered. The neighbourhood structures {Nk | k =
kmin, . . . , kmax}, 1 ≤ kmin ≤ kmax ≤| N |, can be defined knowing the distance δ(N, x, y) between any two

solutions x, y ∈ X . The set of all solutions in the kth neighbourhood of x ∈ X is denoted as Nk(x), where

Nk(x) = {y ∈ X | δ(N, x, y) ≤ k}.

From the definition of Nk(x), it follows that Nk(x) ⊂ Nk+1(x), for any k ∈ {kmin, kmin + 1, . . . , kmax − 1},
since δ(N, x, y) ≤ k implies δ(N, x, y) ≤ k + 1. It is trivial that, if we completely explore neighbourhood
Nk+1(x), it is not necessary to explore neighbourhood Nk(x).

2.1 Linear Programming Based Algorithm

The LPA consists in generating two sequences of upper and lower bounds until justifying the completion of an

optimal solution of the problem. This is achieved by solving exactly a series of sub-problems obtained from

a series of linear programming relaxations. In addition, at each iteration LPA reduces the search space by
adding a pseudo-cut which guarantees that sub-problems already explored are not revisited. The outline of

the LPA is given in Figure 1, in which we consider as input parameters an instance P of the multidimensional

knapsack problem and an initial feasible solution x∗ of P .

LPA(P, x∗)
1 Q = P ; proceed = true;
2 while (proceed) do

3 x = LPSOLVE(LP(Q));
4 if x ∈ {0, 1}n then

5 x∗ = argmax{ctx∗, ctx}; break;
6 endif

7 x0 = MIPSOLVE(P (x));
8 if (ctx0 > ctx∗) then x∗ = x0;
9 Q = (Q | δ(B(x), x, x) ≥ 1);

10 if (⌊ctx − ctx∗⌋ < 1) then proceed = false;
11 endwhile

12 return x∗.

Figure 1: Linear programming based algorithm.

The LPA was originally proposed for solving pure 0–1 integer programming. Hanafi and Wilbaut proposed

in [19, 39] several extensions for both 0–1 integer programming and 0–1 MIP. The validity of pseudo-cuts
added within the LPA search process (line 10 in Figure 1) is guaranteed by the Proposition 1. The proof of

the proposition can be found in [39].

Proposition 1 Let P be a given 0 − 1 mixed integer programming problem, x a solution of LP(P ) and x0

an optimal solution of the reduced problem P (x). An optimal solution of P is either the solution x0 or an

optimal solution of the problem (P | δ(B(x), x, x) ≥ 1).

The consequence of the Proposition 1 is Theorem 1, which states the finite convergence of the LPA. The

proof of the theorem can be found in [19, 38].
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Theorem 1 The LPA converges to an optimal solution of the input problem or indicates that the problem is

infeasible in a finite number of iterations.

Although LPA is proved to be an exact algorithm, in practice reduced problems P (x) can be very complex

themselves, so LPA is normally used as a heuristic limited by a total number of iterations or a running time

(by changing the stopping condition in line 11 in Figure 1).

The basic version of LPA can also be improved by integrating dominance properties (the reader is refered
to [19] for more details). In addition, Wilbaut and Hanafi [39] proposed other variants by integrating a MIP-

relaxation in which the integer requirement on x is released for a subset of variables of the problem. They

developed two new heuristics by combining the LP-relaxation and the MIP-relaxation to define intensification

and diversification phases. In the first heuristic the MIP-relaxation is defined from an optimal solution of the

LP-relaxation. This algorithm is refered as the Iterative Relaxation based Heuristic (IRH). In the second one
the two relaxations are used in a parallel way to form the Iterative Independant Relaxation based Heuristic

(IIRH). We compare our results with those of these algorithms. More details about these heuristics can be

found in [39].

2.2 Basic VNDS

Variable neighbourhood decomposition search (VNDS) is a two-level VNS scheme for solving optimisation
problems, based upon the decomposition of the problem [20]. Recently, a new variant of VNDS for solving

0-1 MIP problems, called VNDS-MIP, was proposed [24]. This method combines linear programming (LP)

solver, MIP solver and VNS based MIP solving method VND-MIP in order to efficiently solve a given 0-1

MIP problem. The outline of the algorithm is given in Figure 2.

VNDS-MIP(P, d, x, kvnd)
1 Find an optimal solution x of LP(P );
2 Choose stopping criteria (set proceed1=proceed2=true);
3 while (proceed1) do

4 δj =| xj − xj |, j ∈ N ; index variables xj , j ∈ N ,
so that δ1 ≤ δ2 ≤ . . . ≤ δp, p =| N |

5 Set nd =| {j ∈ N | δj 6= 0} |, kstep = [nd/d], k = p − kstep;
6 while (proceed2 and k ≥ 0) do

7 Jk = {1, . . . , k}; x′ = MIPSOLVE(P (x,Jk), x);
8 if (ctx′ > ctx) then

9 x = VND-MIP(P, kvnd, x′); break;
10 else

11 if (k − kstep > p − nd) then kstep = max{[k/2], 1};
12 Set k = k − kstep;
13 endif

14 Update proceed2.
15 endwhile

16 Update proceed1; if (k ≤ 0) break;
17 endwhile

18 return x.

Figure 2: VNDS for 0-1 MIP.

Input parameters for the VNDS-MIP algorithm are an instance P of the 0-1 MIP problem, parameter

d which defines the number of variables to be released in each iteration, initial feasible solution x of P and
maximum size kvnd of neighbourhood explored within VND-MIP. In the beginning, LP-relaxation LP(P ) is

solved to obtain an optimal solution x of LP (P ). Then, instead of solving just a single reduced problem

P (x), a series of sub-problems P (x, Jk) is solved, where sets Jk ⊆ N , Jk = {1, 2, . . . , k}, with J0 = ∅,
are chosen according to distances δ(Jk, x, x), until the improvement of the incumbent objective value is
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reached. This provides higher flexibility since there is possibility of improving the objective function value
in much shorter time when solving P (x, Jk), |Jk| > |B(x)|. The maximum number of sub-problems solved

by decomposition with respect to current incumbent solution x (lines 6–15 of the pseudo-code in Figure 2) is

d + log2(|B(x)|) < d + log2 n. Since there are 2n possible values for objective function value, there can be no

more than 2n−1 improvements of the objective value. As a consequence, the total number of steps performed
by VNDS cannot exceed 2n(d + log2 n).1 If no improvement has occurred by fixing values of variables to

those of the current incumbent solution x, then the last sub-problem the algorithm attempts to solve is

P (x, ∅) = P , which is just the original problem. Therefore, the basic algorithm does not guarantee better

performance than the general-purpose MIP solver used as a black-box within the algorithm. This means that

running the basic VNDS-MIP as an exact algorithm (i.e. with proceed1 and proceed2 set to logical constant
true until the end of computation) does not have any theoretical significance. Nevertheless, when used as a

heuristic with a time limit, VNDS-MIP has a very good performance (see [24]).

Finally, we give in Figure 3 an algorithmic description of the VND-MIP method we use in this paper (note

the differences from the original description provided in [21]). During the VND, the current neighbourhood

of the current solution x′ is completely explored, and if a better solution x′′ is found, then the whole process
is iterated, starting from x′′ as the current incumbent. During the process we also change the last pseudo-cut

according to the status of the solution obtained (optimal, feasible, problem infeasible).

VND-MIP(P, kmax, x′)
1 k = 1;
2 while (k ≤ kmax) do

3 x′′ = MIPSOLVE(P (k, x′, N), x′);
4 switch solutionStatus do

5 case “optSolFound”:
6 reverse last pseudo-cut into δ(N, x′, x) ≥ k + 1;
7 set x′ = x′′; k = 1;
8 case “feasibleSolFound”:
9 replace last pseudo-cut with δ(N, x′, x) ≥ 1;

10 set x′ = x′′; k = 1;
11 case “provenInfeasible”:
12 reverse last pseudo-cut into δ(N, x′, x) ≥ k + 1;
13 set k = k + 1;
14 case “noFeasibleSolFound”:
15 Go to 20;
16 end

17 end

18 return x′.

Figure 3: VND for MIPs.

As the previous VNDS algorithm is valid for 0-1 MIP, we can use it directly for solving the MKP. In the

next section we propose several new variants with different strategies of updating lower and upper bounds,
and with different schemes for generating a sequence of sub-problems to be solved within VNDS. We then

compare these new variants with the original one in Section 4.

3 New advanced VNDS based heuristics

The main red drawback of the basic VNDS-MIP is the fact that the search space is not being reduced during

the solution process (except for temporarily fixing the values of some variables). This means that the same
solution vector may be examined many times, which may affect the efficiency of the solution process. This

1Note that the number of possible values of the objective function is limited to 2n only in case of pure 0−1 programs. In case
of mixed integer programs, there could be infinitely many possible values if objective function contains continuous variables.
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naturally leads to the idea of additionally restricting the search space by introducing pseudo cuts, in order
to avoid the multiple exploration of the same areas.

3.1 VNDS-MIP with pseudo-cuts

One obvious way to narrow the search space is to add the objective cut ctx > ctx∗, where x∗ is the current

incumbent solution, each time the objective function value is improved. This updates the current lower

bound on the optimal objective value and reduces the new feasible region to only those solutions which are
better (regarding the objective function value) than the current incumbent. In the basic VNDS version,

decomposition is always performed with respect to the solution of the linear relaxation LP(P ) of the original

problem P . This way, the solution process ends as soon as all sub-problems P (x, Jk) are examined. In

order to introduce further diversification into the search process, pseudo-cuts δ(J, x, x) ≥ k, for some subset

J ⊆ B(x) and certain integer k ≥ 1, are added whenever sub-problems P (x, J) are explored, completely or
partially, by exact or heuristic approaches. These pseudo-cuts guarantee the change of the LP solution x and

also updates the current upper bound on the optimal value of the original problem. This way, even if there is

no improvement when decomposition is applied with respect to the current LP solution, the search process

continues with the updated LP solution. Finally, further restrictions of the solution space can be obtained by
keeping all the cuts added within the local search procedure VND-MIP. The pseudo-code of the VNDS-MIP

procedure with these modifications, called VNDS-MIP-PC1, is presented in Figure 4.

VNDS-MIP-PC1(P, d, x∗, kvnd)
1 Choose stopping criteria (set proceed1=proceed2=true);
2 Add objective cut: LB = ctx∗; P = (P | ctx > LB).
3 while (proceed1) do

4 Find an optimal solution x of LP(P ); set UB = ν(LP(P ));
5 if (B(x) = N) break;
6 δj =| x∗

j − xj |; index xj so that δj ≤ δj+1, j = 1, . . . , p − 1
7 Set nd =| {j ∈ N | δj 6= 0} |, kstep = [nd/d], k = p − kstep;
8 while (proceed2 and k ≥ 0) do

9 Jk = {1, . . . , k}; x′ = MIPSOLV E(P (x∗, Jk), x∗);
10 if (ctx′ > ctx∗) then

11 Update objective cut: LB = ctx′; P = (P | ctx > LB);
12 x∗ = VND-MIP(P, kvnd, x′); LB = ctx∗; break;
13 else

14 if (k − kstep > p − nd) then kstep = max{[k/2], 1};
15 Set k = k − kstep;
16 endif

17 Update proceed2;
18 endwhile

19 Add pseudo-cut to P : P = (P | δ(B(x), x, x) ≥ 1);
20 Update proceed1;
21 endwhile

22 return LB, UB, x∗.

Figure 4: VNDS-MIP with pseudo-cuts.

As opposed to the basic VNDS-MIP, the number of iterations in the outer loop of VNDS-MIP-PC1 is

not limited by the number of possible objective function value improvements, but with the number of all

possible LP solutions which contain integer components. There are
(

n

k

)

2k possible solutions with k integer

components, so there are
∑n

k=1

(

n
k

)

2k = 3n − 2n possible LP solutions having integer components. Thus, the
total number of iterations of VNDS-MIP-PC1 is bounded by (3n − 2n)(d + log2 n). The optimal objective

function value ν(P ) of current problem P is either the optimal value of (P | δ(B(x), x, x) ≥ 1), or the optimal
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value of (P | δ(B(x), x, x) = 0) i.e.

ν(P ) = max{ν(P | δ(B(x), x, x) ≥ 1), ν(P | δ(B(x), x, x) = 0)}.

If the improvement of objective value is reached by solving subproblem P (x∗, Jk), but the optimal solution

of P is ν(P | δ(B(x), x, x) = 0) , then the solution process continues by exploring the solution space of

(P | δ(B(x), x, x) ≥ 1) and fails to reach the optimum of P . Therefore, VNDS-MIP-PC1 used as an exact

method provides the feasible solution of the initial input problem P in a finite number of steps, but does not
guarantee the optimality of that solution. One can observe that if sub-problem P (x̄) is solved exactly before

adding the pseudo-cut δ(B(x), x, x) ≥ 1 in P then the algorithm converges to an optimal solution. Again,

in practice, when used as a heuristic with the time limit as a stopping criterion, VNDS-MIP-PC1 has a very

good performance (see Section 4).

Improving VNDS-MIP-PC1. To avoid redundance in search space exploration, we introduce another

variant based on the following observation. The solution space of P (x∗, Jℓ) is the subset of the solution space

of P (x∗, Jk) (with Jk as in line 9 of Figure 4), for k < ℓ, k, ℓ ∈ N. This means that, in each iteration of VNDS-

MIP-PC1, when exploring the search space of the current subproblem P (x∗, Jk−kstep
), the search space of the

previous subproblem P (x∗, Jk) gets revisited. In order to avoid this repetition and possibly allow more time for

exploration of those areas of P (x∗, Jk−kstep
) search space which were not examined before, we can discard the

search space of P (x∗, Jk) by adding cut δ(Jk, x∗, x) ≥ 1 to the current subproblem. The corresponding pseudo-

code of this variant, called VNDS-MIP-PC2(P, d, x∗, kvnd), is obtained from VNDS-MIP-PC1(P, d, x∗, kvnd) (see
Figure 4) by replacing line 9 with the following line 9′:

9′ : Jk = {1, . . . , k}; x′ = MIPSOLV E(P (x∗, Jk) | δ(Jk, x∗, x) ≥ 1), x∗);
P = (P | δ(Jk, x∗, x) ≥ 1);

and by dropping line 19 (the pseudo-cut δ(B(x), x, x) ≥ 1 is not used in this heuristic).

The pseudo-cut δ(Jk, x∗, x) ≥ 1 does not necessarily change the LP solution but ensures that current

subproblem P (x∗, Jk) does not get examined again later in the search process. Since

ν(P ) = max{ν(P | δ(Jk, x∗, x) ≥ 1), ν(P | δ(Jk, x∗, x) = 0)},

cut δ(Jk, x∗, x) ≥ 1 does not discard the original optimal solution from the reduced search space. It is easy
to prove that this algorithm finishes in a finite number of steps and either returns an optimal solution x∗ of

the original problem (if LB = UB), or proves the infeasibility of the original problem (if LB > UB).

3.2 A second level of decomposition in VNDS

In this section we propose the use of a second level of decomposition in VNDS, in particular for the MKP. The

MKP is tackled by decomposing the problem in several subproblems where the number of items to choose is
fixed at a given integer value. Formally, let Ph a subproblem obtained from the original problem by adding

the hyperplane constraint etx = h for h ∈ N and enriched by objective cut, defined as follows:

(Ph)













max ctx
s.t.: Ax ≤ b

ctx ≥ LB + 1
etx = h
xj ∈ {0, 1}, j ∈ N

Solving the 0-1MKP by tackling separately each of the subproblems Ph for h ∈ N appeared to be

an interesting approach [2, 35, 36, 37] particularly because the additional constraint (etx = h) provides
tighter upper bounds than the classical LP–relaxation. Let hmin and hmax denote lower and upper bounds

of the number of variables with value 1 in an optimal solution of the problem. Then it is obvious that
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ν(P ) = max{ν(Ph) | hmin ≤ h ≤ hmax}. Bounds hmin =
⌈

ν(LP−
0 )

⌉

and hmax =
⌊

ν(LP+
0 )

⌋

can be
computed by solving the following two problems:

(LP−
0 )









min etx
s.t.: Ax ≤ b

ctx ≥ LB + 1
xj ∈ [0, 1] , j ∈ N

(LP+
0 )









max etx
s.t.: Ax ≤ b

ctx ≥ LB + 1
xj ∈ [0, 1] , j ∈ N

Exploring hyperplanes in a predefined order. As we previously mentioned, the MKP problem P can

be decomposed into several subproblems (Ph), such that hmin ≤ h ≤ hmax, corresponding to hyperplanes

etx = h. Based on this decomposition, we can derive several versions of the VNDS scheme. In the first
variant considered, we define the order of the hyperplanes at the beginning of the algorithm, and then we

explore them one by one, in that order. The ordering can be done according to the objective function values

of linear programming relaxations LP(Ph), h ∈ H = {hmin, . . . , hmax}. In each hyperplane, VNDS-MIP-

PC2 is applied and if there is no improvement, the next hyperplane is explored. That corresponds to the
pseudo-code in Figure 5.

Flexibility in changing hyperplanes. In the second variant we consider the hyperplanes in the same

order as in the previous version. However, instead of changing the hyperplane only when the current one is

completely explored, we allow the change depending on other conditions (a given running time, a number of
iterations without improving the current best solution, . . . ). Figure 6 provides an algorithmic description of

this algorithm, in which proceed3 corresponds to the condition for changing the hyperplane.

VNDS-HYP-FIX(P, d, x∗, kvnd)
1 Solve the LP-relaxation problems LP−

0 and LP+
0 ;

Set hmin =
⌈

ν(LP−
0 )

⌉

and hmax =
⌊

ν(LP+
0 )

⌋

;
2 Sort the set of subproblems {Phmin

, . . . , Phmax
} so that

ν(LP (Ph)) ≤ ν(LP (Ph+1)), hmin ≤ h < hmax;
3 Find initial integer feasible solution x∗;
4 for (h = hmin; h ≤ hmax; h + +)
5 x′ = VNDS-MIP-PC2(Ph, d, x∗, kvnd)
6 if (ctx′ > ctx∗) then x∗ = x′;
7 endfor

8 return x∗.

Figure 5: Two levels of decomposition with hyperplanes ordering.

In this algorithm, we simply increase the value of h by one when the changing condition is satisfied (except

when h = hmax; in that case h is fixed to the first possible value starting from hmin). When the best solution
is improved we also recompute the values of hmin and hmax, and we update the set H if needed (line 15).

In the same way, if an hyperplane is completely explored (or if it cannot contained an optimal solution) we

update set H and we change the value of h (line 8 in Figure 6). In our experiments, the condition proceed3

corresponds to a maximum running time fixed according to the size of thre problem (see Section 4 for more
details about parameters). It is easy to see that there is no guarantee to find an optimal solution of the input

problem with this algorithm.

4 Computational Results

All values presented are obtained using Pentium 4 computer with 3.4GHz processor and 4GB RAM and
general purpose MIP solver CPLEX 11.1 [22]. We use C++ programming language to code our algorithms

and compile them with g++ and the option -O2.

Test bed. We validate our heuristics on two sets of available and correlated instances of MKP. The first

set is composed by 270 instances with n = 100, 250 and 500, and m = 5, 10, 30. These instances are grouped
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VNDS-HYP-FLE(P, d, x∗, kvnd)
1 Solve the LP-relaxation problems LP−

0 and LP+
0 ;

set hmin =
⌈

ν(LP−
0 )

⌉

and hmax =
⌊

ν(LP+
0 )

⌋

;
2 Sort the set of subproblems {Phmin

, . . . , Phmax
} so that

ν(LP (Ph)) ≤ ν(LP (Ph+1)), hmin ≤ h < hmax;
3 Find initial integer feasible solution x∗; LB = ctx∗;
4 Choose stopping criteria (set proceed1=proceed2=proceed3=true) ;
5 Set h = hmin and P = Ph;
6 while (proceed1)
7 Find an optimal solution x of LP(P ); UB = min{UB, ν(LP(P ))};
8 if (cTx∗ ≥ cTx or B(x) = N) then H = H − {h} ;

Choose the next value h in H and Set P = Ph;
9 δj =| x∗

j − xj |; index xj so that δj ≤ δj+1

10 Set nd =| {j ∈ N | δj 6= 0} |, kstep = [nd/d], k = p − kstep;
11 while (proceed2 and k ≥ 0)
12 Jk = {1, . . . , k}; x′ = MIPSOLVE(P (x∗, Jk), x∗);
13 if (ctx′ > ctx∗) then

14 Update objective cut: LB = ctx′; P = (P | ctx > LB);
15 Recompute hmin, hmax and update H , h and P if necessary;
16 x∗ = VND-MIP(P, kvnd, x′); LB = ctx∗; break;
17 else

18 if (k − kstep > p − nd) then kstep = max{[k/2], 1};
19 Set k = k − kstep;
20 endif

21 Update proceed3;
22 if (proceed3=false) then

Choose the next value h in H ; set P = Ph; proceed3=true; goto 26;
23 Update proceed2;
24 endwhile

25 Add pseudo-cut to P : P = (P | δ(B(x), x, x) ≥ 1);
26 Update proceed1.
27 endwhile

28 return LB, UB, x∗.

Figure 6: Flexibility for changing the hyperplanes.

in the OR-Library, and the larger instances with n = 500 are known to be difficult. So we test our methods

over the 90 instances with n = 500. In particular the optimal solutions of the instances with m = 30 are

not known, whereas the running time needed to prove the optimality of the solutions for the instances with

m = 10 is in general very important [2].

The second set of instances is composed by 18 MKP problems generated by Glover & Kochenberger
(GK)[17], with number of items n between 100 and 2500, and number of knapsack constraints m between 15

and 100. We select these problems because they are known to be very hard to solve by branch-and-bound

technique.

CPLEX parameters. As mentioned earlier, the CPLEX MIP solver is used in each method compared.

We choose to set the CPX PARAM MIP EMPHASIS to FEASIBILITY for the first feasible solution, and then change
to the default BALANCED option after the first feasible solution has been found.

VNDS Parameters. Several variants of our heuristics use the same parameters. In all the cases we set

the value of parameter d to 10, and we set kvnd = 5. Furthermore, we allow running time tsub = tvnd = 300s

for calls to CPLEX MIP solver for subproblems and calls to VND, respectively, for all instances in test bed

unless otherwise specified. Finally running time limit is set to 1 hour (3,600 seconds) for each instance.
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VNDS-HYP-FLE has another parameter that corresponds to the running time before changing the value of
h (see Figure 6). In our experiments this value is fixed at 900s (according to preliminary experiments).

Comparison. Here we provide the detailed results for the basic VNDS-MIP method and the four methods

proposed in this paper. In Tables 1–3, we provide the results obtained by all our variants over the instances
with n = 500 and m = 5, 10, 30 respectively. In these tables, in column “Best” we report the optimal value

(or the best-known lower bound for m = 30). These values were obtained by several recent hybrid methods

(see [2, 19, 36, 37, 39]). Then, for each variant of our method, we report the difference between the best

value and the value obtained by our heuristic, denoted as “Best-lb”, and the corresponding CPU time.

Table 1 shows that our heuristics obtain good results over these instances, except for VNDS-HYP-FIX
which reaches only 3 optimal solutions. However, for m = 5 and m = 10 VNDS-HYP-FIX reaches good

quality near-optimal solutions in much shorter time than other methods observed. The results for all variants

are very similar, in particular for the average gap less than 0.001% (between 23 and 30 optimal solutions).

We also can observe that VNDS-MIP slightly dominates the other variants in term of average running time

needed to visit the optimal solutions. These results confirm the potential of VNDS for solving the MKP.
Another encouraging point is the good behaviour of VNDS-HYP-FLE (with the visit of 30 optimal solutions

over the 30 instances), which confirms the interest of using the hyperplane decomposition, even if the use of

this decomposition seems to be sensitive (according to the results of VNDS-HYP-FIX). Finally, the VNDS-

MIP-PC2 proves the optimality of the solution obtained for the instance 5.500.1 (the value is referred by a
“*” in the table).

Table 2 shows that the behaviour of the heuristics is more different for larger instances. Globally the

results confirm the efficiency of VNDS-MIP, even if it visits only 2 optimal solutions. VNDS-MIP-PC1

obtains interesting results with 6 optimal solutions and an average gap less than 0.01%. That illustrates

the positive impact of the pseudo-cuts in the VNDS scheme. However the addition of the pseudo-cuts in
VNDS-MIP-PC1 and VNDS-MIP-PC2 increases the average running time to reach the best solutions. The

results obtained by VNDS-HYP-FIX confirm that this variant converges quickly to good solutions of MKP.

However, in general, it soon gets stalled in the local optimum encountered during the search, due to the long

computational time needed for exploration of particular hyperplanes. More precisely, since hyperplanes are

explored successively, it is possible to explore only the first few hyperplanes within the CPU time allowed.
Finally the VNDS-HYP-FLE is less efficient than for the previous instances. The increase of the CPU* can

be easily explained by the fact that the hyperplane are explored iteratively. The quality of the lower bound

can also be explained by the fact that the “good” hyperplanes can be explored insufficiently. However these

results are still encouraging.

The results obtained for the largest instances with m = 30 are more difficult to analyse. Indeed, the values
reported in Table 3 do not completely confirm the previous results. In particular we can observe that VNDS-

MIP-PC2 is the “best” heuristic, if we consider only the average gap. In addition, the associated running time

is not significantly greater than the running time of VNDS-MIP. For these very difficult instances it seems that

the search space restrictions introduced in this heuristic have a positive effect over the VNDS scheme. Finally,

the methods based on the hyperplane decomposition are less efficient for these large instances as expected.
That confirms the previous conclusions for m = 10 that it is difficult to quickly explore all hyperplanes or

perform a good selection of hyperplanes to be explored in an efficient way.

Tables 4–5 are devoted to the results over the OR-Library instances and to the comparison of our heuristics

with the variation of the time limit from one hour to two hours. In Table 4 we provide the average results

obtained by our heuristics. For each heuristic we report the average gap obtained and the number of optimal
solutions (or best-known solutions) visited during the process. The value α ∈ {0.25, 0.5, 0.75} was used to

generate the instances according to the procedure in [10], and it corresponds to the correlation degree of the

instances. There are ten instances available for each (n, m, α) triplet. The main conclusions of this table can

be listed as follows:
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• According to the average gap the VNDS-MIP-PC2 (very) slightly dominates the other variants based
on VNDS-MIP. Globally it is difficult to distinguish one version based one one-level decomposition from

the others.

• The VNDS-HYP-* are clearly dominated in average, but not clearly for m = 10 (in particular for

VNDS-HYP-FLE and α > 0.5).

• The VNDS-HYP-FLE obtains most optimal solutions, especially for m = 5 and m = 10, α = 0.5.

• All the variants have difficulties in tackling the largest instances with m = 30. However, if one hour

of running time can be considered as an important value for heuristic approaches, it is necessary to
observe that a large part of the optimal values and best-known values for the instances with m = 10

and m = 30, respectively, were obtained in an important running time (see for instance [2, 37, 39]).

According to the last remark, in Table 5 we report the average results obtained by our heuristics with the

running time limit set to two hours. According to the results for instances 5.500 for one hour (see Table 4),

the comparison on the running time is not significant. The results provided in this table are interesting since
they show that if we increase the running time, then VNDS-MIP-PC1 dominates more clearly the VNDS-MIP

heuristic, in particular for the instances with m = 30. That confirms the potential of the bounding approach.

Globally the results of all the variants are clearly improved, in particular for m = 30 and α < 0.75. Finally

we add a “*” for VNDS-MIP-PC1 when m = 30 and α = 0.25 since it visits one new best known solution for
the instance 30.500-3 with an objective value equal to 115,370.

Tables 6–7 are devoted to the results obtained over the GK set of instances. We first provide in Table 6

the overall results of the heuristics compared to the best-known lower bounds reported in column “Best”.

These values were obtained by an efficient hybrid tabu search algorithm [35] and by the iterative heuristics

proposed by Hanafi and Wilbaut [39]. Due to the very important size of several instances and the important
running time needed by the other approaches to obtain the best-known solutions, we use two different values

for the running time of our heuristics. We set this value at two hours for the medium size instances, but we

allow the process running five hours for the instances MK GK04, MK GK06 and MK GK08 to MK GK11.

Table 6 demonstrates a global interesting behaviour of our heuristics that visit an important number of

best-known solutions, and also two new best solutions. In general the new versions derived from VNDS-MIP
with some new modifications converge more quickly to the best solutions. That is particularly the case for the

VNDS-MIP-PC1 and VNDS-MIP-PC2. Based on the average gap and average running time values, we may

observe that VNDS-MIP-PC1 obtains the best results. The previous conclusions about the hyperplane-based

heuristics are still valid: the flexible scheme is more efficient for the medium size instances. However for

these instances the results obtained by VNDS-HYP-FIX are more encouraging, with the visit of a new best
solution and the convergence to good lower bounds for the larger instances.

To complete the analysis of these results, in Table 7 we compare the results obtained by VNDS-MIP and

VNDS-MIP-PC2 with the current best algorithms for these instances. We report in this table the values

obtained by Vasquez and Hao [35] in column “V&H”, and the lower bounds reported in [39] for the LPA

algorithm and its extensions IIRH and IRH. These three algorithms were validated on a similar computer,
so we also report the running time needed to reach the best solution by these methods. The hybrid tabu

search algorithm of Vasquez and Hao was executed over several distributed computers, and it needs several

hours to obtain the best solutions. This table confirms the efficiency of our approach: even if the results are

not as good for the GK instances, those obtained over the larger instances clearly demonstrate the potential
of this hybridization.
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Statistical Analysis. It is well known that average values are susceptible to outliers, i.e., it is possible that
exceptional performance (either very good or very bad) in a few instances influences the overall performance

of the algorithm observed. Therefore comparison between the algorithms based only on the averages does

not necessarily have to be valid. Furthermore, by observing the average gap values, we can only see that, in

general, two-level decomposition methods are dominated by other VNDS-MIP based methods. However, due
to the very small differences between gap values, it is hard to say how significant this performance distinction

is. Also, it is difficult to single out any of the three proposed one-level decomposition methods. This is

why we have carried out statistical tests to verify the significance of differences between the solution quality

performances. Since we cannot make any assumptions about the distribution of the experimental results, we

apply a nonparametric (distribution-free) Friedman test [12], followed by the Nemenyi [30] post-hoc test, as
suggested in [5].

Let I be a given set of problem instances and A a given set of algorithms. The Friedman test ranks the

performances of algorithms for each data set (in case of equal performance, average ranks are assigned) and

tests if the measured average ranks Rj = 1
|I|

∑|I|
i=1 rj

i (rj
i as the rank of the jth algorithm on the ith data

set) are significantly different from the mean rank. The statistic used is:

χ2
F =

12 |I|

|A| (|A| + 1)





|A|
∑

j=1

R2
j −

|A| (|A| + 1)2

4



 ,

which follows a χ2 distribution with |A|− 1 degrees of freedom. Since this statistic proved to be conservative

[23], a more powerful version of the Friedman test was developed [23], with the following statistic:

FF =
(|I| − 1)χ2

F

|I| (|A| − 1) − χ2
F

,

which is distributed according to the Fischer’s F -distribution with |A| − 1 and (|A| − 1)(|I| − 1) degrees of

freedom. For more details, see [5].

The Friedman test is carried out over the entire set of 108 instances (90 instances from the OR library

and 18 Glover & Kochenberger instances). Averages over solution quality ranks are provided in Table 8.
According to the average ranks, VNDS-HYP-FIX has the worst performance with rank 4.74, followed by

the VNDS-HYP-FLE with rank 3.46, whereas all other methods are very similar, with VNDS-MIP-PC2 (the

convergent variant) being the best among the others. The value of the FF statistic for |A| = 5 algorithms

and |I| = 108 data sets is 103.16, which is greater than the critical value 4.71 of the F -distribution with

(|A| − 1, (|A| − 1)(|I| − 1)) = (4, 428) degrees of freedom at the probability level 0.001. Thus, we can
conclude that there is a significant difference between the performances of the algorithms and proceed with

the Nemenyi post-hoc test [30], for pairwise comparisons of all the algorithms. According to the Nemenyi

test, the performance of two algorithms is significantly different if the corresponding average ranks differ by

at least the critical difference:

CD = qα

√

|A| (|A| + 1)

6 |I|
,

where qα is the critical value at the probability level α that can be obtained from the corresponding statistical

table. For |A| = 5 we get q0.05 = 2.728 (see [5]), so CD = 0.587 for α = 0.05. From Table 8 we can see that

VNDS-HYP-FIX is significantly worse from all the other methods, since its average rank differs more than

0.587 from all the other average ranks. Also, VNDS-HYP-FLE is significantly better than VNDS-HYP-FIX
and significantly worse than all the other methods. Apart from that, there is no significant difference between

any other two algorithms. Moreover, no more significant differences between the algorithms can be detected

even at the probability level 0.1.

It is obvious that the result of the Friedman test above is largely affected by the very high ranks of the

two-level decomposition methods, and it is still not clear whether there is any significant difference between

the proposed one-level decomposition methods. In order to verify if any significant distinction between these
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Table 8: Differences between the average solution quality ranks for all five methods.

Algorithm VNDS-MIP VNDS-MIP-PC1 VNDS-MIP-PC2 VNDS-HYP-FIX VNDS-HYP-FLE
(Average Rank) (2.25) (2.42) (2.12) (4.74) (3.46)

VNDS-MIP
(2.25) 0.00 - - - -

VNDS-MIP-PC1
(2.42) 0.17 0.00 - - -

VNDS-MIP-PC2
(2.12) -0.13 -0.30 0.00 - -

VNDS-HYP-FIX
(4.74) 2.49 2.32 2.62 0.00 -

VNDS-HYP-FLE
(3.46) 1.21 1.04 1.34 -1.28 0.00

Table 9: Differences between the average solution quality ranks for three one-level decomposition methods.

Algorithm VNDS-MIP VNDS-MIP-PC1 VNDS-MIP-PC2
(Average Rank) (2.01) (2.14) (1.85)

VNDS-MIP (2.01) 0.00 - -
VNDS-MIP-PC1 (2.14) 0.13 0.00 -
VNDS-MIP-PC2 (1.85) -0.16 -0.30 0.00

three methods can be made, we further perform Friedman test only on these methods, again over the entire

set of 108 instances. According to the average ranks (see Table 9), the best choice is the convergent algorithm
VNDS-MIP-PC2, with rank 1.85, followed by the basic VNDS-MIP with 2.01, whereas the variant VNDS-

MIP-PC1 has the worst performance, having the highest rank 2.14. The value of the FF statistic for |A| = 3

one-level decomposition algorithms and |I| = 108 data sets is 2.41. The test is able to detect the significant

difference between the algorithms at the probability level 0.1, for which the critical value of the F -distribution
with (|A| − 1, (|A| − 1)(|I| − 1)) = (2, 214) degrees of freedom is equal to 2.33.

In order to further examine to which extent is VNDS-MIP-PC2 better than the other two methods, we will

perform the Bonferroni-Dunn post-hoc test [7]. Bonferroni-Dunn test is normally used when one algorithm

of interest (the control algorithm) is compared with all the other algorithms, since in that special case it is

more powerful than the Nemenyi test (see [5]). The critical difference used for the Bonferroni-Dunn test is

calculated using the same formula CD = qα

√

|A|(|A|+1)
6|I| as for the Nemenyi test, but with the different critical

values qα. Again, the performance of an observed algorithm is considered to be significantly different from

the performance of the control algorithm, if the corresponding average ranks differ by at least the critical

difference CD. For |A| = 3, we have q0.1 = 1.96 and critical difference CD = 0.27. Therefore, from Table 9

we can see that VNDS-MIP-PC2 is significantly better than VNDS-MIP-PC1 at the probability level α = 0.1.

The post-hoc test is not powerful enough to detect any significant difference between VNDS-MIP-PC2 and
VNDS-MIP at this probability level.

Performance profiles. Since small differences in running time can often occur due to the CPU per-

formance, the ranking procedure described above does not necessarily reflect the real observed runtime
performance of the algorithms. This is why we use the performance profiling approach for comparing the

effectiveness of the algorithms with respect to the computational time (see [6]).

Let I be a given set of problem instances and A a given set of algorithms. The performance ratio of

running time of algorithm Λ ∈ A on instance I ∈ I and the best running time of any algorithm from A on I

is defined as:

rI,Λ =
tI,Λ

min{tI,Λ|Λ ∈ A}
,
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where tI,Λ is the computing time required to solve problem instance I by algorithm Λ. The performance

profile of an algorithm Λ ∈ A denotes the cumulative distribution of the performance ratio rI,Λ:

ρΛ(τ) =
1

|I|
{I ∈ I | rI,Λ ≤ τ}, τ ∈ R.

Obviously, ρΛ(τ) represents the probability that the performance ratio rI,Λ of algorithm Λ is within a factor

τ ∈ R of the best possible ratio. The performance profile ρΛ : R → [0, 1] of algorithm Λ ∈ A is a nondecreasing,

piecewise constant function. The value ρΛ(1) is the probability that algorithm Λ solves the most problems

in the shortest computational time (compared to all other algorithms). Thus, if we are only interested in the

total number of instances which the observed algorithm solves the first, it is sufficient to compare the values
ρΛ(1) for all Λ ∈ A.

Since we have different running time limits for different groups of instances, we decided to employ perfor-

mance profiling of the proposed algorithms separately for the instances from the OR library (with the running

time limit of one hour) and for those GK instances for which the running time limit is set to two hours. The

plotting of the performance profiles of all five algorithms for the 90 instances from the OR library is given
in Figure 7. We choose to use the logarithmic scale for τ in order to make a clearer distinction between the

algorithms for the small values of τ . From Figure 7 it is clear that VNDS-HYP-FIX strongly dominates all

other methods for most values of τ . In other words, for most values of τ , VNDS-HYP-FIX has the greatest

probability of obtaining the final solution within a factor τ of the running time of the best algorithm. By
examining the values ρΛ(1) in Figure 7 we can conclude that VNDS-HYP-FIX is the fastest algorithm on

approximately 48% of instances, basic VNDS-MIP is the fastest on approximately 21% of instances, VNDS-

HYP-FLE is the fastest on approximately 19%, VNDS-MIP-PC1 on 8%, and VNDS-MIP-PC2 on 4% of

instances. Figure 7 also shows that the basic VNDS-MIP has the best runtime performance among the three

one-level decomposition methods.

The performance profiles plot of all five methods for the 12 GK instances with running time limit set to two

hours is given in Figure 8. Again, VNDS-HYP-FIX largely dominates all the other methods. However, VNDS-

MIP-PC2 dominates the other one-level decomposition for most values of τ , only except the VNDS-MIP for

very small values of τ . By observing the values ρΛ(1) in Figure 8, we can conclude that VNDS-HYP-FIX

is the fastest algorithm on approximately 33% of problem instances, VNDS-MIP is the fastest on 25% of
instances, VNDS-MIP-PC2 and VNDS-HYP-FLE have the same number of wins and are the fastest on 17%

of instances each, whereas VNDS-MIP-PC1 has the lowest number of wins and is the fastest on only 8% of

instances. It may be interesting to note that VNDS-HYP-FLE has much worse performance on the GK set:

for small values of τ it is only better than VNDS-MIP-PC1, whereas for most larger values of τ it has the
lowest probability of obtaining the final solution within the factor τ of the best algorithm.

In summary, we may conclude that VNDS-HYP-FIX is by far the fastest method for obtaining the

acceptable near-optimal solutions of MKP instances. Since it is not as good regarding the solution quality,

its purpose may be two fold. On one hand, one may opt for VNDS-HYP-FIX for a good feasible solution

in a (very) short time. On the other hand, the VNDS-HYP-FIX may be used as a first-stage of another
method, so that a solution obtained with VNDS-HYP-FIX in a short time can be further improved using

some other techniques. We may also conclude that VNDS-MIP-PC2 is the best choice both regarding the

solution quality and the computational time on the GK set. On the set of instances from the OR-library, the

good solution quality performance of VNDS-MIP-PC2 has the price of longer running time.

5 Conclusion

Most of discrete and continuous optimisation problems are hard to solve. The idea of combining exact

solution methods, which use mathematical programming formulation, and metaheuristics has attracted a

lot of attention recently. As a consequence, a new class of methods, called matheuristics (or model-based

heuristics), has been introduced. In this paper we propose matheuristic methods for solving one very well
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known and well studied problem, Multidimensional Knapsack Problem (MKP). We combine solutions of
exact MIP solver and variable neighborhood decomposition search (VNDS) metaheuristic.

Variable neighborhood search (VNS) is a metaheuristic which exploits the idea of neighborhood change

in search for better solutions. It has several variants that follow this basic idea. One among them is variable

neighborhood decomposition search (VNDS). It consists of systematic fixing of certain number of solution

attributes and solving the remaining smaller size problems by using the basic VNS. VNDS has already been

proposed as a mean for solving general mixed integer programming problems (MIPs) [24]. In [24] variables
are ranked in non-decreasing order of the difference between the incumbent solution and the optimal LP

relaxation of MIP. Following the VNDS scheme, the upper bound (in the case of minimisation) is updated

each time the incumbent is improved. The lower bound remained unchanged. In this paper we propose a few

new variants of VNDS for solving MKP, which introduce pseudo-cuts and objective cuts during the execution
of the code. In other words, we update both lower and upper bounds in different ways, in order to reduce

the integrality gap.

Based on extensive computational analysis performed on benchmark instances from the literature and

several statistical tests designed for the comparison purposes, we may conclude that VNDS based matheuristic

has a lot of potential for solving MKP. One of our variants, VNDS-MIP-PC2, which is also theoretically shown

to converge to an optimal solution, performs better than others in terms of solution quality. Another one,
VNDS-HYP-FIX, although not being as effective as others in terms of solution quality, is the fastest in

solving very large test instances. Beside the fact that our new matheuristic methods are comparable with

other recent algorithms, we were able to find several new best known solutions on benchmark test instances.

Future research may include application of our VNDS based matheuristic methods for solving other hard

integer programming problems, such as General Assignment Problem [26]. In addition, our matheuristic

methods may be combined with Formulation Space Search (FSS) based approach [28, 29], producing even
more efficient algorithm.
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[20] P. Hansen, N. Mladenović, D. Perez-Britos, Variable Neighborhood Decomposition Search, Journal of Heuristics
7 (4) (2001) 335–350.
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