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Total Domination and the
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Abstract

A total dominating set in a digraph G is a subset W of its vertices such that every vertex of G has an
immediate successor in W . The total domination number of G is the size of the smallest total dominating
set. We consider several lower bounds on the total domination number and conjecture that these bounds
are strictly larger than g(G) − 1, where g(G) is the number of vertices of the smallest directed cycle
contained in G. We prove that these new conjectures are equivalent to the Caccetta-Häggkvist conjec-
ture which asserts that g(G)−1 < n

r
in every digraph on n vertices with minimum outdegree at least r > 0.

Résumé

Un ensemble totalement dominant dans un graphe orienté G est un sous-ensemble W de ses sommets
tel que chaque sommet dans G a un successeur immédiat dans W . Le nombre de domination totale de G

est la taille du plus petit ensemble totalement dominant. Nous considérons plusieurs bornes inférieures
sur le nombre de domination totale et formulons les conjectures que ces bornes sont strictement plus
grandes que g(G) − 1, où g(G) est le nombre de sommets dans le plus petit circuit orienté de G. Nous
prouvons que ces nouvelles conjectures sont équivalentes à celle de Caccetta-Häggkvist qui stipule que
g(G) − 1 < n

r
dans tout graphe orienté G ayant n sommets qui ont tous au moins r > 0 successeurs

immédiats.
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1 Introduction

Throughout this paper, we consider only digraphs without multiple arcs and without directed cycles of length

1 or 2. Let G = (V, A) be a digraph with vertex set V and arc set A. The girth of G, denoted g(G), is the

number of vertices of the smallest directed cycle in G. Let δ+(G) denote the minimum outdegree of G. In

1978, Caccetta and Häggkvist [1] proposed the following conjecture.

Conjecture 1 Let G be a digraph with n vertices and δ+(G) ≥ r > 0. Then g(G) ≤ ⌈n
r
⌉.

This conjecture has been verified for values of r up to 5 [1, 4, 5] and for n ≥ 2r2 − 3r + 1 [7]. Another

approach is to show that if G is a digraph with n vertices and δ+(G) ≥ r, then there is a directed cycle in G

of length at most n
r

+ c for some small c. This has been proved for c = 2500 [2], c = 304 [6] and c = 73 [8].

In 2006, a workshop was held in Palo Alto, California, with the Caccetta-Häggkvist conjecture as its central

subject. A summary of the results (and much more) was published by Sullivan [9].

Let N+
G (v) denote the set of immediate successors of a vertex v ∈ V . A total dominating set in a digraph

G is a subset W of its vertices such that N+
G (v) ∩ W 6= ∅ for every vertex v ∈ V . The total domination

number of G, denoted TD(G) is the size of the smallest total dominating set of G. We assume δ+(G) > 0,

else G does not contain any total dominating set. Finding a total dominating set of size TD(G) can be

modeled as the assignment of a weight ωv ∈ {0, 1} to every vertex v ∈ V so that
∑

u∈N
+

G
(v) ωu ≥ 1 for every

v ∈ V and
∑

v∈V ωv is minimized. Note that
∑

u∈V ωu ≥
∑

u∈N
+

G
(v) ωu ≥ 1, for any v ∈ V , i.e., TD(G) is at

least 1. Better lower bounds on TD(G) can be obtained by considering real values for the weights:

• We denote TDF (G) the minimum total weight
∑

v∈V ωv so that ωv ∈ [0, 1] and
∑

u∈N
+

G
(v) ωu ≥ 1 for

every v ∈ V .

• By imposing
∑

u∈N
+

G
(v) ωu ≥ 1 only for vertices with a strictly positive weight and by requiring that∑

v∈V ωv ≥ 1, one gets a lower bound on TDF (G). More precisely, we denote TDFR(G) the minimum

total weight
∑

v∈V ωv so that ωv ∈ [0, 1] for every v ∈ V ,
∑

u∈N
+

G
(v) ωu ≥ 1 for every v with ωv > 0,

and
∑

v∈V ωv ≥ 1.

It follows from the above definitions that TDFR(G) ≤ TDF (G) ≤ TD(G). We state the two following

conjectures.

Conjecture 2 The relation g(G) − 1 < TDF (G) holds for all digraphs G with δ+(G) > 0.

Conjecture 3 The relation g(G) − 1 < TDFR(G) holds for all digraphs G with δ+(G) > 0.

We prove in this paper that the two new conjectures are equivalent to Conjecture 1 of Caccetta and

Häggkvist. In Section 2, we present mathematical programming formulations that can be used to compute

TD(G) and its lower bounds g(G), TDF (G) and TDFR(G). We use these formulations to prove the equiv-

alence of the three conjectures. In Section 3, we show how to reformulate Conjecture 3 using Lagrangean

relaxation techniques.

2 Mathematical Programming Formulations

The adjacency matrix A of a digraph G is the n × n matrix where aij = 1 if there is an arc from i to j, and

aij = 0 otherwise. We denote e the vector with n entries equal to 1. The problem of determining TD(G)
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will be denoted PTD(G) and can be modeled as an integer programming model as follows:

TD(G) = Min eT ω

s.t. Aω ≥ e, (1)

ω ∈ {0, 1}n.

Determining g(G) can be viewed as the selection of the smallest subset W of vertices such that N+
G (v) ∩

W 6= ∅ for every vertex v in W . This problem, denoted Pg(G), can be modeled with the following integer

programming model, where constraints (3) ensure that at least one vertex is selected in W :

g(G) = Min eT ω

s.t. Aω ≥ ω, (2)

eT ω ≥ 1, (3)

ω ∈ {0, 1}n.

Property 4 The relation g(G) ≤ TD(G) holds for all digraphs G with δ+(G) > 0.

Proof. Since the inequalities Aω ≥ e imply eT ω ≥ 1, one can add constraints (3) to the computation of

TD(G) without modifying the optimal value of PTD(G). Since ω ≤ e, constraints (1) are stronger than (2),

which proves that g(G) ≤ TD(G).

To prove the validity of Conjecture 1 it would have been sufficient to show that TD(G) < n
r

+ 1, since

this would imply g(G)−1 ≤ TD(G)−1 < n
r
, which is equivalent to g(G) ≤ ⌈n

r
⌉. There are however digraphs

for which TD(G) ≥ n
r

+ 1. For example, it is not difficult to verify that the digraph in Figure 1 satisfies

n = 10, r = δ+(G) = 2 and 6 = TD(G) = n
r

+ 1, the black vertices corresponding to a total dominating set

of minimum size.

Figure 1: A digraph with TD(G) = n
r

+ 1

The problem of computing TDF (G), denoted PTDF (G), can be modeled by relaxing the integrality

constraints in PTD(G):

TDF (G) = Min eT ω

s.t. Aω ≥ e, (1)

ω ≥ 0.
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By imposing Aω ≥ ⌈ω⌉, we require
∑

u∈N
+

G
(v) ωu ≥ 1 for every vertex v with ωv > 0. Hence, the problem

PTDFR(G) of computing TDFR(G) can be modeled as follows:

TDFR(G) = Min eT ω

s.t. Aω ≥ ⌈ω⌉, (4)

eT ω ≥ 1, (3)

ω ≥ 0.

Note that if Conjecture 3 is verified then g(G)−1 < TDFR(G) ≤ g(G) for all digraphs G with δ+(G) > 0,

since by setting ωv = 1 for all vertices v in a smallest directed cycle in G and ωv = 0 for the other vertices,

one gets a feasible solution to PTDFR(G) of value g(G).

Theorem 5 Conjectures 2 and 3 are equivalent.

Proof. If Conjecture 3 is verified then g(G) − 1 < TDFR(G) ≤ TDF (G), which implies that Conjecture 2

is verified also.

So assume that Conjecture 3 is not verified and let G be a smallest counter-example (in terms of number

of vertices). It remains to prove that Conjecture 2 is also not verified. Let ω∗ denote an optimal solution

to PTDFR(G), and let G′ denote the sub-digraph of G induced by all vertices v with weight ω∗
v > 0. Con-

straints (4) impose that each vertex in G′ has at least one successor in G′. Hence G′ contains at least one

directed cycle and we obviously have g(G′) ≥ g(G). Also, TDFR(G′) ≤ TDFR(G) since the restriction of

ω∗ to G′ is a feasible solution to PTDFR(G′). In summary, g(G′)− 1 ≥ g(G)− 1 ≥ TDFR(G) ≥ TDFR(G′).

Since G is the smallest counter-example to Conjecture 3, we necessarily have G′ = G, which means that ω∗
v > 0

for all vertices in G. Hence, ω∗ is a feasible solution to PTDF (G), which means that TDF (G) = TDFR(G)

and G is therefore also a counter-example to Conjecture 2.

Theorem 6 Conjectures 1 and 2 are equivalent.

Proof. Let G be a digraph with n vertices and consider any real number r such that 0 < r ≤ δ+(G). The

vector ω defined by ωv = 1
r

for all v ∈ V is a feasible solution to PTDF (G), which means that TDF (G) ≤

eT ω = n
r
. Hence, if Conjecture 2 is verified, then g(G)− 1 < TDF (G) ≤ n

r
for all digraphs G with n vertices

and δ+(G) ≥ r > 0, which implies that Conjecture 1 is verified also.

So assume that Conjecture 2 is not verified. It remains to show that Conjecture 1 is also not verified. Let

G be a smallest counter-example to Conjecture 2 (in terms of number of vertices), and let ω∗ be any optimal

basic solution to PTDF (G). We necessarily have ω∗
v > 0 for all v ∈ V , otherwise by using the same arguments

as in the proof of the previous theorem, we can show that the sub-digraph G′ induced by the vertices with

ω∗
v > 0 verifies g(G′) − 1 ≥ g(G) − 1 ≥ TDF (G) ≥ TDF (G′), which contradicts the minimality of G.

Constraints (1) can be rewritten as Aω − s = e by using slack variables s ≥ 0. Consider the values

s∗ = Aω∗− e of the slack variables associated with ω∗. Since PTDF (G) contains n constraints, we necessarily

have s∗ = 0, else there would be at least one vertex v ∈ V with ω∗
v = 0. We therefore have Aω∗ = e. In

other words, if we denote P=
TDF (G) the linear program obtained from PTDF (G) by replacing inequalities (1)

by equalities, we have shown that P=
TDF (G) and PTDF (G) have the same set of optimal solutions.

We now show that the determinant det(A) of matrix A is not equal to 0. If det(A) = 0, then at least one

of the n constraints in P=
TDF (G) is redundant. By removing such a constraint, the optimal value remains



4 G–2009–78 Les Cahiers du GERAD

unchanged, while there are now n− 1 constraints for n variables. This means that P=
TDF (G) has an optimal

solution ω∗ (which is also optimal for PTDF (G)) with at least one variable ω∗
v = 0, a contradiction. We

therefore have det(A) 6= 0.

Let Av denote the matrix obtained from A by replacing the v − th column by vector e. Cramer’s rule [3]

states that ω∗
v = det(Av)

det(A) . Since ω∗
v > 0, we can write

ω∗
v =

| det(Av)|

| det(A)|
.

We now construct a new graph G̃ from G by replacing every vertex v by a set Sv of | det(Av)| non-adjacent

vertices. We put an arc from a vertex in Su to a vertex in Sv if and only if there is an arc from u to v in

G. Let Ṽ =
⋃

v∈V Sv denote the vertex set of G̃ and define ω̃ṽ = 1
| det(A)| for all ṽ ∈ Ṽ . In other words, G̃

is obtained from G by replacing every vertex v of weight ω∗
v by | det(Av)| non-adjacent copies of v of weight

1
| det(A)| . This means that the following equalities hold for every vertex ṽ ∈ Sv:

∑

ũ∈N
+

G̃
(ṽ)

ω̃ũ =
∑

u∈N
+

G
(v)

∑

ũ∈Su

1

| det(A)|
=

∑

u∈N
+

G
(v)

| det(Au)|

| det(A)|
=

∑

u∈N
+

G
(v)

ω∗
u = 1.

In addition, we have:

∑

ṽ∈Ṽ

ω̃ṽ =
∑

v∈V

∑

ṽ∈Sv

ω̃ṽ =
∑

v∈V

| det(Av)|

| det(A)|
=

∑

v∈V

ω∗
v = TDF (G).

Hence, ω̃ is a feasible solution to PTDF (G̃) of value TDF (G), which means that TDF (G̃) ≤ TDF (G).

Since, for every ṽ ∈ Sv,
∑

ũ∈N
+

G̃
(ṽ) ω̃ũ =

∑
ũ∈N

+

G̃
(ṽ)

1
| det(A)| = 1, we deduce that |N+

G̃
(ṽ)| = | det(A)|,

which means that δ+(G̃) = | det(A)|. Also, since
∑

ṽ∈Ṽ ω̃ṽ =
∑

ṽ∈Ṽ
1

| det(A)| = TDF (G), we have |Ṽ | =

| det(A)| · TDF (G). Moreover, we clearly have g(G) = g(G̃).

To conclude, let n′ = |Ṽ | denote the number of vertices in G̃ and let r′ = δ+(G̃) = | det(A)|. We have

g(G̃) − 1 = g(G) − 1 ≥ TDF (G) =
| det(A)| · TDF (G)

| det(A)|
=

n′

r′

which means that G̃ is a counter-example to Conjecture 1.

The construction described in the proof of Theorem 6 is illustrated in Figure 2 for a digraph G with TDF (G) =
8
3 and g(G) = 3.

3 Reformulation of Conjecture 3

Problem PTDFR(G) can be written as an integer linear programming model by replacing Aω ≥ ⌈ω⌉ with

Aω ≥ y ≥ ω, y ∈ {0, 1}n. Hence, an equivalent model for PTDFR(G) reads as follows:

TDFR(G) = Min eT ω

s.t. Aω ≥ y, (5)

y ≥ ω, (6)

eT ω ≥ 1, (3)

ω ≥ 0, y ∈ {0, 1}n.

If we now replace constraints (6) by y = ω, we obtain an equivalent model for Pg(G) since
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Figure 2: A digraph G and the corresponding digraph G̃

• constraints (5) are then equivalent to constraints (2);

• constraints ω ≥ 0, y ∈ {0, 1}n are then equivalent to ω ∈ {0, 1}n.

In other words, a model for Pg(G) can be obtained from the above model for PTDFR(G) by adding the

constraints y ≤ ω. Consider now the Lagrangian relaxation of this model for Pg(G) obtained by relaxing

constraints y ≤ ω and by penalizing their violation in the objective function. More formally, given a penalty

vector λ ≥ 0 with n entries, we consider the problem Pgλ
(G) of computing gλ(G) defined as follows:

gλ(G) = Min eT ω + λT (y − ω)

s.t. Aω ≥ y, (5)

y ≥ ω, (6)

eT ω ≥ 1, (3)

ω ≥ 0, y ∈ {0, 1}n.

Property 7 The relations TDFR(G) ≤ gλ(G) ≤ g(G), for any λ ≥ 0 , TDFR(G) = g0(G) and g(G) =

gλ(G), for any λ ≥ e, hold for all digraphs G with δ+(G) > 0.

Proof. For any λ ≥ 0, Pgλ
(G) and PTDFR(G) have the same set of feasible solutions. Since λT (y − ω) ≥ 0

because of constraints (6), we have TDFR(G) ≤ gλ(G). Let ω∗ be an optimal solution to Pg(G) and define

y∗ = ω∗. Since (ω∗, y∗) is feasible for Pgλ
(G) and λT (y∗ − ω∗) = 0, we have gλ(G) ≤ g(G). For λ = 0,

Pgλ
(G) corresponds to PTDFR(G), which means that TDFR(G) = g0(G). For any λ ≥ e, let (ω∗, y∗) be an

optimal solution to Pgλ
(G). If ω∗ < y∗, we can replace ω∗ by y∗ and remain feasible, but also optimal, since

the objective would then vary by the quantity (e − λ)T (y∗ − ω∗) ≤ 0. Therefore, for any λ ≥ e, there exists

an optimal solution to Pgλ
(G) that satisfies ω∗ = y∗, which means that g(G) = gλ(G).

From this result, it follows directly that TDFR(G) = min
λ≥0

gλ(G) and g(G) = max
λ≥0

gλ(G). Conjecture 3 can

therefore be rewritten in the following way:

Reformulation of Conjecture 3

The relation max
λ≥0

gλ(G) − min
λ≥0

gλ(G) < 1 holds for all digraphs G with δ+(G) > 0.
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