
Les Cahiers du GERAD ISSN: 0711–2440

Forecasting Rail Transportation
Demand Using Artificial
Neural Network

S. Sharif Azadeh,
R. Labib, G. Savard

G–2009–71

November 2009

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.





Forecasting Rail Transportation Demand Using

Artificial Neural Network

Shadi Sharif Azadeh∗

Richard Labib

Gilles Savard∗

Department of Mathematics and Industrial Engineering

École Polytechnique de Montréal
Montréal (Québec) Canada, H3C 3A7

shadi.sharifazadeh@polymtl.ca
richard.labib@polymtl.ca
gilles.savard@polymtl.ca

∗ and GERAD

November 2009

Les Cahiers du GERAD

G–2009–71

Copyright c© 2009 GERAD





Abstract

This study analyzes the use of neural network to produce accurate forecasts of total bookings and
cancellations before departure, of a major rail operator. The model used is an improved Multi-Layer
Perceptron (MLP) describing the relationship between number of passengers and factors affecting this
quantity based on historical data. Relevant pre-processing approaches have been employed to make learn-
ing more efficient. The generalization of the network is tested to evaluate the accuracy prediction of the
regression model for future trends of reservations and cancellations using actual railroad data. The result
is an accurate forecast of the number of passengers with a prediction error around 8%.

Key Words: Demand forecasting, Pre-processing, Neural Network (NN), Multi-Layer Perceptrons
(MLP), Transportation.

Résumé

Cette étude analyse le potentiel d’un réseau de neurones artificiel pour prédire les réservations et les
annulations de billets, d’une classe de prix donnée, dans différentes gares données, lors d’un jour donné,
pour une importante compagnie ferroviaire. Puisque la réservation est traitée plusieurs semaines avant le
départ, il y a toujours une possibilité que la réservation soit annulée. Il est donc important de faire des
prévisions fiables des réservations et des annulations avant le départ.

Le modèle utilisé est le Perceptron Multi-Couches (MLP). Ce réseau modélise la relation entre les
variables dépendantes et indépendantes qui sont tirées des historiques des réservations et des annula-
tions. Après, la capacité de généralisation du réseau de neurones est examinée. L’ensemble des données
proviennent de la compagnie de transport européenne TGV pour l’itinéraire Paris-Bruxelles.

Un choix judicieux de prétraitement des données a été effectué pour accélérer l’apprentissage. Un
réseau de neurones supervisé, avec deux couches cachées, chacune formée de cinq neurones, est entrâıné
en utilisant un algorithme d’apprentissage de rétro-propagation. Les résultats numériques sont conclu-
ants et démontrent une bonne généralisation du réseau de neurones, puisque l’erreur de prédiction est
inférieure à 8%.





Les Cahiers du GERAD G–2009–71 1

1 Introduction

Statistical forecasting techniques for applications such as pricing, inventory control, demand forecasting, and
overbooking, are widely used in transportation industries (Sen (1985); Xiaolong (2007)). These methods
examine historical data to verify the underlying process generating the variable under consideration (Devoto,
Farci & Lilliu (2002); Chung & Lee (2002)). The selection of forecasting methods depends on several factors,
such as the forecast format required, the availability of data, the desired accuracy and the ease of operation.
Although these methods are vastly applied in demand forecasting, they have some drawbacks that motivate
us to turn our attention to Artificial Neural Network (ANN). Classical forecasting techniques make use of,
for instance, time series models, which are described as mathematical processes that can be extended into
the future (Montgomery, Johnson & Gardiner (1990)). Despite the capabilities of the time series approach in
transportation forecasting, these models cannot respond rapidly to sudden changes in bookings and cancella-
tions (Sen (1985)). The use of regression analysis for a large dataset with numerous predictors and response
variables can be complicated, and time consuming, by computing inverse matrices and normal equations’
calculations (Wei & Hong (2004); Anderson, Sharfi & Gholston (2006); Varagouli, Simos & Xeidakis (2005);
Rengaraju & Aracon (1992)). A major drawback of exponential smoothing, another classical method of
forecasting, is that it is difficult to select an optimum value for the constant without making restrictive as-
sumptions about the behavior of the phenomenon under consideration. This problem is compounded when
the form of the underlying problem is changing through time (Montgomery, Johnson & Gardiner (1990);
Godfrey & Powell (2000); Widiarta, Viswanathan & Piplani (2007); Snyder, Koehler & ord (2002)). Another
approach applied to estimating parameters is the Bayesian method. Although this method works accurately
to define the parameters of a regression model, there is still the open problem of determining the distribution
of historical data (Miltenburg & Pong (2007); Popovic & Teodorovic (1997)).

To overcome some of the drawbacks of the mentioned conventional methods, we turn our attention to
a method that works more precisely in nonlinear spaces: Artificial Neural Network (ANN). The output of
traditional models is the linear sum of the weighted responses, whereas in neural network, multiple linear
combinations are processed in parallel; that is, the activation in each neuron is a separate linear combination.
The major advantage of the neural network approach is that it is flexible enough to model complex non-
linear relationships in an automated fashion (Mozolin, Thill & Usery (2000)). Moreover, the most valuable
property of multilayer feed-forward neural network is their ability to approximate as accurately as desired a
function from training examples. In fact, a three-layer, fully connected feed-forward neural network with n
input nodes, a sufficiently large number of hidden nodes and one output node, can be trained to approximate
any n × 1 mapping function (Mozolin, Thill & Usery (2000); Hashemi, Le Blanc, Rucks & Shearry (1995);
Celikoglu & Cigizoglu (2007)). In this paper, we apply artificial neural network in demand forecasting for
transportation and we improve the model by targeting pre-processing methods using exponential distribution
in data normalization, as well as applying adaptive learning, momentum, and regularization.

2 Problem definition

In this research, we investigate demand forecasting of a major railroad. The aim is to predict the number
of reservations (bookings) and cancellations and, consequently, the number of passengers (bookings minus
cancellations) at the time of departure. For example, in Figure 1, the number of passengers is represented for
different departure times and departure days in different classes (i.e. business, economy for different types
of clients: junior, senior, or VIP, etc.,). Each case is indicated by an observation on the horizontal axis. The
number of passengers for a sample consisting of 100 observations is illustrated in this figure.

The number of observations is equal to the number of passengers for a specific departure date and for
a particular combination of class and product. Different classes are offered by the transportation company
such as economy or business class, for which the prices and capacity differ. Moreover, the products are
suggested by the company and are assigned to passengers, such as junior, senior, VIP and so on. We will
expect our model to accurately estimate the number of passengers considered as response variables. The
model proposed consists of two parts: a pre-processing phase and a regression phase. According to the



2 G–2009–71 Les Cahiers du GERAD

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Number of observations

N
um

be
r

of
pa

ss
en

ge
rs

Actual value

Figure 1: Sample pattern of the number of passengers at departure

transportation company’s protocol, the reservation process starts 120 days before departure and there are
20 booking interval segments. During these 120 days, passengers register the information for their itinerary
reservations. Some of the reservations may be cancelled throughout this period of time. There are several
factors which affect the number of bookings and cancellations. We will investigate the impact of seven factors,
which will serve as network inputs, on the number of passengers. This transport organization offers many
departures every day at different hours. Depending on departure date and departure time the demand differs.
The list of inputs and outputs is represented in Table 1.

Table 1: Table of inputs and outputs

Inputs
Name Data type Inputs

Departure date Code

{1, 2}
1: Weekday

2: Weekend

Departure time Code

{1, 2, 3}
1: [6:25 - 11:55]

2: [12:25-17:55]

3: [18:25-21:55]

Product Code 19 types

Class Code 14 types

Class average price Real value Max=117.5, Min=24.5

Itinerary average price Real value Max=117.5, Min=70.86

Day average price Real value Max=93.61, Min=78.49

Outputs
Reservations Positive real value [0,340]

Cancellations Positive real value [0,340]

During each week there are a lot of business travelers; therefore, demand increases. During weekends there
are more noticeable fluctuations in the quantity of passengers. Thus, we prefer to represent departure date



Les Cahiers du GERAD G–2009–71 3

in two codes: code 1 for weekdays and code 2 for weekends. Moreover, according to historical data, demand
changes during the day. Therefore, the number of bookings and cancellations is affected by departure time.
We express departure time using three codes. Code 1 represents the departures that are scheduled in the
morning, code 2 for the afternoon and code 3 shows departures during the night. In this transportation con-
text, tickets (i.e. products) are provided in 19 types that indicate the category of each passenger. Passengers
can be students, employees, juniors, or seniors. Moreover, tickets are allocated in fourteen types of classes
(i.e. business or economy). The output variables are reservations and cancellations. They vary between a
minimum of zero passengers to a maximum of 330 passengers.

3 Pre-processing

The performance of the Multi-Layer Perceptrons (MLP) is directly influenced by the inputs that are fed
to the network and the outputs which are used in the learning process. Therefore, an important part of
the method is to deal with the data being used in the training procedure in which the parameters of the
network are being fixed. Some data will have to be removed, some will be left unchanged and the rest
will be transformed. This procedure is called pre-processing. As will be seen in the results, pre-processing
contributes greatly in reducing the network generalization error. Inputs such as departure date, departure
time, products and classes are determined by codes. That is, discrete numbers which are assigned to each
category and do not follow a particular distribution. Thus, we may enter these data into the network without
any transformations and they are left unchanged. Moreover, the daily prices for each class and itinerary
differ. They are also used as inputs of the network and need to be pre-processed. But first, we have to detect
the outliers of the outputs. Outliers impose a significant noise on the average and variance of the entire
dataset. They can cause distortion in normalization and training. To discover them, we have divided the
data into four distinct intervals. The reason is that the capacity of the train is limited; therefore, the number
of bookings and cancellations in a single request for each itinerary is rarely more than 300 passengers. On
the other hand, there are a lot of departures with fewer than 100 passengers for each available combination of
class and product. Thus, for a specific combination of class, product, and price, the number of reservations
and cancellations could be zero, less than 100, between 100 and 300, or more than 300. Table 2 represents
the distribution of output data in these four intervals. The range shows the number of passengers in each
departure.

Table 2: Table of frequencies of January 2005 for the number of bookings and cancellations

Dataset

Training Testing
Range Booking Cancellation Booking Cancellation

x = 0 8907 10497 1906 2262

0 < x < 100 10502 9211 2248 1955

100 < x < 300 407 117 92 32

x > 300 10 1 3 0

The first column specifies the number of bookings and the second the number of cancellations. The first
row shows that for a specific departure date and time, and a particular combination of class and product, in
8907 cases during January of 2005 we had zero reservations. For example, there were some cases in which
there were no juniors in Business class for a specific departure date and time. According to the tables, we find
that there is significant variance in both datasets, which causes distortion in the normalization and training
process; it also creates noise in the performance of the network. To overcome this problem, we remove the
outliers in an empirical way. As shown in the preceding table the majority of data is located in the first two
intervals, motivating us to calculate the proportion of outliers for both bookings and cancellations. Table 3



4 G–2009–71 Les Cahiers du GERAD

represents the proportion of outliers for each set of data and for each output. These outliers are defined as
the proportion of the departures with more than 100 passengers over the entire quantity of passengers.

Table 3: Proportion of outliers of output variables

January 2005

(training, 80% of data) (testing, 20% of data)

Bookings 2% 2%

Cancellations 0.50% 0.70%

The first result denotes the proportion of outliers for the number of bookings for the January 2005 training
data. In this case, the ratio of outliers is 2%. The second result is the proportion of outliers for the number
of cancellations, which is 0.5%. The numbers are considered negligible and the outliers can be removed.

Nonlinear behavior is brought into the neural network by activation functions. The most commonly used
activation function in multilayer perceptrons is the sigmoid function. In this case, outputs are images of
this function producing values between 0 and 1. Outputs greater than 1 need to be transformed in order to
have a more accurate mapping; otherwise, the activation function will overweigh those features having larger
values. It is preferable to fit a probability function that determines the characteristics of the data, which can
also be reversed to calculate the error function. The Gaussian distribution is the most common one, used in
normalization context but it does not have the property of being reversible because it is not bijective, that
is, two different events may have the same probability of occurring. In our case, the output values are always
positive, since the number of bookings minus cancellations is always positive. In addition, the shape of the
data strictly decreases in terms of each interval; for example, there are many data equal to zero and as the
sample approaches 100 (after eliminating the outliers), the number of bookings and cancellations decrease.
This suggests selecting the exponential distribution to map the output values into the interval [0, 1], which
is also bijective. The general formulation of the exponential distribution for variable x is:

f(x) =
1
λ

e−
x
λ x ≥ 0 (1)

The estimated value for the parameter λ of the exponential distribution is the average of the data. Hence,
for each set of outputs (i.e., bookings and cancellations) we have different exponential distributions with
different parameters. The exponentialized outputs will be obtained via the following equation:

f(yRealV alue) =
1
λi

e
− yRealV alue

λi = yExponentialized (2)

where yRealV alue is the actual value corresponding to the specific input and yExponentialized is the output
transformed by the exponential distribution that was fed into the network during the learning process;
moreover, λi defines the parameter for each dataset. The weights are adjusted during the training process
while the difference between the output of the network and the exponentialized real values are minimized.
Because the learning process tries to approach the vector of the network outputs and the exponentialized real
values as much as it can by using the least mean square algorithm, we suppose that the output of the network
follows the same distribution as the real values. Once the predicted values have been generated, we reverse
them in order to calculate the error. The absolute value of the transformed output and the corresponding
error function are given by:

yTransformed = λi log(λiyNetworkOutput) (3)

Error = ~YRealV alue − ~YTransformed (4)

where yNetworkOutput is the prediction generated by the network and yTransformed represents the transformed
predicted value. As before, λi is the parameter of the exponential distribution. The error function is inter-
preted as the difference between the vector of observed yRealV alue and the vector of yTransformed produced
by the network. The results will show that using an exponential distribution has a significant impact on
improving the performance and generalization of the network.



Les Cahiers du GERAD G–2009–71 5

4 Model

Throughout this section we consider the structure of the multilayer perceptron that will enable us to forecast
the number of passengers. At first, we have to define the architecture of the network, and then choose an
appropriate learning algorithm for training. Refining and fine-tuning the learning process will make it more
efficient. After training, we will validate the accuracy of the network by the method of cross-validation. The
results will be represented in the following section.

4.1 Architecture of the neural network

The typical network consists of an input layer, some hidden layers and an output layer. A neural network of
minimum size is less likely to introduce noise into the training data and may result in better generalization.
On the other hand, a large number of hidden neurons can mimic the phenomenon without understanding the
underlying process. Therefore, finding a fairly convenient tradeoff between these two situations is critical.
Choosing the number of hidden layers and hidden neurons is done empirically and there is no specific rule for
it. A practical issue that arises in this context is that of minimizing the size of the network while maintaining
good performance. In this study, we have chosen the network growing method, in which case we start with
two neurons and then add progressively a new neuron or a new layer of hidden neurons. Preliminary results
show that increasing the number of hidden neurons in the first layer does not reduce the error significantly.
Thus, we add another hidden layer. At last, empirically we stop the growing network process at the point
of two hidden layers each comprising five neurons. The final architecture of the network is illustrated in
Figure 2.

Input Layer Hidden Layers Output Layer

Figure 2: Final structure of the network having two hidden layers with 5 neurons each

4.2 Learning algorithm and parameter adjustments

In order to choose a learning algorithm for training and fixing the parameters we have to fully define the data
set that will be fed to the network. In this study, we apply the data of January 2005 for training. To alleviate
the overfitting, we use 80% of the data randomly to train the network and the remaining 20% to test the
fixed parameters. This percentage is chosen empirically and it is the most common proportion for training
and testing values. The neurons of each layer are connected via some coefficients, called weights, which have
to be fixed during the training process. The most common learning algorithm for multilayer perceptrons,



6 G–2009–71 Les Cahiers du GERAD

called back propagation, is applied in our case. This is an iterative process which will stop as soon as a local
minimum is met with respect to a quadratic error function. After different trials we established 300 epochs to
adjust the parameters during the network training. The reason is that after 300 iterations the performance
of the network mostly remains constant and we cannot see any significant decrease in the error during the
learning process. The learning process is maintained on an epoch-by-epoch basis until the synaptic weights of
the network stabilize and the average squared error over the entire training set converges to a minimum target
value. We have also chosen batch-mode learning, where weight updating is presented after entering all the
training examples that constitute an epoch. The use of batch-mode training provides an accurate estimate
of the gradient vector where convergence to a local minimum is thereby guaranteed under simple conditions
(Haykin (1998)). The primary focus of regression methods is to smoothen the predicted output variable, and
in neural network, this task is accomplished with the use of sigmoid functions. The sigmoid function, whose
graph is S-shaped, is by far the most common form of activation function used in the construction of artificial
neural network mainly because it is differentiable. It is defined as a strictly increasing function that exhibits
a graceful balance between linear and nonlinear behavior. The general format of the sigmoid function is as
follows,

ϕ(x) =
1

1 + e−ax
(5)

where a is the slope parameter. When a is small, the network needs more data to be trained and when it
is large, the generalization of the network is not good enough. In our study, after comparing the error of
different trials we established a as being equal to 1.

4.3 Model improvements

Since back-propagation learning is basically a hill climbing technique, it runs the risk of being trapped in a
local minimum where every small change in synaptic weights, w, increases the error function. The weight
adjustments are done according to the following equation

w(n + 1) =w(n) + α[w(n− 1)] + ηδ(n)y(n) (6)

where δ represents the local gradients at each iteration n and y depicts the output of the corresponding
neuron. η is the learning-rate parameter and α shows the momentum constant which increases the rate of
learning yet avoids the danger of instability of training because the back-propagation algorithm provides
an approximation to the trajectory in weight space computed by the method of steepest descent. Thus,
the smaller we make the learning rate parameter η, the smaller the changes to the synaptic weights in the
network will be from one iteration to the next and the smoother the trajectory will be in weight space. This
improvement, however, is attained at the cost of a slower rate of learning. On the other hand, if we make
η large in order to speed up the rate of learning, the resulting large changes in the synaptic weights assume
such a form that the network may become unstable. Applying the momentum term helps us to avoid these
problems. One technique that is often used to control the over-fitting phenomenon is that of regularization,
which involves adding a penalty term to the error function in order to discourage the coefficients from reaching
large values. The simplest such penalty term takes the form of a sum of squares of all of the coefficients,
leading to a modified error function, E of the form

E(w) =
1
2

N∑
n=1

{y(xn, w)− tn}2 +
λ

2
‖w‖2 (7)

where ‖w‖2 ≡ wT w = w2
0 +w2

1 + ...+w2
M , and ti represents actual data. The coefficient λ governs the relative

importance of the regularization term compared with the sum-of-squares error term. In order to determine
the parameter of the learning ratio and modify the training process, we employ the adaptive learning method.
The performance of the steepest descent algorithm can be improved if we allow the parameter to change during
the training process. An adaptive learning rate will attempt to keep the step size as large as possible while
keeping the training process stable. This parameter is made responsive to the complexity of the local error
surface and it requires some changes in the training procedure. First, the initial network output and error are



Les Cahiers du GERAD G–2009–71 7

evaluated. At each epoch, new weights and biases are calculated using the current parameter. New outputs
and errors are then established. As with momentum, if the new error exceeds the old error by more than
a predefined ratio, the new weights and biases are discarded and the learning rate is decreased; otherwise,
the new weights are kept. If the new error is less than the old error, then the parameter is increased. This
procedure increases the learning rate, but only to the extent of learning without large error increments. Thus,
a near optimal value is obtained for the local terrain (Haykin (1998)).

4.4 Validation

After training the network and fixing the parameters and also applying the improvement methods, we want
to examine the generalization capability of the network. The motivation here is to validate the model on a
different dataset than the one used for parameter estimation. Generalization is influenced by three factors:
(1) the size of the training set and how representative it is of the environment of interest; (2) the architecture
of the neural network; (3) the physical complexity of the problem at hand. To examine the network’s
generalizing ability we use cross-validation. Cross-validation, sometimes called rotation estimation, is the
statistical practice of partitioning a sample of data into subsets such that the analysis is initially performed
on a single subset, while the other subset(s) is (are) retained for subsequent use in confirming and validating
the initial analysis. There is, however, the possibility that the model with the best-performing parameter
values may end up overfitting the validation subset. In this study, we use multifold cross-validation by
dividing the set into K subsets. The model is trained on all but one of the subsets and the validation error
is measured by testing it on the remaining one. This procedure is repeated for a total of K trials, each time
using a different subset for validation. The performance of the model is assessed by averaging the squared
error under validation over all of the trials of the experiment. If K gets too small, the error estimate is
pessimistically biased because of the difference in training-set size between the full-sample analysis and the
cross-validation analysis. In contrast, if K is too large, it may require an excessive amount of computation
since the model has to be trained K times with 1 ≤ K ≤ N where N is the number of examples. A value
of 5 or 10 for K is popular for estimating the generalization error. The network is tested on an independent
dataset that has not been used for training to give an unbiased estimate of the network performance. We
trained the network on a randomly chosen subset of January 2005 for learning and validated the network
with the data of March 2005.

5 Results

Outlier elimination was one of the improvement methods that we have applied in order to reduce the fore-
casting error. As mentioned before, the data should be normalized before entering the network. This process
is done according to the data structure. The exponential distribution is chosen as an appropriate distribution
in order to normalize the data before feeding it to the network. In Figure 3(a) and 3(b), the normalization
process of the training set for both bookings and cancellations is presented. These figures show the expo-
nential fit for the data that was used to train the network; we consider bookings and cancellations in two
separate graphs. The same was done for the other two datasets.

As can be seen, the fitted curve does not cover the whole dataset. This is due to the outlier elimination
procedure, which we have already implemented in the pre-processing step. Therefore, the fitted distribution
does not take the outliers into account. In order to determine the architecture of the network, we start from
a network with one hidden layer in which there are two hidden neurons; by increasing the number of hidden
nodes, we consider the performance error of the network. As shown in Figures 4(a) and 4(b), the error is
not reduced significantly when the quantity of neurons increases. The minimum error obtained by using just
one hidden layer remains over 15%, which motivates us to add another hidden layer to see if we can decrease
the error empirically. Preliminary results show that two hidden layers predict better than single hidden layer
networks.

Figure 5 depicts the training process of the network in an experiment with a specific predefined per-
formance goal (i.e. the predefined error is 10−4). The training process starts naturally with a large error



8 G–2009–71 Les Cahiers du GERAD

Data interval
0 7 14 21 28 35 42 49 56 63 70 77 84 91

0

2000

4000

6000

8000

10000

12000

14000

16000

Fr
eq

ue
nc

y
Ex

po
ne

nt
ia

l F
it

(a) Exponential distribution fit for cancellations in January
2005 (Train)

Data interval
0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

0

2000

4000

6000

8000

10000

12000

14000

Fr
eq

ue
nc

y
Ex

po
ne

nt
ia

l F
it

(b) Exponential distribution fit for bookings in January
2005 (Train)

Figure 3: Fitting exponential distributions to given dataset

0 5 10 15 20

20

25

30

Number of trials

N
et

w
or

k
ou

tp
ut

Error percentage

(a) Number of hidden neurons determination for a one-
hidden-layer network

2 3 4 5 6 7 8
10

20

30

Number of trials

N
et

w
or

k
ou

tp
ut

Error percentage

(b) Number of hidden neurons determination in a two-
hidden-layers network

Figure 4: Process of determining the number of hidden neurons according to the method of network growing

and, during the adjustment phase, the error decreases gradually. The training process does not reach the
predefined performance error or get stuck in a local or global minimum after 300 iterations.

In this case, the predicted values are network outputs and the actual values are the numbers that were
extracted from the transportation network. The preliminary results, without improvements, are shown in
Figure 6. The results are clearly unsatisfactory because there are significant differences between the network
outputs and the real values, making it necessary to employ some modification methods to improve the
network’s forecasting capability.

As we discussed earlier, some improvement methods were implemented to improve the results of the
network. Before applying these methods, the error was in the 35%-45% interval, but after using exponential
distribution, the results have improved dramatically giving an error rate lower than 25%. After applying the
adaptive learning method to control the learning rate, the results are more stable and acceptable. However,
our target error is about 8%-10%, and we are still far from this result. We used momentum and regularization
to reduce the error and finally, reach our target by removing outliers. The summary of the error reduction
process is represented in Table 4.



Les Cahiers du GERAD G–2009–71 9

0 50 100 150 200 250 30010
−5

10
−4

10
−3

10
−2

10
−1

10
0

300 Epochs

Tr
ai

ni
ng

-U
pp

er
 li

ne
 G

oa
l-L

ow
er

 li
ne

 

Performance is 0.00623053, Goal is 0.0001

Figure 5: Network training through iterative process

Table 4: Error at each step by adding each method for improving the results

Method Average error
Before improvement 40%

Exponential distribution 28%

adaptive learning 18%

momentum, regularization 15%

removing outliers 8%

Moreover, Figure 7 illustrates the improvements, in terms of errors, obtained by these techniques. As we
can see, the residuals have been reduced significantly and the network is capable of developing almost the
same format as the actual values.

Figure 8 illustrates the results obtained with the improvements. The figure shows that the network can
reproduce, with accuracy, the actual data.

After developing the multi-layer perceptron and after applying the improvements, we expect that the
network could generalize its ability of forecasting for unseen datasets as well. In order to validate the
network, we performed a series of trial and error tests to determine how many folds give more appropriate
results. To represent this analysis we have examined three different possibilities with K equal to 7, 3, and 5
folds, respectively.

As can be seen in Table 5, developing a 7-fold cross validation obtains an unrealistically low generalization
error, which could cause unstable results when applied to large, new datasets. Here, we applied 86% of data
to train the network and used the remaining 14% to test the generalization.

If we apply a completely new large dataset, the result will not remain the same, so we tried a 3-fold
method, which is presented in Table 6.



10 G–2009–71 Les Cahiers du GERAD

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

Number of observations

N
um

be
r

of
pa

ss
en

ge
rs

Network outputs
Actual value

Figure 6: Prediction accuracy before imposing improvement methods

0 5 10 15 20 25

10

20

30

40

Number of trials

Er
ro

r
%

None
Exponential distribution

Adaptive learning
Momentum and regularization

Removing outliers

Figure 7: Improvements impact error reduction

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

Number of observations

N
um

be
r

of
pa

ss
en

ge
rs

Network outputs
Actual value

Figure 8: Prediction accuracy after imposing improvement methods

In 3-fold cross validation, the network could suffer from overfitting (i.e. while training the network, the
error rate is low whereas the generalization error is high) because we use only 66% of the data to train the
network. Also, the error is high because of the lack of training. Finally, we decided to choose a 5-fold method,



Les Cahiers du GERAD G–2009–71 11

Table 5: 7-Fold cross validation

No. of No. of incorrent Prediction error

folds estimations

Booking Cancellation Booking Cancellation

1 120 143 3.55 4.24

2 132 123 3.89 3.63

3 151 134 4.46 3.96

4 92 170 2.72 5.02

5 180 127 5.32 3.75

6 141 172 4.17 5.08

7 201 172 5.94 5.08

Average 4.29 4.53

Table 6: 3-Fold cross validation

No. of No. of incorrent Prediction error

folds estimations

Booking Cancellation Booking Cancellation

1 1027 982 13.02 12.45
2 628 826 7.96 10.47
3 923 889 11.7 11.27

Average 10.89 11.39

in which we extract 80% of data randomly to train the network and use the remaining 20% to test it. We
repeated this method five times and then we calculated the average value of the runs. The results are a good
representation of the generalization error of the network. Table 7 shows the results of this experiment.

Table 7: 5-Fold cross validation

No. of No. of incorrent Prediction error

folds estimations

Booking Cancellation Booking Cancellation

1 364 314 8.7626 7.559
2 364 273 8.7626 6.572
3 439 695 10.5681 16.7309
4 367 283 8.8349 6.8127
5 376 272 9.0515 6.5479

Average 9.19594 8.8445

The generalization error for booking is 9.19% and for cancellation is 8.84%. As the second method of
evaluating the generalization of the network, we used the dataset of March 2005 that had not been used in
the training process. As illustrated in Figure 9, for 20 repetitions, the error is always steady in the 6%-12%
interval. The fluctuations in the graph are due to the different subsets of the whole dataset that we have
applied randomly. As shown in the graph, the average generalization error is around 8%.



12 G–2009–71 Les Cahiers du GERAD

0 2 4 6 8 10 12 14 16 18 20

6

8

10

12

Number of repetitions

Er
ro

r
%

Error percentage

Figure 9: Cross validation with March 2005 data

6 Conclusion

Reliable passenger forecasting models play a crucial role in the transportation industry. For example, they
help the transport organizations to determine seat availabilities, verify the quantity of crew members at
each itinerary, and plan price settings. In this study, we have proposed a neural network to be used in
transportation demand forecasting. Classical methods of statistics, such as regression or time series, struggle
to cope with high dimensional data sets and sometimes refuse to respond accurately to sudden changes. In
our proposed model we have chosen a Multi-Layer Perceptron (MLP) to circumvent the drawbacks of classical
models. A neural network is more flexible when dealing with sudden changes in the format of data, missing
information, and high dimensional data sets. We have opted to improve a typical MLP by using our knowledge
of the transportation problem. This knowledge has helped us to accurately eliminate the outliers without
losing too much information. Moreover, our understanding of the transportation problem has motivated us
to apply exponential distribution in the process of data preparation, which reduced the forecasting error
significantly. In addition, we have applied more technical approaches to improve the network. The efficiency
of our model has been validated throughout this study. The results have shown a forecast error of around
8%, which is considered quite acceptable.

References
Anderson, M. D., Sharfi, K., & Gholston, S. E. (2006). Direct demand forecasting model for small urban communities

using multiple linear regression. Transportation Research Record, (1981), 114–117.

Celikoglu, H. B. & Cigizoglu, H. K. (2007). Public transportation trip flow modeling with generalized regression neural
networks. Advances in Engineering Software, 38 (2), 71–9.

Chung, J.-H. & Lee, D. (2002). Structural model of automobile demand in korea. Transportation Research Record,
(1807), 87–91.

Devoto, R., Farci, C., & Lilliu, F. (2002). Analysis and forecast of air transport demand in sardinia’s airports as a
function of tourism variables. Advances in Transport, pp. 699–709, Seville, Spain: WITPress.

Godfrey, G. A. & Powell, W. B. (2000). Adaptive estimation of daily demands with complex calendar effects for freight
transportation. Transportation Research, Part B (Methodological), 34B(6), 451–69.

Hashemi, R. R., Le Blanc, L. A., Rucks, C. T., & Shearry, A. (1995). A neural network for transportation safety
modeling. Expert Systems with Applications, 9 (3), 247–56.

Haykin, S. (1998). Neural networks: a comprehensive foundation. Prentice Hall.

Miltenburg, J. & Pong, H. C. (2007). Order quantities for style goods with two order opportunities and bayesian
updating of demand. part i: No capacity constraints. International Journal of Production Research, 45 (7), 1643–
1663.



Les Cahiers du GERAD G–2009–71 13

Montgomery, D. C., Johnson, L. A., & Gardiner, J. S. (1990). Forecasting and time series analysis.

Mozolin, M., Thill, J. C., & Usery, E. L. (2000). Trip distribution forecasting with multilayer perceptron neural
networks: a critical evaluation. Transportation Research, Part B (Methodological), 34B(1), 53–73.

Popovic, J. & Teodorovic, D. (1997). An adaptive method for generating demand inputs to airline seat inventory
control models. Transportation Research, Part B (Methodological), 31B(2), 159–75.

Rengaraju, V. R. & Aracon, V. T. (1992). Modeling for air travel demand. Journal of Transportation Engineering,
118 (3), 371–380.

Sen, A. (1985). Examining air travel demand using time series data. Journal of Transportation Engineering, 111 (2),
155–161.

Snyder, R. D., Koehler, A. B., & Ord, J. K. (2002). Forecasting for inventory control with exponential smoothing.
International Journal of Forecasting, 18 (1), 5–18.

Varagouli, E. G., Simos, T. E., & Xeidakis, G. S. (2005). Fitting a multiple regression line to travel demand forecasting:
The case of the prefecture of xanthi, northern greece. Mathematical and Computer Modelling, 42 (7-8), 817–36.

Wei, F. & Hong, C. (2004). Cluster model for flight demand forecasting. vol. Vol.4 of Fifth World Congress on
Intelligent Control and Automation (IEEE Cat. No.04EX788), pp. 3170–3, Piscataway, NJ, USA: IEEE.

Widiarta, H., Viswanathan, S., & Piplani, R. (2007). On the effectiveness of top-down strategy for forecasting autore-
gressive demands. Naval Research Logistics, 54 (2), 176–88.

Xiaolong, Z. (2007). Inventory control under temporal demand heteroscedasticity. European Journal of Operational
Research, 182 (1), 127–44.


	Introduction
	Problem definition
	Pre-processing
	Model
	Architecture of the neural network
	Learning algorithm and parameter adjustments
	Model improvements
	Validation

	Results
	Conclusion

