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Abstract

This intentionally short tutorial is an introduction to the main features of AMPL that are relevant to
nonlinear optimization model authoring. Pointers are given to further documentation and resources for
more advanced features. The author estimates that reading this document and looking at the examples
carefully should not take more than an hour, downloading and installing the software should only take a
few minutes. With this document at hand, the user can be up and running in just over an hour.

Résumé

Ce bref tutorial se veut une introduction aux aspects du langage AMPL pertinents à la modélisation
de problèmes d’optimisation non-linéaire. On donne ensuite des pointeurs vers des sources d’information
plus approfondie. L’auteur estime que la lecture de ce document et l’étude des exemples ne devrait pas
prendre plus d’une heure. L’installation des logiciels ne devrait prendre que quelques minutes. En un
peu plus d’une heure, l’utilisateur sera capable d’écrire ses propres modèles et de les résoudre.
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1 Introduction

AMPL is a modeling language for mathematical programming. It allows users to describe optimization
problems. In this document, we concentrate on continuous optimization problems such as

minimize f(x)
subject to h(x) = 0,

cL ≤ c(x) ≤ cU,
` ≤ x ≤ u,

(1)

where f : Rn → R is the objective function, h : Rn → Rm is a vector-valued function of equality constraints,
c : Rn → Rp is a vector-valued function of inequality constraints, cL, cU ∈ Rp are the lower and upper
bounds for the inequality constraints and `, u ∈ Rn are the lower and upper bounds on the variables. In this
condensed notation, inequalities are understood componentwise. Note that some or all components of cL and
of ` may be equal to −∞ and some or all components of cU and of u may be equal to +∞. A bound taking
an infinite value means that the corresponding constraint is absent.

The salient advantages of a modeling language such as AMPL are that

(a) it provides an intuitive and extensive syntax to describe problems much as we would write them on
paper,

(b) it provides facilities to automatically compute derivatives for use by solvers. Hence, derivatives need
not be coded by hand and users may concentrate on the modeling task.

In the AMPL modeling language, a problem such as (1) may be represented in an intuitive manner as
two text files. The user writes the two text files using his or her favorite text editor. Whichever text editor
the user choses is in the end irrelevant, but the typing of the model can be more pleasant if an appropriate
editor is chosen. For example, some editors will allow the user to have expressions indented automatically or
keywords to be highlighted in color. We recommend the two following editors which are available on Unix,
Linux, Mac OS/X and Windows platforms:

(a) The Emacs editor, www.gnu.org/software/emacs,
(b) The Vim editor, www.vim.org.

Optional AMPL-specific syntax highlighting and indentation extensions are available for both editors at
the address www.mgi.polymtl.ca/dominique.orban/software.html.

Finally, we note that the description (1) of our problem is convenient since in AMPL, general constraints
and bounds on the variables are usually specified separately. This makes sense because solvers typically treat
them differently.

2 Obtaining AMPL

AMPL is commercial software. However, the AMPL authors generously realease a free-of-charge student
version of AMPL. The student version of the software has a single restriction: the problem size is limited
to 300 variables and 300 constraints. In terms of problem (1), this means that n cannot exceed 300 and the
total of m, the number of effective inequality constraints—i.e., the number of inequalities for which the lower
or upper bound is finite—and the number of effective bound constraints cannot exceed 300. If both the lower
and upper bounds of a bound constraint on a variable are finite, they count as two constraints.

AMPL is a command-line utility. This means that there is no fancy graphical user interface and you
will have to type commands at the command prompt. Unix, Linux and MacOS/X users will open a
terminal window and Windows users will start the command utility, or, as a more convenient alternative,
can download the scrolling window utility sw.exe from www.ampl.com, which offers cut-and-paste facilities,
font selection and a larger buffer size.

http://www.gnu.org/software/emacs
http://www.vim.org
http://www.mgi.polymtl.ca/dominique.orban/software.html
http://www.ampl.com
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The student version of AMPL may be downloaded for various flavors of Unix, including Linux and
MacOS/X and for Windows from the main website www.ampl.com. You will be downloading a compressed
executable. Follow the instructions given on the website for local installation. On the Windows platform,
be aware that your browser may already uncompress the file as it is being downloaded.

If you desire, a link on the AMPL website will also let you download student versions of some solvers
that are compatible with AMPL. In this document, we will use the student version of AMPL to write and
debug small-scale models locally. We will use one of the precompiled solvers to solve a small-scale model
locally. When the time comes to solve larger-dimensional versions of our models, we will make use of the
NEOS Server for Optimization neos.mcs.anl.gov.

3 How Does it Work?

Once the AMPL executable is installed and available, we call it from the command line and we are presented
with the AMPL prompt. Valid AMPL commands may be entered at the AMPL prompt. For example:

1 ampl: var x;
2 ampl: let x := 3.14;
3 ampl: display x;
4 x = 3.14
5

6 ampl: exit;

In the previous example, we declare a variable called x by means of the keyword var, we assign a value
to it using let (note the assignment operator :=) and we ask AMPL to display the value of this variable
using display. We then terminate our session with the exit command. Note that all commands end with
a semi-colon ‘;’.

Of course, it would be very tedious to type all commands at the prompt over and over again, so AMPL
also accepts a commands file as argument. A commands file is a text file that can be thought of as a script
or batch file, i.e., a list of commands given in the same order in which we would type them at the prompt.
The previous example can be reproduced by creating a text file called example1.ampl containing

1 var x;
2 let x:= 3.14;
3 display x;
4 exit;

Lauching AMPL with this file as argument then produces the same output as in the previous example.

4 Problem Description

For the purpose of an example, suppose we are modeling an optimization problem in which we seek the
natural configuration of N electrons constrained to lie on the surface of a conducting ellipsoid with half-axes
rx, ry and rz. This problem is a variation of a problem described in [SK97] and in [DMM04].

Physicits know that the electrons will stabilize when the Coulomb potential is minimal. In R3, we represent
the position of each electron by a triple (xi, yi, zi), i = 1, . . . , N . The Coulomb potential is given by

U(x, y, z) =
N−1∑
i=1

N∑
j=i+1

[
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

]−1/2
,

up to a scalar factor that will not affect the solution. In this function, x ∈ RN is the vector whose components
are the xi and we used similar definitions for the vectors y and z. The potential U is our objective function
to minimize. The electrons being constrained to lie on the surface of an ellipsoid, their coordinates must
satisfy

x2
i

r2
x

+
y2

i

r2
y

+
z2
i

r2
z

= 1, i = 1, . . . , N.

http://www.ampl.com
http://neos.mcs.anl.gov
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In this problem, there are 3N variables and N constraints. There are only general equality constraints; there
are no inequality constraints or bounds. The values of N , rx, ry and rz are parameters and may be changed
by the user to provide a different instance of the same model problem. Changing N changes the total number
of variables and constraints. Changing rx, ry or rz merely changes the geometry of the problem.

As mentioned in §1, the problem is described using two text files:

(a) a model file, electrons.mod, whose purpose is to represent the structure of the problem, i.e., the
description (1),

(b) a data file, electrons.dat, whose purpose is to give values to all constants and parameters in the
model—such as N and r—and to specify an initial guess for the solution, i.e., an initial electronic
configuration.

Ultimately, the name of these files is unimportant. However, it is good practice to name them as above.

The model file for this problem could be written as in Listing 1 and the data file as in Listing 2. Note
that in the listings, indentation only serves the purpose of easing readability. It is not required by the syntax.
As the reader will immediately guess, comments in AMPL start with a hash sign ‘#’. This model declares
the variables x, y and z, each of them a vector indexed from 1 through N.

Listing 1: Model File for the Electrons Problem
1 model; # Opens up a model file. This directive must be present
2

3 param N > 0, integer; # Number of electrons: value is given in data file
4 param rx > 0; # Half axis in x: value is given in data file
5 param ry > 0; # Half axis in y: value is given in data file
6 param rz > 0; # Half axis in z: value is given in data file
7

8 var x {1..N}; # x-coordinates of the electrons
9 var y {1..N}; # y-coordinates of the electrons

10 var z {1..N}; # z-coordinates of the electrons
11

12 minimize CoulombPotential: # This is a name given to the objective function
13 sum{i in 1..N-1}
14 sum{j in i+1..N}
15 1/sqrt( (x[i]-x[j])^2 + (y[i]-y[j])^2 + (z[i]-z[j])^2 );
16

17 subject to EllipsoidConstraint {i in 1..N}: # Name given to group of constraints
18 x[i]^2/rx^2 + y[i]^2/ry^2 + z[i]^2/rz^2 = 1;

Listing 2: Data File for the Electrons Problem
1 data; # Opens up a data file: must be present
2

3 param N := 10; # Actual number of electrons (note the ’:= ’)
4 param rx := 3; # Actual half axis in x of the ellipsoid
5 param ry := 2; # Actual half axis in y of the ellipsoid
6 param rz := 1; # Actual half axis in z of the ellipsoid
7

8 # Distribute the electrons randomly on the ellipsoid
9 option randseed ’12345 ’; # Initialize a random seed

10

11 param pi;
12 let pi := acos(-1.0); # A ’param ’ cannot have operations in it. A ’let’ can.
13

14 param theta {i in 1..N} := 2 * pi * Uniform01 (); # 0 <= theta <= 2pi
15 param phi {i in 1..N} := pi * Uniform01 (); # 0 <= phi <= pi
16

17 # Assign initial guess: this is an ellipsoid in spherical coordinates
18 let {i in 1..N} x[i] := rx * cos(theta[i]) * sin(phi[i]);
19 let {i in 1..N} y[i] := ry * sin(theta[i]) * sin(phi[i]);
20 let {i in 1..N} z[i] := rz * cos(phi[i]);

Why separate the model from the data ? The reasons are readability and flexibility. Whether we want
a small-scale or a large-scale instance of a problem, to change some boundary conditions or the half-axes of
the ellipsoid in the electrons example, it suffices to adjust some parameters in the data file. With a single
model file and several data files, we obtain a family of related problems.
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In AMPL, the usual trigonometric functions are available, as are the square root, the powers, logarithms
and the sum operator. They all have the expected name and calling sequence. In the data file, we made use
of the built-in function Uniform01() which returns a random number, according to a uniform law, between
0 and 1. Using the spherical coordinates, we ensured that our starting point satisfied the constraints. Had
we not specified an initial configuration, AMPL would have set all variables x, y and z to zero. While most
optimization solvers do not require that the initial guess be anywhere close to a local solution, let alone satisfy
the constraints, it is generally a good idea to put our knowledge of the problem to good use and specify a
reasonable initial guess. This initial guess might help a solver identify a local solution more efficiently, or at
all!

With the following commands, we obtain some information about the objective and constraint values at
the starting point.

Listing 3: Querying the Objective and Constraint Values at the Initial Point
1 ampl: model electrons.mod; # Load model file
2 ampl: data electrons.dat; # Load data file
3 ampl: display CoulombPotential; # Objective value at starting point
4 CoulombPotential = 138.979
5

6 ampl: display EllipsoidConstraint[N]; # Last constraint value at starting point
7 EllipsoidConstraint[N] = 0

The constraint value is zero, which means that it is satisfied; AMPL internally rearranged the expression
of the constraint so the right-hand side is zero. Note that display EllipsoidConstraint; would have
output the whole vector of constraints. We can obtain formatted output using C-like format strings and the
printf command, and even redirect output to a file:

1 ampl: printf {i in 1..N} ’%9.6f %9.6f %9.6f\n’, x[i], y[i], z[i];
2

3 0.585913 1.613986 0.221845
4 0.909399 -0.750201 0.539111
5 0.270759 -0.166082 2.877176
6 0.184721 0.703949 -2.752804
7 0.249890 -0.459935 -2.821707
8 -0.357302 -1.186707 -2.163886
9 0.142948 -0.603632 -2.827765

10 0.229000 -0.365430 2.868374
11 0.069781 -0.488146 -2.901729
12 -0.281886 0.343167 -2.831942
13 ampl: printf {i in 1..N} ’%9.6f %9.6f %9.6f\n’, x[i], y[i], z[i] > coords.txt;

The file coords.txt now contains the output of the first printf, which may be used by, say, a plotting
program to represent the electronic configuration.

The model above does not contain any bounds on the variables or general inequality constraints. It is
however very easy to incorporate some. Suppose we are now interested in solving the same problem but only
on the section of the ellipsoid described by the bounds −rz/2 ≤ zi ≤ rz/2 for all i = 1, . . . , N . We might
simply add to our model file the lines of Listing 4. More general inequality constraints can be added in the
same way. Note that inequality constraints can be one-sided or two-sided.

Listing 4: Model File for the Electrons Problem with Bound Constraints
1 subject to RangeConstraint {i in 1..N}:
2 -0.5 * rz <= z[i] <= 0.5 * rz;

What did we learn from this example?

(a) variables are declared with the keyword ‘var’ in the model file,
(b) parameters are declared with the keyword ‘param in the model file,
(c) variables are given a value in the data file using ‘let’,
(d) parameters are given a value in the data file using ‘param’, except if the value involves an arithmetic

or mathematical operation, in which case we can use ‘let’,
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(e) objectives and constraints must be named,
(f) most usual operators and functions are available in AMPL.

By far, the most common error in a model is to forget semi-colons.

5 Solving a Problem Locally

Once we have written our model and data files, how can we go about finding a solution to the problem? The
easy answer is to use an existing optimization solver, one that is already able to accept models in the AMPL
language. On the AMPL website, a number of precompiled binaries are available for download. In our case,
we need a solver able to process nonlinear problems with constraints. We select, for instance, the SNOPT
solver [GMS05], download the binary and place it in our environment’s search path. The commands file in
Listing 5 shows how to solve the problem with SNOPT.

Listing 5: Solving the Electrons Problem with SNOPT

1 model electrons.mod;
2 data electrons.dat;
3 option solver snopt; # Must be the name of the executable
4 solve;
5 printf {i in 1..N} ’%9.6f %9.6f %9.6f\n’, x[i], y[i], z[i] > snopt -sol.coords;

Executing this commands file, we receive the message
SNOPT 7.2-8 : Optimal solution found.
104 iterations , objective 17.3441059
Nonlin evals: obj = 87, grad = 86, constrs = 87, Jac = 86.

While this is not much information, it does give us the final value of the Coulomb potential, 17.3441059,
and an idea of the amount of work performed by solver. We could get a far more detailed output by passing
an option to SNOPT telling it to display information as it proceeds. This is done by changing Listing 5 to
Listing 6.

Listing 6: Passing Options to SNOPT

1 model electrons.mod;
2 data electrons.dat;
3 option solver snopt; # Must be the name of the executable
4 option snopt_options "outlev=2";
5 solve;
6 printf {i in 1..N} ’%9.6f %9.6f %9.6f\n’, x[i], y[i], z[i] > snopt -sol.coords;

We now receive the detailed output (truncated for readability)
SNOPT 7.2-8 : outlev =2

SNMEMB EXIT 100 -- finished successfully
SNMEMB INFO 104 -- memory requirements estimated

Nonlinear constraints 10 Linear constraints 1
Nonlinear variables 30 Linear variables 0
Jacobian variables 30 Objective variables 30
Total constraints 11 Total variables 30

The user has defined 30 out of 30 constraint gradients.
The user has defined 30 out of 30 objective gradients.

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty
0 14 1 1.3E-01 1.5E-01 4.6913243E+01 14 r
1 1 3.1E-01 2 5.8E-02 7.8E-01 1.1854748E+02 14 3.6E+02 n rl
2 2 1.0E+00 3 8.0E-02 9.1E-01 1.9685776E+01 13 3.1E+01 s
3 2 1.0E+00 4 1.3E-02 3.7E-01 2.0728865E+01 14 3.2E+01

...
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80 1 1.0E+00 84 (4.1E-09) 4.9E-05 1.7344106E+01 12 3.0E+01
81 1 1.0E+00 85 (7.9E-10) 1.5E-05 1.7344106E+01 12 3.0E+01
82 1 1.0E+00 86 (1.0E -10)(1.7E-06) 1.7344106E+01 12 3.0E+01

SNOPTB EXIT 0 -- finished successfully
SNOPTB INFO 1 -- optimality conditions satisfied

Problem name at20213
No. of iterations 104 Objective value 1.7344105903E+01
No. of major iterations 82 Linear objective 0.0000000000E+00
Penalty parameter 2.993E+01 Nonlinear objective 1.7344105903E+01
No. of calls to funobj 87 No. of calls to funcon 87
No. of superbasics 12 No. of basic nonlinears 10
No. of degenerate steps 0 Percentage .00
Max x 17 2.0E+00 Max pi 11 1.0E+00
Max Primal infeas 0 0.0E+00 Max Dual infeas 27 3.3E-06
Nonlinear constraint violn 6.0E-10

Solution not printed

Time for MPS input .00 seconds
Time for solving problem .02 seconds
Time for solution output .00 seconds
Time for constraint functions .00 seconds
Time for objective function .02 seconds

SNOPT 7.2-8 : Optimal solution found.
104 iterations , objective 17.3441059
Nonlin evals: obj = 87, grad = 86, constrs = 87, Jac = 86.

The detailed output shows the progress of the solver and, by inspection, might point to a source of
difficulties should we encounter any. Most solvers have numerous options and the user should refer to the
solver’s documentation for a complete description. Typically, a list of available options and a short description
of their purpose can be obtained by calling the executable for the solver from the command line with the
argument “-=” (a minus sign followed by an equal sign). For instance, “snopt -=” displays all options
recognized by SNOPT.

Our commands file finally outputs the final solution—i.e., after the solve command—to a file for plotting,
as we did in the previous section. For illustration, we increased the value of N to 41. The final electronic
configuration is given in Fig. 1.

Figure 1: Final Electronic Configuration. The red dots indicate the final position of the electrons as
determined by SNOPT. The leftmost plot shows the solution to the problem with equality constraints only
while the rightmost plot includes the bound constraints on z. Note how the electrons are confined to the
region of the ellipsoid specified in our constraints in the second plot.

6 Solving a Problem Online

Since the student version of AMPL is size-limited, it may be used to solve small-scale problems locally and,
importantly, to debug the model and data files. Indeed, upon loading the problem in an AMPL session, as in
Listing 3, AMPL will report any syntax errors. But once the model has been debugged, what should we do in
order to solve a large-scale instance of it? Of course, a possibility is to obtain the full version of AMPL. This
might also mean that we must install the solver of interest locally—a task which is not always simple and often
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requires installing many dependencies. Another possibility is to use the NEOS Server for Optimization, a
free-of-charge online central server to which we can send a request to solve a given problem modeled in AMPL
with any of the solvers available on the server. More information may be found on the NEOS website at
neos.mcs.anl.gov. In particular, the list of available solvers is found at neos.mcs.anl.gov/neos/solvers,
most of which accept input in the form of AMPL model and data files. Upon clicking on ‘[AMPL input]’
next to the name of any solver, we arrive at the solver page. At the bottom of the page is a form which we
can use to upload our model, data, and commands files.

The Kestrel tool is a transparent communication channel between the user’s local machine and the NEOS
Server that acts as a local solver. It forwards an AMPL model to the NEOS Server and thus allows to solve
problems without installing solvers locally. It does however require that a full version of AMPL be installed
locally because the AMPL model must be decoded before it is sent to a remote solver. With Kestrel, the
notion of a solver differs slightly from that in the previous section in that, to the eyes of AMPL, the solver
is always Kestrel itself. Here, a solver is just a program that performs a task with an AMPL model as
argument. If we wish to solve our optimization problem with a remote installation of SNOPT, we specify
snopt as an option to Kestrel. Our commands file takes the form of Listing 7.

Listing 7: Solving the Electrons Problem with Kestrel and a Remote Installation of SNOPT

1 model electrons.mod;
2 data electrons.dat;
3 option solver kestrel; # Must always be the Kestrel executable
4 option kestrel_options "solver=snopt"; # Optimization solver is an option to Kestrel
5 solve;
6 # After ’solve ’ has returned , everything happens on the local machine
7 printf {i in 1..N} ’%9.6f %9.6f %9.6f\n’, x[i], y[i], z[i] > snopt -sol.coords;

If it is not possible to obtain the full version of AMPL, a similar effect may be achieved from our local
command line by means of the Python interface to the NEOS Server. The PyNeos tool is a gateway to the
NEOS Server written in Python, and can be obtained from www.gerad.ca/∼orban/pyneos. A typical call
to PyNeos has the form

python pyneos.py -m electrons.mod -d electrons.dat -c electrons.ampl -k nco -s snopt

The option -s snopt specifies the SNOPT solver, which is found in the nco category—nonlinear constrained
optimization. Upon calling PyNeos with the --help command-line option, a list of accepted options is
displayed. Those options may be used, e.g., to retrieve the list of available solvers and solver categories.

The main apparent difference between Kestrel and PyNeos is that with PyNeos the user will not be able
to output data to disk in the commands file. That is because all commands in the commands file will be
executed on a remote machine and the NEOS Server will not return output files. Only standard output—i.e.,
to the screen—will be returned. All data must thus be output to the screen. The output returned by NEOS
must subsequently be processed to extract the data.

It is good practice to debug a model locally and to submit it to NEOS only once all syntax errors have
been eliminated. Keep in mind that NEOS is a free service and that users submitting buggy models are
merely cluttering up the queue and penalizing the other users.

We end this tutorial with a few statistics. Between January 1, 2009 and September 30, 2009, problems
submitted to the NEOS Server were by far mostly in AMPL format with 109231 submissions out of a total
168038 submissions. The next most popular modeling language accounts for less than half of the number of
AMPL submissions. By far most requests concerned the nonlinear constrained optimization category with
48879 requests, all modeling languages together. The next most popular category was that of mixed-integer
linear programs with 33485 submissions. The most popular submission interface was the Web interface with
128642 submissions followed by the XML-RPC interface, i.e., that used by PyNeos with 25622 submissions,
and by the Kestrel interface with 12554 submissions.

http://neos.mcs.anl.gov
http://neos.mcs.anl.gov/neos/solvers
http://www.gerad.ca/~orban/pyneos
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7 Where to Find More Information?

The AMPL modeling language has many more features than those described in this document and is regularly
updated. Extensive information is available in the literature and on the Internet as well as numerous examples.
We enumerate a few below.

(a) The AMPL book [FGK02],
(b) The AMPL website www.ampl.com,
(c) The first chapter of the AMPL book available free of charge www.ampl.com/BOOK/contents.html,
(d) The AMPL discussion group groups.google.com/group/ampl,
(e) Example models from older papers at www.netlib.org/ampl/models,
(f) Robert Vanderbei’s fascinating website and numerous AMPL models at

www.princeton.edu/∼rvdb/ampl/nlmodels

Note

If you found this tutorial useful and/or if you think crucial information is missing, please do not hesitate to
contact the author at dominique.orban@gerad.ca.

The author is not affiliated in any way with any company that commercializes the AMPL software.
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