
Les Cahiers du GERAD ISSN: 0711–2440

Good Deals and Compatible
Modification of Risk and Pricing
Rule: A Regulatory Treatment

H. Assa, A. Balbás,
R. Balbás

G–2009–54

September 2009
Revised: May 2010
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Abstract

In this paper we study the situation when a market might be destabilized in the presence of Good
Deals. A Good Deal is in general a financial position while making no cost, does not produce any risk. We
study Good Deals while a firm deals with a coherent risk measure and the market prices are ruled with a
sub-linear pricing rule. The most important observation of this work is that the existence of a Good Deal
is equivalent to the incompatibility between the pricing rule and the risk measure. Incompatibility has
been introduced and studied in Balbás and Balbás (2009). We look into this situation from regulatory
point of view in order to rule out Good Deals, purposing to stabilize financial markets. We propose
some practical ways of modifying a risk measure in a minimal way, for regulating financial institutions to
reserve more capital, in order to place financial institutions in a safer position.

Key Words: Compatibility, Compatible Extension, No Good Deal, CVaR, CCVaR, CAPM, Stochastic
Discount Factor, External Risk, No Better Choice, Global Risk, Global/Local ratio.

Résumé

Dans cet article nous étudions la situation dans laquelle un marché peut être déstabilisé en présence
de bonnes affaires. Une bonne affaire est en général une situation financière qui, tout en ne faisant pas
de frais, ne produit pas de risque. Nous étudions de bonnes affaires lorsqu’une firme traite avec une
mesure de risque cohérente et que les prix du marché sont régis par une règle de tarification sous-linéaire.
L’observation la plus importante de ce travail est que l’existence d’une bonne affaire est équivalente
à l’incompatibilité entre la règle de tarification et la mesure du risque. L’incompatibilité a été intro-
duite et étudiée dans Balbás et Balbás (2009). Nous nous penchons sur cette situation du point de vue
réglementaire afin d’exclure les bonnes affaires de l’intention de stabiliser les marchés financiers. Nous pro-
posons quelques moyens pratiques de modifier une mesure du risque de façon minimale et de réglementer
les institutions financières pour qu’elles mettent en réserve plus de capital afin se placer dans une position
plus sûre.
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1 Introduction

Stability of financial markets is one of the biggest concern of regulators in particular, central banks. In the last

century, world has witnessed many financial crises which provoked regulators to establish some rules in order

to make safer and more stable markets. For example, in European Union, Basle II (finance) and Solvency II

(insurance) contains a set of rules which the industry section should respect in order to place corporations in
a safer position. Following these rules, any corporation computes its “capital reserves”, i.e., additional capital

that will be devoted to overcome mainly their loss periods in their economical activities. The appropriate size

of reserve could be considered as the risk level associated to the firm activities. The importance of these rules

and accordingly the “capital reserves” is to keep the markets in a safer and more stable state. It is generally

accepted that stability of a market is mainly reached while the market is in equilibrium. The general theory
of market equilibrium has been developed during the last century (see Debreu (1959)). It is also known

that equilibrium is a balance between market participant needs and their preferences. In general, the state

of stability is an outcome of a fair allocation of available resources, among market participants. But one

cannot always rely on the existence of equilibrium while there are financial opportunities which destabilize a
market. Most of the time, market destabilizers are financial positions deemed to be simultaneously safe and

profitable. The most known example of such positions are an Arbitrages. An Arbitrage is easily detectable

and cannot survive for a long time in a market. But Arbitrages are not the only positions which destabilize a

market. In recent years, different risk measures have been used in financial institutions and regulatory sectors

in order to assess the risk of financial positions and in order to calculate the capital requirement in reserve.
Sometimes, these risk measures provoke a new generation of market destabilizers. These financial positions

are the major objectives we will study in this paper. In this paper we study a kind of pathological positions

called Good Deals. These positions are introduced and studied in Cochrane and Saa-Requejo (2000) and

Cerný and Hodges (2002). Here we have our definition of a Good Deal which in general means a financial
position without making any cost, never produces risk. Obviously, these kind of positions are in a high

demand. We study these positions when we deal with a coherent risk measure in the presence of a sub-linear

pricing rule (in the sense of Jouini and Kallal (1995b) and Jouini and Kallal (1995a)). We discover that the

existence of a Good Deal is an outcome of incompatibility between the pricing rule and the risk measure.

Incompatibility between the pricing rule and the risk measure is introduced and studied in Balbás and Balbás
(2009).

A Good deal is not a rare phenomena. We show that dealing with the predominate class of law invariant

risk measures, in very known models such as Black-Scholes model, always Good Deals exist. Therefore, our
main goal in this paper is to find a recovery of the risk measure when a Good Deal does exist. This is

mainly done for regulatory purposes while this can be also used for hedging and pricing. Our observation

is that an underestimation in assessing the capital requirement for an under-questioned financial position,

produces Good Deals. This provokes the regulator to ask financial institutions who hold that position, for

more capital in reserve. Recovering this situation is carried out with modifying the risk measure to one which
always dominates the first risk measure, taking into account the price of short sales. This is an important

observation that the price of short sales should be seen in the assessment of capital requirement in reserve

(see Corollary 5.1, (E1)).

For the reader convenience we enumerate the article’s achievement as follows:

1 Concept of Good Deal and incompatibility are two folds of a single fact.

2 Good Deals do exist in very known models.

3 Two major direction of risk recovery is introduced.

4 In particular, a recovery for CVaR is presented.

In Section 2 we will present the notations and the general framework we are going to deal with. The

concept of compatibility will be introduced in Section 3. We will consider a (maybe incomplete and/or

imperfect) Arbitrage-free market with pricing rule π and a coherent risk measure ρ. In this section we also

define the concept of a Good Deal, inspired by definitions in Cerný and Hodges (2002) and Cherny (2006).
We will show that the lack of compatibility is equivalent to the existence of Good Deals. The most important

result of this section is Theorem 3.2, which establishes that the necessary and sufficient condition to ensure
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the compatibility between the pricing rule and the risk measure is to rule out the Good Deals. Also, it is

equivalent to belonging at least one Stochastic Discount Factor (hence SDF) to the sub-gradient of ρ.

In Section 4 we show that Good Deals almost always exsit when we deal with law invariant coherent risk

measures.

In Section 5 we show that given an incompatible couple (π, ρ), how one can construct a minimal coherent

risk measure ρmin
m (or just ρm), compatible with π while also ρ ≤ ρm. We will see that the existence of

the minimal modification is tied to the existence of a minimal point of a partial order on SDF. The most

important contribution of this section is Corollary 5.1, where ρm is constructed.

Section 6 discusses some ways to modify the minimal modification, among many possible ways. In
particular, we discuss two ways, the first way is regarding some external criteria, and the second is regarding

with the No Better Choice pricing technique. We focus on concrete risk functions and pricing models in

Section 6. Special attention is devoted to the CVaR because this coherent risk measure is becoming very

popular among researchers, managers and practitioners, due to its favorable properties. We apply the findings

of Section 5 to CVaR so as to build the Compatible Conditional Value at Risk (CCVaR) in a general
incomplete markets, where SDF is the set of all Equivalent Martingale Measures (hence EMM). This modifies

the discussion in Balbás and Balbás (2009) where compatible CVaR; CCVaR, has been introduced. Hence,

it seems our treatment overcomes the shortcoming of CVaR in producing Good Deals with preserving the

good properties of the CVaR.

Finally at the end, Appendix contains some lemmas and the proof of the theorems, which need more
explanation and might interrupt the flow of discussions.

2 Preliminaries and notations

Consider the probability space (Ω,F , P) composed of the set of “states of the world” Ω, the σ− algebra

F and the probability measure P. Consider also a couple of conjugate numbers p ∈ [1,∞] and q ∈ [1,∞]

(i.e., 1/p + 1/q = 1). As usual Lp (Lq) denotes the space of R−valued random variables y on Ω such that
E (|Y |p) < ∞, E () representing the mathematical expectation (E (|Y |q) < ∞, or y essentially bounded if

q = ∞). According to the Riesz Representation Theorem, we have that Lq is the dual space of Lp when

p 6= ∞.

In this paper we consider only two period of time, today and tomorrow, represented with 0 and T ,

respectively. Every random variable presents the pay-off of a financial position at time T . Whenever we
talk about risk or price of a financial position we mean the present value of the price and the present risk

associated to the financial position.

Let us assume that Y ⊂ Lp is a closed convex cone containing R and is composed of all viable pay-

offs, i.e., for every Y ∈ Y there is a price associated to y. Consider a sub-linear arbitrage free pricing rule

π : Y → R in the sense of Jouini and Kallal (1995b) and Jouini and Kallal (1995a) i.e. a sub-additive,
positive homogeneous function while also π(k) = k for every k ∈ R.

Remark 2.1 The pricing rule π for example can be consider the super-replication price while also Y consists

of all random variables like y such that there exists a viable self financing process which can super hedge y.

Let
ρ : Lp −→ R ,

be a general risk function that a trader uses in order to control the risk level of his final wealth at T . Assume

that ρ is continuous and satisfies:

1. ρ (Y + k) = ρ (Y ) − k,for every Y ∈ Lp and k ∈ R .

2. ρ (αY ) = αρ (Y ) , for every Y ∈ Lp and α > 0.

3. ρ (Y1 + Y2) ≤ ρ (Y1) + ρ (Y2) , for every Y1, Y2 ∈ Lp.
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4. ρ(X) ≤ ρ(Y ) for every X, Y ∈ Lp and X ≥ Y .

Particular interesting examples are the Conditional Value at Risk (CVaR) of Rockafellar et al. (2006).

Consider a continuous ρ satisfying 1), 2), 3) and 4). Denote by

∆ρ = {Z ∈ Lq| − E (Y Z) ≤ ρ (Y ) , ∀Y ∈ Lp} . (2.1)

The set ∆ρ is obviously convex. Bearing in mind the Representation Theorem 2.4.9 in Zalinescu (2002) for

p 6= ∞, and using a proof similar to that of the Representation Theorem of a risk measure in Rockafellar

et al. (2006), it may be stated that ∆ρ is also σ (Lq, Lp)−compact

ρ (Y ) = max {−E (Y Z) : Z ∈ ∆ρ} , (2.2)

holds for every Y ∈ Lp. Furthermore by 1 (cash-invariance) and 4 (monotonicity) one can see that,

∆ρ ⊂
{

Z ∈ Lq
+|E (Z) = 1

}

. (2.3)

Finally, by means of the Hahn Banach Separation Theorem, one may easily prove that if ∆ρ ⊂ Lq is

a convex and σ (Lq, Lp)−compact while also ∆ρ satisfies (2.3), then there exists a unique continuous ρ

satisfying 1), 2), 3) and 4) such that (2.2) holds.

As for p = ∞, in order to have the same representation we need that ρ fulfills the Fatou property defined

in Delbaen (2002). We say that ρ has Fatou property if for any bounded sequence {Xn}n ⊆ L∞ converging
in probability to X we have that ρ(X) ≤ lim inf

n
ρ(Xn). With this assumption ∆ρ defined as above is a

subset of L1. In general, ∆ρ is not σ(L1, L∞)-compact, hence in the seminal for p = ∞ we also add the

assumption that ∆ρ is σ(L1, L∞)-compact, which with the aid of Dunford-Pettis Theorem means that ∆ρ is

Uniformly Integrable. This assumption is verified while dealing with many known risk measures, for instance

CVaRα, where we have ∆CVaRα
= {f : Ω → R| 0 ≤ f ≤ 1

α
, E[f ] = 1}. We add the compactness assumption

helping us to better explore the idea of this paper avoiding very elaborated functional analysis discussions

while covering the most important examples.

3 Compatibility and Good Deals

This section will be devoted to introduce and characterize the notion of compatibility between risk measures
and pricing rules and its relation with Good Deals.

3.1 Compatibility

Definition 3.1 The pricing rule π and the risk measure ρ are said to be compatible if there is no sequence

(Yn)
∞
n=1 ⊂ Y such that π (Yn) ≤ 0 for every n ∈ N and

limn→∞ρ (Yn) = −∞, (3.1)

simultaneously hold. �

Although the economical interpretation of the above definition is quite clear we bring the following

discussion made in Balbás and Balbás (2009)

If π and ρ are not compatible, then every manager who uses ρ to assess the risk (capital requirement)
can make the capital requirements as negative as he/she wihes, which does not make any economical sense.

Indeed, suppose a random variable Y0 ∈ Y represents the T -value of a financial position. The Y0’s final risk

is given by ρ (Y0), justifying that this quantity is an adequate final value (at T ) of the capital requirement.

Indeed, by translation- invariance of ρ we have

ρ (Y0 + ρ (Y0)) = 0,
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and the risk vanishes if the amount ρ (Y0) is invested in the risk-less security. But subadditivity of ρ and the

existence of the sequence (Yn)
∞
n=1 ⊂ Y above imply that

ρ (Y0 + Yn) −→ −∞,

while
π (Y0 + Yn) ≤ π (Y0) ,

which means that no capital has to be added and the risk level may be reduced as desired if the manager

buys Yn. Thus, the capital requirement ρ (Y0) does not have to be added. On the contrary, by adding

Yn the trader may even borrow an arbitrary amount of money −ρ (Y0 + Yn) −→ ∞, since, according to

translation-invariance of ρ,
ρ (Y0 + Yn + ρ (Y0 + Yn)) = 0.

The following propositions helps to understand better the state of incompatibility between ρ and π which

are taken from Balbás and Balbás (2009)

Proposition 3.1 The pricing rule π and the risk measure ρ are incompatible if and only if for every a ∈ R

there exists a sequence (Yn)
∞
n=1 ⊂ Y such that π (Yn) ≤ a for every n ∈ N and (3.1) simultaneously hold.

Proposition 3.2 The pricing rule π and the risk measure ρ are not compatible if and only if for every a ∈ R

there exists a sequence (Yn)
∞
n=1 ⊂ Y such that ρ (Yn) ≤ a for every n ∈ N and

limn→∞π (Yn) = −∞,

simultaneously hold.

The interpretation of Propositions 3.1 and 3.2 seems to be clear. If π and ρ are incompatible then there

is a significant lack of balance between prices and risks. This lack may provoke pathological situations, as

described above, that cannot be accepted economically .

Now we consider a more practical discussion when we want to hedge a financial position x with all possible

choices we can make subject to a given budget constrain on the set Y . Therefore, consider the following

problem






min ρ (Y − X)
π (Y ) ≤ c
Y ∈ Y

. (3.2)

where c ∈ R is a budget constrain on the price. This problem has been studied in Balbás et al. (2010), Balbás

et al. (2009a) and Balbás et al. (2009b), hence we refer the reader to read this reference for more details.

Following the methods in Balbás et al. (2009b), bearing in mind (2.2), (3.2) is equivalent to the following

infinite-dimensional linear optimization problem














min θ
θ + E (Y Z) ≥ 0, ∀Z ∈ ∆ρ

π (Y ) ≤ c
θ ∈ R, Y ∈ Y

(3.3)

It is shown in Balbás et al. (2009a) that the dual of (3.3) is given as






max E[XZ]
λπ (Y ) − E (Y Z) ≥ 0, ∀Y ∈ Y
λ ∈ R,λ ≥ 0, Z ∈ ∆ρ

(3.4)

is the dual of (3.3), λ ∈ R and Z ∈ ∆ρ being the decision variables. Again following discussions in the same

reference we have that (3.4) is equivalent to the following
{

max E[XZ],
Z ∈ ∆ρ ∩R,

(3.5)

where

R :=

{

Z ∈ Lq

∣

∣

∣

∣

π (Y ) − E (Y Z) ≥ 0, ∀Y ∈ Y

}

. (3.6)
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3.2 Good Deals

A Good Deal is a financial position which in general makes no cost while the associated risk is also negative.

Such a position is in high demand and may destabilize a market in its presence. The term “Good Deal” for
the first time has been used in Cochrane and Saa-Requejo (2000) when the author defined a Good Deal as a

financial position with a reasonably high Sharpe ration. Then the term “Good Deal” appeared in Cerný and

Hodges (2002) where the author defined the concept of “desirable” positions, and introduced a Good Deal

as a desirable position with non positive price. In Cherny (2006) the author showed how the two previous
concepts can rejoin when we use a generalized Sharp ratio, using a coherent risk measure instead of standard

deviation. Here we adapt their definition to our setting as follows

Definition 3.2 A Good Deal is a random variable y such that π(Y ) ≤ 0 and ρ(Y ) < 0. No Good Deal is an

assumption where there is not any Good Deal in the market.

We also define the set R
(

A
)

for any subset A ⊆ Lp as follows:

R
(

A
)

:=

{

Z ∈ Lq
+

∣

∣

∣

∣

E(Z) = 1 , E(ZY ) ≤ 0 ∀Y ∈ A

}

. (3.7)

Similar to Cherny (2006) Theorem 3.4 we have the following theorem:

Theorem 3.1 There exists No Good Deal if and only if

∆ρ ∩R 6= ∅.

Proof. The result is easily concluded following the proof of Theorem 3.4 in Cherny (2006) and observing

that

∆ρ ∩R
(

{X |π(X) ≤ 0
}

) = ∆ρ ∩R.

Now we have the following theorem.

Theorem 3.2 The following conditions are equivalent:

1. π and ρ are compatible.

2. There is No Good Deal.

3. R∩ ∆ρ 6= ∅.

4. ρ ≥ −π.

5. Problem (3.2) is bounded.

6. Problem (3.5) has a feasible solution.

7. There is no duality gap between (3.2) and (3.5).

Proof. With the aid of Theorems 3.1 and following Balbás et al. (2009a) and Balbás et al. (2009b), we have

7 ⇔ 6 ⇔ 5 ⇔ 1 ⇔ 3 ⇔ 2.
(2 ⇒ 4). From the definition it is obvious that there is No Good Deal iff ∀Y ∈ Y, π(Y ) ≤ 0 implies ρ(Y ) ≥ 0.

Since π(Y − π(Y )) = 0 then ρ(Y − π(Y )) ≥ 0 and because ρ is translation invariant then ρ(Y ) ≥ −π(Y ).

(4 ⇒ 2). Let us consider that there exists a Good Deal Y ∈ Y. So by definition ρ(Y ) < 0 and π(Y ) ≤ 0

which obviously implies ρ(Y ) < −π(Y ).

What we deduce from the emptiness of the intersection R∩∆ρ is either the risk or the price is underesti-

mated. In the both case, we are led to enlarging either ∆ρ or R. It is always possible to find an modification

∆ρ (or R) in a minimal way, which is the subject is studied in the next sections. But before that in the

upcoming short section we want to show that Good Deals are not rare positions.



6 G–2009–54 – Revised Les Cahiers du GERAD

4 Law Invariant Coherent Risk Measures and Good Deals

In this section we show that in many known models such as Black- Scholes model, using a law invariant risk
measure produces Good Deals. A law invariant risk measure ρ is a risk measure while ρ(X) = ρ(Y ) for any

two random variable x, y with identical distributions.

It has been recently proven in Filipovic and Svindland (2008) the effective domain of every law invariant

coherent risk measure ρ is L1. This shows that one can consider that ∆ρ, which is a subset of dual space, is

in L∞. For instance we know from Delbaen (2002) that:

∆CVaRα
=

{

Z ∈ L0

∣

∣

∣

∣

0 ≤ z ≤
1

α
, E[z] = 1

}

, (4.1)

which is obviously a subset of L∞. This implies that every pricing rule like one is given by Black-Scholes

model, with unbounded stochastic discount factors cannot meet the statement 3 in Theorem 3.2.

5 Recovering Incompatibility

Discussions in last section show that compatibility may fail in very important cases. Now it is natural to

analyze whether modifications of a risk measure allows us to recover this situation. The existence of a minimal

recovery is tied to some mathematical concepts which appears in the following.

In this section we propose the recovery of risk measure to a minimal compatible one. This modification is

always possible, which we are going to discuss in this section.

Definition 5.1 Let π be a pricing rule and ρ be a coherent risk measure. Suppose that there exists a con-
tinuous π̃ : Lp −→ R modifying π. Then the minimal compatible modification, ρmin

m (or in brief ρm) of ρ is

a measure such that:

a) π and ρmin
m are compatible, and ρ ≤ ρmin

m

b) ρmin
m is minimal, i.e., if π and ρ̃ are compatible, ρ ≤ ρ̃ and ρ̃ ≤ ρmin

m then ρ̃ = ρmin
m .

From now on unless mentioning, otherwise ρm means ρmin
m

Now we discuss the existence of ρm. We begin with the definition of � for two members Z1, Z2 6∈ ∆ρ as
follows:

Z1 � Z2 ⇔ C(Z1) ⊆ C(Z2), (5.1)

where C(Zi) is the closed convex hall of ∆ρ ∪{Zi} for i = 1, 2. It is clear that since ∆ρ is σ(Lq, Lp)-compact,

then C(Zi) =
{

(1 − λ)Zi + λZ|λ ∈ [0, 1] , Z ∈ ∆ρ

}

for i = 1, 2. So we can give the following equivalent
definition for �:

Z1 � Z2 ⇔ Z1 ∈ C(Z2).

In the following theorem, which is proved in Appendix, we see that the minimal member of this partial

ordering always exists.

Theorem 5.1 There exists Z ∈ R such that if for some Z̃ ∈ R, Z̃ � Z then Z̃ = Z.

The proof of the following theorem is straightforward

Theorem 5.2 The modified risk measure ρm is minimal if and only if

∆ρm
= C(Z),

for some Z minimal in
(

R,�
)

.

By Theorems 5.1 and 5.2 we have the following corollary:



Les Cahiers du GERAD G–2009–54 – Revised 7

Corollary 5.1 (Minimal Modification of Risk Measure) Let π be a pricing rule and ρ be a coherent

risk measure. Suppose that there exists a continuous π̃ : Lp −→ R modifying π. Then the minimal modification

ρm always exists and we have the following statements:

(E1) ρm(Y ) = max
{

ρ(Y ),−E(ZY )
}

for some Z minimal in (R,�).

(E2) ρm is coherent if and only if ρ is coherent and Z is nonnegative.

(E3) ρm(Y ) ≥ max
{

ρ(Y ),−π(Y )
}

.

(E4) If the market is perfect (i.e., if π is linear and continuous) then

ρm (Y ) = max {−π (Y ) , ρ (Y )} , (5.2)

holds for every Y ∈ Y.

Remark 5.1 Notice that the existence of the modification π̃ above frequently holds. For instance, if the

market is perfect, i.e. if Y is a subspace and π is linear and continuous, then the existence of π̃ follows from

the Hahn Banach Theorem. On the other hand, if the market is complete and perfect then π will be increasing
so as to prevent the existence of arbitrage (Duffie (1988)).

6 Modification Rules

In the following we propose some methods of finding a minimal modification ρm of ρ. Modifying a risk

measure is a way to better assess the risk in order to rule out Good Deals and mainly is carried out for

regulatory purposes. Since a regulator should be concerned with all possibilities, it might consider that every
position could be priced. This is why in the sequel we consider that Y = Lp.

Here we propose two main method to modify the risk measure. The first method relies on minimizing a

third function φ, which is interpreted as an external criteria (or maximizing an external utility). This new

measure φ regards the fundamentals of ρ-user, for example we will see by considering φ(.) = ‖.‖L1 it does
not allow that the set ∆ρ spread out far much.

As for the second method of modifying the risk measure, our method is an outcome of finding the No

Better Choice price of the Global/Local Efficiency Ratio (see Cherny (2006)).

6.1 External Criteria

In this section we let only ∆ρm
spreads out upon touching R in a minimum of an external criteria function

φ. More precisely, let Zmin be a point in R such that for some Z∗ ∈ ∆ρ the following inequality holds

φ(Zmin − Z∗) ≤ φ(Z − Z1) , ∀(Z, Z1) ∈ R× ∆ρ.

Before moving on with our discussion, we should give the exact definition of φ.

Definition 6.1 A function φ : (R− ∆ρ) ⊆ Lq → R is an external criteria if

(φ1) φ is positive and convex.

(φ2) (Z, Z1) 7→ φ(Z − Z1) attains its minimum at (Zmin, Z∗) ∈ R× ∆ρ.

(φ3) φ(Z) = 0 if and only if Z = 0.

Now we have the following theorem

Theorem 6.1 Consider there is a Good Deal. With the notation above Zmin is a minimal for (R,�).

Proof. Since there is at least a Good Deal then by Theorem 3.2 we know that R ∩ ∆ρ = ∅. To prove

the theorem’s statement we consider the contrary, considering that there exists Z̃ ∈ C(Zmin) ∩R such that
Z̃ 6= Zmin. Since Zmin 6= Z̃ ∈ C(Zmin) there exists λ ∈ (0, 1] and Z1 ∈ ∆ρ such that

Z̃ = (1 − λ)Zmin + λZ1.
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By convexity of ∆ρ we deduce that Z2 = (1 − λ)Z∗ + λZ1 ∈ ∆ρ. By conditions (φ1), (φ3) we have that

φ(Z̃ − Z2) = φ

(

(1 − λ)Zmin + λZ1 − ((1 − λ)Z∗ + λZ1)

)

= φ

(

(1 − λ)(Zmin − Z∗)

)

≤ (1 − λ)φ(Zmin − Z∗).

Since 0 ≤ 1− λ < 1, by definition of Zmin we should have φ(Zmin −Z∗) = 0. By condition (φ3) we get that
Zmin = Z∗ which contradicts our Good Deal assumption.

Remark 6.1 In an incomplete market, there are more than one equivalent martingale measure (EMM) for

the price of an underlined stock. Among many choices, the right pick is always an important question. For

example, the minimal martingale measure provided by Föllmer Schweizer decomposition, the one which is
the nearest in Lq-norm to the historical measure P or the one which has the least entropy. For a stock price

modeled with a geometric Lévy process, the family of all martingale measures and different methods to pick an

appropriate EMM is discussed in Chan (1999). We can add another to this list, which concerns the existence

of Good Deals. In the next section we will see how with an appropriate choice for φ, one can find a new

criteria in choosing an EMM.

6.1.1 Compatible Conditional Value at Risk; CCVaR

In this section we extend discussions in Balbás and Balbás (2009) to find a modified CVaRα which we will
call Compatible CVaR.

For that, in the following we are going to use the theory we have developed in the last section by

implementing the external criteria φ(X) =
∫

Ω
|X | and ρ = CVaRα in Theorem 6.1.

Lemma 6.1 For a given g ∈ L1
+ with E[g] = 1, the L1-distance between g and ∆CVaRα

equals 2
∫

Ω

(

g − 1
α

)+
,

i.e.,

min
z0∈∆CVaRα

∫

Ω

|g − z0| = 2

∫

Ω

(

g −
1

α

)+

.

Furthermore, the minimum is attained only in points Z∗ defined as follows

Z∗ =
1

α
1{g≥ 1

α
} + (g + h)1{g< 1

α
}, (6.1)

where h is a non-negative function in which (g + h)1{g< 1

α
} ≤ 1

α
and

∫

{g< 1

α
}

h =

∫

Ω

(

g −
1

α

)+

.

Proof. See the Appendix.

Now from Theorem 6.1 and Lemma 6.1 the following theorem turns out,

Theorem 6.2 Let SDF be the set of all Stochastic Discount Factors (e.g., EMM in an incomplete market).
Consider that the minimum of 2E[(· − 1

α
)+] over SDF, is attained at g∗ ∈SDF. Then g∗ is a minimal point

of (SDF,�).
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6.2 Global Risk and Performance Maximization

In this section we study partially the following coherent risk measure

y 7→ max{ρ(Y ), π(−Y )}.

Following the two upcoming discussions we think that studying this risk measure is of a great importance.

Studying this risk measure leads us in the sequel to a minimal modification of ρ, in the presence of Good

Deals.

Discussion 1. For a moment let us revisit the hedging problem 3.3 for a general couple (ρ, π). For a
general couple (ρ, π) the pricing and hedging of type 3.3, for any position y, is possible if the intersection

R∩∆ρ is not empty (Theorem 3.2). Hence, the price is maximum of E[Y Z] over all Y ∈ R∩∆ρ. Therefore,

one can associate a pricing rule πρ to the couple (ρ, π) as follows

πρ(Y ) = max

{

E[Y Z]

∣

∣

∣

∣

Z ∈ ∆ρ ∩R

}

. (6.2)

According to Theorem 3.2 the associated pricing rule exists if there is no duality gap between 3.5 and 3.3,

hence pricing and hedging is possible. With the same theorem again the associated pricing rule exists if there
is No Good Deal.

We know that regardless the emptiness of intersection R ∩ ∆ρ, the price π always exists. A natural

question is what is the risk measure which its associated pricing rule is π?

We give the following definition then

Definition 6.2 The Global Risk GR : Lp → R is the smallest risk measure dominating ρ such that the

pricing rule πGR associated with the couple (GR, π) is equal to π i.e. πGR = π.

Discussion 2. We have seen in (E1), Corollary 5.1, that a minimal modification of a risk measure is a
minimal way of assessing risk, taking into account a short sell price. We say a short sell price because there

is not always one way of finding a minimal modification (i.e. choosing Z in (E1)). This can be interpreted

as the least conservative modification of risk measure in order to rule out Good Deals.

On the contrary, one can ask what is the most conservative modification of risk in order to avoid generating

Good Deals. The answer is of course the following modification

y 7→ max

{

ρ(Y ), π(−Y )

}

. (6.3)

This risk measure is counting the risk of the ρ-user, taking into account the short price i.e. π(−Y ). The
short price can be interpreted as the risk which market associates to y. Obviously, it is an upper bound for

the capital reserve when Good Deals are ruled out.

Here we have the following proposition relating Discussions 1 and 2, the proof is quite obvious so we leave
it to the reader

Proposition 6.1 For the couple (ρ, π) we have

GR(Y ) = max

{

ρ(Y ), π(−Y )

}

. (6.4)

This proposition shows that the Global Risk does not only assess the trader’s risk but also it assesses the

market response to the shortening y which could be interpreted as the market risk.

As it is usual in the literature of coherent risk theory, in the sequel, we will denote the function −ρ by u,

and we will call it monetary utility associated to ρ.
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What may seem very valuable to assess is the utility against the Global Risk. That means the ratio
u(Y )

GR(Y ) , which in some sense shows how worthwhile is keeping the financial position y. It is quite obvious

that when the utility is positive, u(Y ) > 0, and the Global Risk in non positive, GR(Y ) ≤ 0, the financial
position y is very well performed, consequently we attribute +∞ to it. On the contrary, the ratio should be

0 if GR(Y ) > 0 and u(Y ) ≤ 0. So we have the following definition

Definition 6.3 For a couple (π, ρ) the Global/Local performance ratio GL is defined as follows

GL(Y ) =











+∞ if GR(Y ) < 0,
u(Y )

GR(Y ) if GR(Y ) ≥ 0 and u(Y ) > 0,

0 if GR(Y ) ≥ 0 and u(Y ) ≤ 0,

(6.5)

when positive
0 = +∞.

It is very easy to show that

GL(Y ) =











+∞ if u(Y ) > 0 and π(−Y ) ≤ 0,
u(Y )

π(−Y ) if u(Y ) > 0 and π(−Y ) > 0,

0 if u(Y ) ≤ 0.

(6.6)

Here we can see that GL is a performance ration of keeping y. Let us look at the first line. If the utility

of y is positive while the cost of shortening it is non-positive, obviously we should keep y. The second line
indicates if the utility of keeping y is positive while the price of shortening is also positive, the higher the

utility the more worthwhile keeping y, and the higher the shortening price the less worthwhile keeping y.

Finally if the utility is non-positive it is not worth to keep y.

Now let us consider we are in a market without any Good Deal. Let y be a financial position y such that

π(Y ) ≤ 0. It is clear since R∩ ∆ρ 6= ∅ then u(Y ) ≤ 0 and by (6.6) we have GL(Y ) = 0. This is interpreted
as GL does not rank the market better than π does. But in the case that R ∩ ∆ρ = ∅ we always have

sup
π(Y )≤0

GL(Y ) > 0. This number shows the distance of the market with a market in the absence of Good

Deals. We summarize previous discussions in the following proposition which the proof is now clear

Proposition 6.2 There is No Good Deal if and only if GL(Y ) = 0 for all y such that π(Y ) ≤ 0.

Here we lead the discussion to the No Better Choice pricing associated with the performance ration GL

defined by Cherny (2006). The definition of NBC is adapted for our setting from Cherny (2006).

Definition 6.4 For any financial position g the NBC pricing is a real number x such that

sup
{Y +h(g−x) | π(Y )≤0 , h∈R}

GL

(

Y + h(g − x)

)

= sup
{y | π(Y )≤0}

GL(Y ). (6.7)

Actually it is the cost for g in which the maximum efficiency ratio does not increase by adding the new

product g. The set of all NBC prices are denoted by INBC .

We denote the supremum in (6.7) with R∗ i.e.

R∗ = sup
{y | π(Y )≤0}

GL(Y ).

In Cherny (2006) it is shown that

R∗ = inf

{

R ≥ 0

∣

∣

∣

∣

(

1

1 + R
∆ρ +

R

1 + R
c̄o

(

∆ρ ∪R
)

)

∩R 6= ∅

}

.
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Before moving on further to our discussion we impose the following assumption on R

R is σ(Lq, Lp) − compact. (6.8)

Since ∆ρ and R are σ(Lq, Lp)-compact and both ∆ρ and R are convex we have

c̄o
(

∆ρ ∪R
)

= co
(

∆ρ ∪R
)

. (6.9)

To show (6.9) let us consider X ∈ co
(

∆ρ ∪ R
)

. Therefore, X =
k
∑

i=1

µiYi +
l

∑

j=1

λjZj , where µi, λjs are

positive such that
∑

µi +
∑

λj = 1 and also (Yi, Zj) ∈ ∆ρ ×R for 1 ≤ i ≤ k , 1 ≤ j ≤ l. Letting µ =
∑

µi

and λ =
∑

λj we have that

X = µ

(

∑ µi

µ
Yi

)

+ λ

(

∑ λj

λ
Zj

)

.

By convexity of ∆ρ and R it yields that every member of co
(

∆ρ ∪R
)

can be written as X = µY +λZ for
(Y, Z) ∈ ∆ρ×R where λ+µ = 1 for nonnegative λ and µ. Now let us consider that Xn ∈ co

(

∆ρ∪R
)

converges

in σ(Lq, Lp) to X . Therefore, there exist 0 ≤ λn ≤ 1, Yn ∈ ∆ρ and Zn ∈ R such that Xn = (1−λn)Yn+λnZn.

Since ∆ρ and R are σ(Lq, Lp)-compact, upon a subsequence one can consider that Yn, Zn and λn converge

to Y, Z and λ respectively in ∆ρ,R and [0, 1]. This implies that X = (1 − λ)Y + λZ ∈ co
(

∆ρ ∪R
)

.

Now by (6.9) and ∆ρ ∩ R = ∅ it is clear that if for some R > 0, Z1 ∈ ∆ρ and Z ∈ co(∆ρ ∪ R) we have
1

1+R
Z1 + R

1+R
Z ∈ R then Z ∈ R. Hence we can rewrite it as

R∗ = inf

{

R ≥ 0

∣

∣

∣

∣

(

1

1 + R
∆ρ +

R

1 + R
R

)

∩R 6= ∅

}

.

Let

D∗ =
1

1 + R∗
∆ρ +

R∗

1 + R∗
c̄o

(

∆ρ ∪R
)

.

In Cherny (2006) it is shown that

INBC(g) =
{

E(Zg)
∣

∣ Z ∈ D∗
}

.

On the other hand in the same reference it is discussed that D∗ ∩ R contains of the closest points of R to

the set ∆ρ with respect to the following distance:

d(∆ρ, Z) = inf

{

R ≥ 0

∣

∣

∣

∣

∃(Z1, Z̃) ∈ ∆ρ × co(∆ρ ∪R) ,
1

1 + R
Z1 +

R

1 + R
Z̃ = Z

}

= inf

{

R ≥ 0

∣

∣

∣

∣

∃(Z1, Z̃) ∈ ∆ρ ×R ,
1

1 + R
Z1 +

R

1 + R
Z̃ = Z

}

.

This equality follows from the previous arguments. By Corollary 3.10 [Cherny (2006)] one can deduce that

D∗ ∩R =
{

Z ∈ R | d(∆ρ, Z) is minimum
}

. (6.10)

To justify this distance we first define the following distance on (∆ρ,R)

{

d : ∆ρ ×R → [0, +∞],

d(Z1, Z) = inf
{

R ≥ 0
∣

∣∃Z̃ ∈ R, 1
1+R

Z1 + R
1+R

Z̃ = Z
}

.
(6.11)

Geometrically, we connect Z1 to Z and continue until hitting the last point in R, named Z̃ (since R is

σ(Lq, Lp)-compact the last point exists). So there is R ≥ 0 such that Z = 1
1+R

Z1+
R

1+R
Z̃. Then d(Z1, Z) = R.

In the case that the continuation of the semi line
−−→
Z1z hits R only in Z (i.e. Z = Z̃) we put d(Z1, Z) = +∞.

The function d is lower semi-continuous in σ(Lq, Lp) topology; see Lemma 7.2 in the Appendix.
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So we can find (Zmin
1 , Zmin) ∈ ∆ρ ×R such that

d(Zmin
1 , Zmin) = inf

{

d(Z1, Z) | (Z1, Z) ∈ ∆ρ ×R
}

.

And again by Lemma 7.2 and this last relation

D∗ ∩R =
{

Z ∈ R | d(∆ρ, Z) is minimum
}

=
{

Z ∈ R | ∃Z1 ∈ ∆ρ , d(Z1, Z) is minimum
}

.

The members of the set D∗ ∩ R are the discount factors for the No Better Choice pricing technique. But

interestingly the members of this set are also minimal for (R,�) (following theorem) which by Theorem 5.2

leads us to a good choice of the risk recovery. The proof of the following theorem is in Appendix.

Theorem 6.3 All members of D∗ ∩R are minimal for (R,�).

7 Appendix

Proof of Theorem 5.2. Before proving the theorem we need to prove the following lemma

Lemma 7.1 Let {Zn} be a sequence in R such that Z1 � Z2 � Z3 � . . . and Zn → Z in σ(Lq, Lp). Then

∩i∈NC(Zi) = C(Z).

Proof. For every arbitrary N ∈ N, we have Zn � ZN , ∀n ≥ N . Hence, Zn ∈ C(ZN ) , ∀n ≥ N . By closeness

of C(ZN )’s we deduce Z ∈ C(ZN ). That gives C(Z) ⊆ C(ZN ) , ∀N ≥ 1 and therefore, C(Z) ⊆ ∩i∈NC(Zi).

For the other implication let us consider Z̃ ∈ ∩i∈NC(Zi). By definition for every N there exists λN ∈ [0, 1]

and Z∗
N ∈ ∆ρ such that

Z̃ = (1 − λN )Zn + λNZ∗
N .

Since ∆ρ is σ(Lq, Lp)-compact and [0, 1] is bounded, one can extract a convergent sub-sequence from Z∗
N and

λN converging to Z∗ and λ, respectively. In limit we have

Z̃ = (1 − λ)Z + λZ∗.

By definition this gives that Z̃ ∈ C(Z) and therefore the proof is complete.

Proof of the theorem. Let Z̄ ∈ R be fixed. Let

A =

{

Z ∈ C(Z̄) ∩R

∣

∣

∣

∣

Z � Z̄

}

. (7.1)

We show that
(

A,�
)

satisfies the conditions of Zorn’s lemma. Since Z̄ ∈ C(Z̄), the set A is obviously
nonempty. On the other hand let {Zn}n be a chain in A, that means Z1 � Z2 � . . . . Since A is σ(Lq, Lp)-

compact, there exists a subsequence {znk
}k such that znk

→ z in σ(Lq, Lp), for some Z ∈ A. By applying

Lemma 7.1 and knowing that · · · ⊇ C(Zi) ⊇ C(Zi+1) ⊇ . . . we have that ∩i∈NC(Zi) = C(Z). This means

that Z is a supremal point of the chain. Now by applying Zorn’s lemma there exists a maximal (minimal for

�) point Z ∈ A.

Now we claim that Z is a minimal point for R. Let us consider Z̃ � Z and Z̃ ∈ R. Since Z̄ � Z � Z̃, by

definition Z̃ is in A and consequently Z = Z̃. This means Z is minimal for R.

Proof of Lemma 6.1. Let Z ∈ ∆CVaRα
= {f |0 ≤ f ≤ 1

α
, E[f ] = 1} and define

Z1 := (Z − g)1z≥g,

Z2 := (g − Z)1{g≥z,g< 1

α
},
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Z3 := min(Z, g),

Z4 := (
1

α
− Z)1g≥ 1

α
,

Z5 := (g −
1

α
)1g≥ 1

α
.

It is clear that

Z1 + Z3 = Z,

g = Z2 + Z3 + Z4 + Z5.

Therefore,

∫

Z1 +

∫

Z3 = 1, (7.2)

1 =

∫

Z2 +

∫

Z3 +

∫

Z4 +

∫

Z5. (7.3)

On the other hand since z2 and Z4 are nonnegative we have

2Z2 + Z4 ≥ 0. (7.4)

Taking integration from (7.4) and adding it up to the summation of (7.2) and (7.3), it turns out

∫

Z1 +

∫

Z2 ≥

∫

Z5,

which by adding one more
∫

Z5 the last relation becomes

∫

Z1 +

∫

Z2 +

∫

Z5 ≥ 2

∫

Z5.

With this, it is now easy to see that

∫

|Z − g| =

∫

Z1 +

∫

Z2 +

∫

g≥ 1

α

(g − Z) (7.5)

≥

∫

Z1 +

∫

Z2 +

∫

Z5 (7.6)

≥ 2

∫

Z5 = 2

∫
(

g −
1

α

)+

. (7.7)

Therefore, 2
∫ (

g − 1
α

)+
is smaller than

∫

|Z − g| for all Z.

Now we take three steps to conclude the proof: 1-First, we show every Z∗ introduced in Lemma 6.1 is

a minimum. 2- Second, we show at least one Z∗ exists. 3- Third, we prove every minimum has the same

structure as in (6.1).

Step 1. Let Z∗ be defined as

Z∗ =
1

α
1g≥ 1

α
+ (g + h)1g< 1

α
. (7.8)

We show that Z∗
2 = Z∗

4 = 0. It is very easy to see that Z∗
4 = 0. As for Z∗

2 = 0 just observe that by definition

of Z∗, {g < 1
α

, g ≥ Z∗} = {h = 0} and therefore

Z∗
2 = (g − Z∗)1{g≥Z∗ , g< 1

α
} = −h1{g≥Z∗ , g< 1

α
} = −h{h=0} = 0.

Now since Z∗
2 = Z∗

4 = 0, we have equality in (7.6) and (7.7), which implies that Z∗ is a minimum.
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Step 2. We show that there exist a function h which satisfies the conditions in Lemma 6.1 and can be

plugged into (6.1). By step 1. this should be a minimum.

First observe that since 0 > 1− 1
α

=
∫

(g− 1
α
) =

∫

g≥ 1

α

(g− 1
α
)+

∫

g< 1

α

(g− 1
α
) it turns out that

∫

g≥ 1

α

(g− 1
α
) <

∫

g< 1

α

( 1
α
− g). Let λ =

R

g≥ 1

α
(g− 1

α
)

R

g< 1

α
( 1

α
−g)

. Therefore, λ < 1. Defining h := λ( 1
α
− g)1g< 1

α
, it is clear that h fulfills

condition of Lemma 6.1.

Step 3. From step 1. it is clear that the amount of the minimum is 2
∫ (

g − 1
α

)+
. This along with (7.6)

and (7.7) show that for any minimal point Z∗ ∈ ∆ρ we must have Z∗
2 = Z∗

4 = 0.

Let us denote a minimum with Z∗. Since Z∗ is a minimum, in (7.6) and (7.7) the inequalities must become

equality. From (7.4), this implies that Z∗
2 = Z∗

4 = 0. Z∗
4 = 0 implies that Z∗1g≥ 1

α
= 1

α
. This is the first

part of (6.1). On the other hand from 0 = Z∗
4 = (g − Z∗)1{g≥Z∗,g< 1

α
} it turns out that g cannot be larger

than Z∗ on {g < 1
α
}. This gives that the function h := (Z∗ − g)1{g< 1

α
} is non-negative. Since Z∗ ≤ 1

α
, it is

obvious that (g + h)1{g< 1

α
} ≤ 1

α
.

Now

2

∫
(

g −
1

α

)+

=

∫

|g − Z∗|

=

∫

g≥ 1

α

(

g −
1

α

)

+

∫

g< 1

α

h

=

∫
(

g −
1

α

)+

+

∫

g< 1

α

h,

which shows Z∗ fulfills the conditions of Lemma 6.1 .

Proof of Theorem 6.3. To prove the theorem first we need to prove the following lemma

Lemma 7.2 d is σ(Lq, Lp)-lower semi-continuous.

Proof. Let a ∈ [0, +∞]. Then we must prove that
{

(Z1, Z) ∈ ∆ρ ×R

∣

∣

∣

∣

d(Z1, Z) ≤ a

}

,

is σ(Lq, Lp)-closed. The case a = +∞ is trivial. The case a = 0 is never applied , since we considered that

∆ρ ∩ R = ∅. So let a ∈ (0, +∞). Let {(Zn
1 , Zn)}n be a sequence which fulfills d(Zn

1 , Zn) ≤ a and converges

to (Z1, Z) in σ(Lq, Lp). For each n there exists Z̃n such that zn = 1
1+d(Zn

1
,Zn)z

n
1 +

d(Zn
1

,Zn)
1+d(Zn

1
,Zn) Z̃

n. Since

d(Zn
1 , Zn) is bounded, by σ(Lq, Lp)-compactness of R one can find subsequence nk such that d(Znk

1 , Znk)

and Z̃nk converge respectively to d (0 ≤ d ≤ a) and Z̃ ∈ R. In limit we have that 1
1+d

Z1 + d
1+d

Z̃ = Z, which

by definition in turn yields d(Z1, Z) ≤ d ≤ a.

Proof of the theorem. Let Z ∈ D∗ ∩R. By Lemma 7.2 we can consider there exist Zmin
1 ∈ ∆ρ such that

d(Zmin
1 , Z) is minimum over ∆ρ ×R. Let us show Z with Zmin. We know that there exists ˜̃Z ∈ R such that

Zmin =
1

1 + d(Zmin
1 , Zmin)

Zmin
1 +

d(Zmin
1 , Zmin)

1 + d(Zmin
1 , Zmin)

˜̃Z.

Now let us consider the contrary, that means there exists Z̃ ∈ C(Zmin)∩R and Z̃ 6= Zmin. By definition

there exists Z2 ∈ ∆ρ and R ∈ [0, +∞) such that 1
1+R

Z2 + R
1+R

Zmin = Z̃. From this relation it turns out

that d(Z2, Z̃) ≤ R which yields d(Zmin
1 , Zmin) ≤ R < +∞. It assures us that Zmin 6= ˜̃Z.

The point Z̃ cannot be on the line passes through Zmin
1 , Zmin, ˜̃Z. Actually since Z̃ ≺ Zmin ≺ ˜̃Z then

Z̃ 6∈
−−−−→
Zmin ˜̃Z. It remains two possibilities: either Z̃ ∈ [Zmin

1 , Zmin) or Zmin
1 ∈ [Z̃, Zmin). The first is ruled
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out since obviously then d(Zmin
1 , Z̃) < d(Zmin

1 , Zmin). The second possibility is also ruled out since then by

convexity of R, we get Zmin
1 ∈ R. Now we have four different points Zmin

1 , Zmin, ˜̃Z, z̃ which are not in the

same direction and three of them Zmin
1 , Zmin, ˜̃Z are in the same direction. So the convex combination of

this four points is involved in a two dimensional affine space P . It is clear that Z2 ∈ P . Z2 6= Zmin
1 since

otherwise Z̃ is on the the line passing through Zmin
1 , Zmin, ˜̃Z. In the affine space P , the side ZminZ2 of the

triangular △Zmin
1 ZminZ2 is hit by the semi-line

−→
˜̃ZZ̃ in point Z̃. So the continuation should hit the other

side Zmin
1 Z2 (the other side is impossible since again it puts Z̃ on the line passing through Zmin

1 , Zmin, ˜̃Z).
Denote the hit point with Z3 which by convexity belongs to ∆ρ. Now on the side Zmin

1 Zmin of triangular

△Zmin
1 ZminZ2 we find a point Z4 in which Z3Z4 is parallel to Z2Z

min. Obviously Z4 ∈ (Zmin
1 , Zmin). Since

Z3Z4 and Z2Z
min are parallel we have:

|Z3Z̃|

|Z̃ ˜̃Z|
=

|Z4Z
min|

|Zmin ˜̃Z|
<

|Zmin
1 Zmin|

|Zmin ˜̃Z|
= d(Zmin

1 , Zmin). (7.9)

But from definition d(Z3, Z̃) ≤ |Z3Z̃|

|Z̃ ˜̃
Z|

. Therefore, d(Z3, Z̃) < d(Zmin
1 , Zmin) which is a contradiction.
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Figure 1: The proof illustration of Theorem 6.3
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