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Abstract

It is observed that mutations in the formulations of test problems over time are not infrequent. En-
suing problems are illustrated with examples from geometric programming. Ways to avoid them are
suggested.
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Résumé

Il n’est pas rare d’observer au fil du temps des mutations dans les formulations de problèmes test. Les
problèmes qui en découlent sont illustrés par des exemples provenant de la programmation géométrique.
Des façons d’éviter ces problèmes sont suggérées.
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1 Introduction

It is well known that, despite the attention of their authors, mathematical formulae in scientific papers

sometimes contain typographical errors. This is usually not considered to be a serious problem. Nevertheless,
while reading a series of papers on algorithms for signomial geometric programming we were surprised to find

that errors in formulations, and more precisely mutations from one version of a test problem to the next, are

far from rare. This leads to wrong conclusions and unfair statements in comparative studies. Indeed, wrong

coefficients or indices, rounded or truncated coefficients, missing terms, and incorrect bounds on variables
lead, in some cases, to: (i) solving a different problems than that one described in the paper; (ii) referring

to a problem from the literature while solving a different one; (iii) implying that one or several previous

algorithms are not correct as a better (but incorrect or irrelevant) solution has been found for some test

problem; (iv) reporting optimal solutions to infeasible problems; (v) reporting optimal objective function

values which do not agree with those obtained by substitution of reported values of the variables.

To illustrate, we consider five test problems from a recent paper published in EJOR (Qu et al., 2008).

Each time, we study the genealogy of these test problems, the advent of mutations and their consequences.

We also show how these test problems can be reformulated as nonconvex quadratic programs with non convex
quadratic constraints (Hansen and Jaumard, 1992). We then use the branch-and-cut QP code of Audet et al.

(2000, 2008) to check the optimality of the solutions proposed for the five test problems and their mutated

variants.

We stress that the aim of this paper is not to criticize colleagues (at least one of us made, on occasion,

similar errors) but to study difficulties in the practice of mathematical programming, and suggest ways to

alleviate them.

2 Mutations in some Geometric Programming Test Problems

We now consider five test problems from Qu et al. (2008), their genealogy, and their mutations over time.

Problem 1

This problem is a posynomial geometric programming problem and hence can be reduced to a convex

program. It comes from inventory control and has three variables, one constraint, and, in some versions,

lower and upper bounds on the variables. Its genealogy can be traced as follows: Qu et al. (2008) cite Shen
and Zhang (2004) which cite Rijckaert and Martens (1978) which cites Kochenberger et al. (1973) which

cite Smith (1970). Moreover, Qu et al. (2007b) cite directly Rijckaert and Martens (1978), and Shen and

Jiao (2006) as well as Shen et al. (2008) cite Shen and Zhang (2004).

In Smith (1970), Kochenberger et al. (1973), and Rijckaert and Martens (1978), this problem is written

as:

(P1)







min G0(x) = 5x1 + 50000x−1
1 + 20x2 + 72000x−1

2 + 144000x−1
3 + 10x3

s.t.:
G1(x) = 4x−1

1 + 32x−1
2 + 120x−1

3 ≤ 1.

In Shen and Zhang (2004), Shen and Jiao (2006), and Shen et al. (2008), the last term of G0(x), i.e.,
10x3 is omitted. Moreover, lower bounds of 1 and upper bounds of 100 are added. It is easy to see that

the problem is then infeasible, as G1(x) can not be lower than 1.56. Nevertheless, solutions, which of course

violate these bounds, are reported in all three papers. In Qu et al. (2007b), the problem statement is similar

except for a typo: the first term in the constraint is written tt1 instead of 4x−1
1 . Again, a solution violating

the bounds is proposed. In Qu et al. (2008), the upper bounds are corrected to 220. G0(x), however, is very

different: the term 10x3 is still missing, the variable index of the fourth term has changed from 2 to 1, and

the coefficient of the third term has increased from 20 to 46.2. All these modifications lead to the following

expression:

G0(x) = 5x1 + 50000x−1
1 + 46.2x2 + 72000x−1

1 + 144000x−1
3 . (1)
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We refer to (P11) as (P1) with the correct bounds of Qu et al. (2008), (P12) as (P11) with the term 10x3

omitted in G0(x), (P13) as (P12) with upper bounds of 100, and (P14) as (P12) with (1).

Introducing new variables yi = x−1
i

, for i = 1, 2, 3, problems (P11), (P12), (P13), and (P14) can be

reformulated as nonconvex quadratic programs which can be solved with the QP code. For (P11), the

quadratic program is

min 5x1 + 50000y1 + 20x2 + 72000y2 + 144000y3 + 10x3

s.t. :
4y1 + 32y2 + 120y3 ≤ 1
xiyi = 1 for i = 1, 2, 3
1 ≤ xi ≤ 220 for i = 1, 2, 3.

Table 1 presents the results reported in the cited papers together with the solutions obtained by QP for the

quadratic programming formulations of (P11), (P12), and (P14). In all tables of this paper, there are two
sets of rows: the first set refers to the solutions and formulations presented in the cited papers; the second

set refers to the solutions obtained by QP. For the results of the cited papers, the first column gives the

reference, the second column gives the formulation presented in the paper, the next set of columns gives the

solution reported in the paper, and the last set of columns gives the computed value of several equations of

the problem using the variables values reported in the paper. For the solutions obtained by QP, the first
column indicates that it is a QP solution, the second column gives the problem for which the quadratic

programming formulation is solved, the next set of columns gives the solution obtained, and the last set of

columns gives the computed value of several equations of the problem using the variables values obtained

by QP. In order to compare fairly the results of the cited papers with those obtained by QP, the number
of decimals used for the QP solutions is limited to the same value as for the reported solutions in the cited

papers.

Table 1: Results for problem 1

Ref. Reported Reported optimal solution Computed values
formulation x1 x2 x3 G0(x) G0(x) of (P1) Reported G0(x) G1(x)

1 (P1) 109 85 205 6303.19 6303.213444250 - 0.998533690
2 (P1) - - - 6297 - - -
3 (P1) 107.4 84.9 204.5 6300 6297.762364551 - 1.000955030
4 (P13) 108.734706796 85.126214158 204.324594290 6299.842427922 6299.842427919 4256.596485019 1.000000000
5 (P13) - - - 6299.842427922 - - -
6 (P13) 107.9543 85.4785 204.4784 4259.0484 6303.832384224 4259.048384224 0.998274912
7 (P14) 109.325467810 84.048214540 214.324594290 6217.46548921 6356.716796721 6217.466884898 0.977220256

QP (P11) 107.354281797 85.587334167 203.759898569 - 6299.824789720 6299.824789720 1.000075351
QP (P12) 105.262705824 76.821480654 220 - 6329.528495029 4129.528495029 1.000004868
QP (P14) 107.354281797 76.686078988 220 - 6329.678754920 5870.637877307 1.000000000

1. Smith (1970)
2. Kochenberger et al. (1973)
3. Rijckaert and Martens (1978)
4. Shen and Zhang (2004)
5. Shen and Jiao (2006); Shen et al. (2008)
6. Qu et al. (2007b)
7. Qu et al. (2008)

From Table 1, it appears that:

(i) Results in Rijckaert and Martens (1978) are given with few decimals and substitution in G0(x) does

not give precisely the optimal value reported. However, the solution is close to the optimal solution of

(P11).

(ii) Despite omitting the term 10x3 and adding bounds which make the problem infeasible, the results

reported in Shen and Zhang (2004), Shen and Jiao (2006), and Shen et al. (2008) appear to correspond

to the optimal solution of (P11).
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(iii) It is not obvious which version of the problem is solved in Qu et al. (2007b) since the reported variables
values are similar to the optimal solution of (P11) but the reported objective function value agrees with

G0(x) of (P12).

(iv) The solution reported in Qu et al. (2008) is clearly not optimal for the reported formulation in that

paper and for any version considered in our analysis. Note that it is easy to show that x3 must be equal
to 220 in the optimal solution of (P14).

Problem 2

This problem is expressed as a signomial geometric program. It has five variables, six constraints, and

lower and upper bounds on the variables. Its genealogy can be traced as follows: Qu et al. (2008) cite Rijckaert
and Martens (1978) which cite Colville (1970). Moreover, Shen and Jiao (2006) and Shen et al. (2008)

cite Shen and Zhang (2004) which cite Rijckaert and Martens (1978). Also, Shen (2005) cites Dembo (1976)

as well as Rijckaert and Martens (1978). Finally, Dembo (1976) cites Colville (1970). Note that comparison

with Colville (1970) is not possible since neither detailed formulation nor solution is given in this paper.

In Dembo (1976) and Shen (2005), this problem is written as:

(P2)







































































min G0(x) = 5.35785470x2
3 + 0.83568910x1x5 + 37.239239x1 − 40792.1410

s.t.:
G1(x) = 0.00002584x3x5 − 0.00006663x2x5 − 0.00000734x1x4 ≤ 1
G2(x) = 0.000853007x2x5 + 0.00009395x1x4 − 0.00033085x3x5 ≤ 1
G3(x) = 1330.32937x−1

2 x−1
5 − 0.42002610x1x

−1
5 − 0.30585975x−1

2 x2
3x

−1
5 ≤ 1

G4(x) = 0.00024186x2x5 + 0.00010159x1x2 + 0.00007379x2
3 ≤ 1

G5(x) = 2275.132693x−1
3 x−1

5 − 0.26680980x1x
−1
5 − 0.40583930x4x

−1
5 ≤ 1

G6(x) = 0.00029955x3x5 + 0.00007992x1x3 + 0.00012157x3x4 ≤ 1
78.0 ≤ x1 ≤ 102.0
33.0 ≤ x2 ≤ 45.0
27.0 ≤ xi ≤ 45.0 for i = 3, 4, 5.

In Rijckaert and Martens (1978), Shen and Zhang (2004), Shen and Jiao (2006), and Shen et al. (2008),
the constant in G0(x) is omitted, the coefficient of the third term in G1(x) is 0.0000734 instead of 0.00000734,

and the coefficients of G0(x), G3(x), and G5(x) are rounded or truncated as follows:

G0(x) = 5.3578x2
3 + 0.8357x1x5 + 37.2392x1

G3(x) = 1330.3294x−1
2 x−1

5 − 0.42x1x
−1
5 − 0.30586x−1

2 x2
3x

−1
5 ≤ 1

G5(x) = 2275.1327x−1
3 x−1

5 − 0.2668x1x
−1
5 − 0.40584x4x

−1
5 ≤ 1.

We refer to (P21) for the resulting version of (P2). In Qu et al. (2008), the problem is the same as (P21)

but there are two typos: the coefficient of the first term in G2(x) is 0.00085307 instead of 0.000853007 and

the coefficient of the last term in G6(x) is negative instead of positive.

Multiplying G3(x) by x2x5 and G5(x) by x3x5 reformulates (P2) as a quadratic program without the

addition of any new variables. Table 2 presents the results reported in the cited papers together with the
solutions obtained by QP for the quadratic programming formulations of (P2) and (P21). Note that in the

computation of G0(x) value, the constant −40792.1410 is not taken into account, as done for the reported

solutions in the cited papers. The computed value of G2(x) and G5(x), the only constraints which are tight

for at least one optimal solution, is given. One can easily check that the remaining constraints are satisfied
for all solutions.

From Table 2, it appears that:

(i) Optimal solutions of (P2) and (P21) are very similar.
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Table 2: Results for problem 2

Ref. Reported Reported optimal solution Computed values
formulation x1 x2 x3 x4 x5 G0(x) G0(x) G2(x) G5(x)

1 (P2) 78 33 29.995510650 45 36.775173970 10126.642520000 10122.430521796 1.000000000 1.000000000
2 (P2) 78 32.999999462 29.995510165 44.999998630 36.775175250 10122.430477585 10122.430449341 1.000000002 1.000019949
3 (P21) 78 33 29.998000000 45 36.767300000 10127.130000000 10122.717434889 0.999826214 1.000042965
4 (P21) 78 32.999999267 29.995739631 45 36.775328091 10122.493176362 10122.514168062 1.000000000 1.000000000
5 (P21) - - - - - 10122.381121680 - - -
6 (P21) - - - - - 10121.794028763 - - -
7 (P21) 78 32.999980000 29.997370000 45 36.775330000 10122.856430000 10123.038349121 0.999979593 0.999867916

QP (P2) 78 33 29.995510652 45 36.775173966 10122.430522242 1.000000000 1.000000000
QP (P21) 78 33 29.995740025 45 36.775327094 10122.514229548 1.000000000 0.999980065

1. Dembo (1976)
2. Shen (2005)
3. Rijckaert and Martens (1978)
4. Shen and Zhang (2004)
5. Shen and Jiao (2006)
6. Shen et al. (2008)
7. Qu et al. (2008)

(ii) Reported variables values in Dembo (1976); Shen (2005); Rijckaert and Martens (1978); Shen and Zhang

(2004), and Qu et al. (2008) are similar and correspond to feasible solutions of (P2). However, the
reported values of G0(x) in Dembo (1976) and Rijckaert and Martens (1978) do not agree with the

reported values of the variables; this not the case (omitting some rounding errors) in Shen (2005); Shen

and Zhang (2004), and Qu et al. (2008).

(iii) The reported value of G0(x) in Shen and Jiao (2006) and Shen et al. (2008) is slightly better than the
optimal value obtained with QP. However, it is not possible to check the feasibility of these solutions

since values of the variables are not reported.

Problem 3

This problem is expressed as a signomial geometric program. It has three variables, one constraint, and,

in some versions, lower and upper bounds on the variables. Its genealogy can be traced as follows: Qu et al.
(2008) cite Shen and Zhang (2004) which cite Rijckaert and Martens (1978). Moreover, Jiao et al. (2006);

Shen and Jiao (2006), and Shen et al. (2008) cite Shen and Zhang (2004) and Qu et al. (2007b) cite Rijckaert

and Martens (1978).

In Rijckaert and Martens (1978), this problem is written as:

(P3)







min G0(x) = 0.5x1x
−1
2 − x1 − 5x−1

2

s.t.:
G1(x) = 0.01x2x

−1
3 + 0.01x1 + 0.0005x1x3 ≤ 1.

In Shen and Zhang (2004); Jiao et al. (2006); Shen and Jiao (2006); Qu et al. (2007b); Shen et al. (2008),

and Qu et al. (2008), the bounds 70 ≤ x1 ≤ 150, 1 ≤ x2 ≤ 30, and 0.5 ≤ x3 ≤ 21 are added and the second

term in G1(x) is 0.01x2 instead of 0.01x1, i.e., the variable index is 2 instead of 1. We will refer to (P31) as
the bounded version of (P3) and (P32) as (P31) with the wrong G1(x). Problem (P3) can be reformulated

as a nonconvex quadratic program by introducing two variables. Table 3 presents the results reported in

the cited papers together with the solutions obtained by QP for the quadratic programming formulations of

(P31) and (P32).

From Table 3, it appears that:

(i) The solution reported in Rijckaert and Martens (1978) is close to the optimal solution of (P31).

(ii) The solutions reported in Shen and Zhang (2004); Jiao et al. (2006) and Qu et al. (2007b, 2008) are

feasible for (P31) and (P32), and are close to the optimal solution of (P31). It seems that problem

(P31) is solved in these papers despite the fact that problem (P32) is reported.
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Table 3: Results for problem 3

Ref. Reported Reported optimal solution Computed values
formulation x1 x2 x3 G0(x) G0(x) G1(x) of (P31) G1(x) of (P32)

1 (P3) 88.31 7.454 1.311 -83.21 -83.057115640 0.997844566 0.189284566
2 (P32) 88.724706796 7.672652781 1.317862596 -83.249728406 -83.594492450 1.003930985 0.193410445
3 (P32) 88.347018980 7.685918099 1.338260065 -83.250249460 -83.250229110 1.000018005 0.193406996
4 (P32) - - - -83.249728410 - - -
5 (P32) - - - -83.249790057 - - -
6 (P32) 88.6274 7.9621 1.3215 -83.6898 -83.689795600 1.005085027 0.198432027
7 (P32) 88.875643887 7.563758900 1.3124563877 -83.661573642 -83.661593250 1.004709696 0.191590846

QP (P31) 88.354285800 7.674941139 1.318103852 - -83.249732910 1.000000056 0.193206609
QP (P32) 150 30 0.5 - -147.666666700 2.137500000 0.937500000

1. Rijckaert and Martens (1978)
2. Shen and Zhang (2004)
3. Jiao et al. (2006)
4. Shen and Jiao (2006)
5. Shen et al. (2008)
6. Qu et al. (2007b)
7. Qu et al. (2008)

(iii) The values of G0(x) reported in Shen and Jiao (2006) and Shen et al. (2008) agree with the optimal

solution of (P31). Again, it seems that problem (P31) is solved in these papers despite the fact that
problem (P32) is reported.

Problem 4

This problem is expressed as a posynomial geometric program. It is based on an example studied by Negha-

bat and Stark (1972). It has four variables, three constraints, and, in some versions, lower and upper bounds
on the variables. Its genealogy can be traced as follows: Qu et al. (2008) cite Rijckaert and Martens (1978).

Moreover, Shen and Zhang (2004) and Qu et al. (2007b) cite Rijckaert and Martens (1978) and Shen and

Jiao (2006) as well as Shen et al. (2008) cite Shen and Zhang (2004).

In Rijckaert and Martens (1978), this problem is written as:

(P4)























min G0(x) = 168x1x2 + 3651.2x1x2x
−1
3 + 3651.2x1 + 40000x−1

4

s.t.:
G1(x) = 1.0425x1x

−1
2 ≤ 1

G2(x) = 0.00035x1x3 ≤ 1
G3(x) = 1.25x−1

1 x4 + 41.63x−1
1 ≤ 1.

In Shen and Zhang (2004); Shen and Jiao (2006); Shen et al. (2008) and Qu et al. (2008), the bounds

40 ≤ x1 ≤ 44, 40 ≤ x2 ≤ 45, 60 ≤ x3 ≤ 70, 0.1 ≤ x4 ≤ 1.4 are added, the term 3651.2x1 in G0(x) is missing,

and G2(x) = 0.00035x1x2 instead of 0.00035x1x3. In Qu et al. (2007b), the problem statement is similar

except for an additional typo: the coefficient of the second term of G0(x) is 36512 instead of 3651.2. We
don’t consider this typo in our analysis. We will refer to (P41) as the bounded version of (P4) and (P42) as

(P41) with G0(x) and G2(x) of Shen and Zhang (2004); Shen and Jiao (2006); Shen et al. (2008).

Introducing three new variables y1 = x1x2, y2 = x−1
3 , and y3 = x−1

4 , and multiplying G0(x) by x3x4,

G1(x) by x2, and G3(x) by x1 reformulates (P4) as a nonconvex quadratic program. Table 4 presents the

results reported in the cited papers together with the solutions obtained by QP for the quadratic programming
formulations of (P41) and (P42). The computed values in the last set of columns are for (P4), the original

version of the problem.

From Table 4, it appears that:

(i) Values of variables reported in Dembo (1976) are close to the optimal solution but not precisely the

same. The solution is feasible but slightly worse than the optimal solution.
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Table 4: Results for problem 4

Reported

Ref. formu- Reported optimal solution Computed values
lation x1 x2 x3 x4 G0(x) G0(x) G1(x) G2(x) G3(x)

1 (P4) 43.02 44.85 66.39 1.11 623015 623370.075457636 0.999963211 0.999634230 0.999941887
2 (P42) 43.013755728 44.814840340 66.423933664 1.107004583 623249.876118100 622990.927217284 1.000602479 1.000000000 1.000000000
3 (P42) - - - - 623249.875294750 - - - -
4 (P42) - - - - 623249.136172314 - - - -
5 (P42) 43.0187 44.8491 66.4581 1.1082 142027.91556 623293.496685749 0...999953059 1.000629373 0.999919802
6 (P42) 43.0899785 44.9997852 66.419945664 1.106998756 468479.996875421 625814.354316774 0.998255934 0.678663922 0.998230910

QP (P41) 43.012808311 44.840852664 66.425396760 1.106246649 623249.893341851 1.000000000 1.000000000 1.000000000
QP (P42) 43.165467626 45 70 1.228374101 460212.290586926 1.000000000 0.679856115 1.000000000

1. Rijckaert and Martens (1978)
2. Shen and Zhang (2004)
3. Shen and Jiao (2006)
4. Shen et al. (2008)
5. Qu et al. (2007b)
6. Qu et al. (2008)

(ii) The reported variables values in Shen and Zhang (2004) and Qu et al. (2007b) are close to the optimal

solution of (P41) and are feasible for (P4) and (P41). The computed value of G0(x) is slightly different
from the reported value in Shen and Zhang (2004). The reported value of G0(x) in Qu et al. (2007b)

is wrong and is far from the computed value for (P4). It seems that problem (P41) is solved in these

papers despite the fact that problem (P42) is reported.

(iii) The reported value of G0(x) in Shen and Jiao (2006) and Shen et al. (2008) is close but slightly better
than the optimal value for (P41) obtained with QP. It seems that problem (P41) is solved in these papers

despite the fact that problem (P42) is reported. However, it is not possible to check the feasibility of

these solutions since the values of the variables are not reported.

(iv) The reported variables values in Qu et al. (2008) are close to the optimal solution of (P41). The
computed value of G0(x) of (P4) is far from the value reported but slightly worse than the opti-

mal value. Replacing the reported variables values in the wrong G0(x) presented in the paper gives

468484.224817574 which is close to the reported value and not very far from the optimal value of (P42).

It is not clear which version of the problem is solved in this paper but it is clear that the reported
solution is not optimal for (P42) but close (except for the value of G0(x)) to the optimal solution of

(P41).

Problem 5 This problem is expressed as a signomial geometric program. It has two variables, two con-

straints, and, in some versions, lower and upper bounds on the variables. Its genealogy can be traced as

follows: Qu et al. (2008) cite Peng and Yuan (1997). Moreover, Qu et al. (2006) and Qu et al. (2007a)

cite Peng and Yuan (1997).

In Peng and Yuan (1997) this problem is written as:

(P5)















min G0(x) = −4x2 + (x1 − 1)2 + x2
2 − 10x2

3

s.t.:
G1(x) = x2

1 + x2
2 + x2

3 ≤ 2
G2(x) = (x1 − 2)2 + x2

2 + x2
3 ≤ 2.

In Qu et al. (2006, 2007a), the problem is the same except that the following bounds on variables are

added: 2 −
√

2 ≤ x1 ≤
√

2, −
√

2 ≤ x2 ≤
√

2 and −
√

2 ≤ x3 ≤
√

2. We will refer to (P51) as the bounded
version of (P5). Note that there is a typo in G2(x) of Qu et al. (2006): the first term is (x − 2)2 instead of

(x1 − 2)2, i.e., the variable index is missing.

Developing expressions (x1−1)2 and (x1−2)2 reformulates (P5) as nonconvex quadratic program. Table 5

presents the results reported in the cited papers together with the solutions obtained by QP for the quadratic

programming formulations of (P51).
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Table 5: Results for problem 5

Ref. Reported Reported optimal solution Computed values
formulation x1 x2 x3 G0(x) G0(x) G1(x) G2(x)

1 (P5) - - - - - - -
2 (P51) 0.99712235 0.18184214 -0.98034321 - -10.305021809 1.988392354 1.999902954
3 (P51) 1 0.220971 0.972272 -11.2882 -10.288184237 1.994141025 1.994141025
4 (P51) 0.99712235 0.18184214 0.98034321 -13.56612456 -10.305021809 1.988392354 1.999902954

QP (P51) 1 0.18102669 0.983478767 -10.363640955 2.000001148 2.000001148

1. Peng and Yuan (1997)
2. Qu et al. (2006)
3. Qu et al. (2007a)
4. Qu et al. (2008)

From Table 5, it appears that:

(i) The reported variables values in all papers where the solution is given are not very far but, for some of

them, significantly different than the optimal solution of (P51) obtained with QP. The computed value

of G0(x) for the solution obtained by QP is better than the computed value for the reported solution
in the cited papers but, the solution obtained by QP is slightly infeasible.

(ii) The reported value of G0(x) in Qu et al. (2006, 2008) is wrong and does not agree with the computed

value using the variables values.

3 Conclusion

As, in our opinion, the examples of Section 2 amply illustrate, mutations over time in at least some classes of

mathematical programming test problems are not a rare phenomenon. This suggests a few words of caution,

which may help in avoiding deterioration of test problems and misinterpretation of results:

(i) When the results of two codes for what is referred to as the same test problem differ significantly, this

may due to: (a) errors in one (or both) algorithms used; (b) errors in one (or both) implementations;
(c) errors in one (or both) problem formulations; (d) errors in one (or both) data files. It may be

tempting to interpret this difference as one’s own algorithm being better than previous ones, which

usually implies these were incorrect. However, the multiplicity of possible causes suggests it way be

rash to jump to such a conclusion.

(ii) Some symptoms of alternate situations are the following: (a) if a better solution than the incumbent

is obtained for a problem which has reportedly been solved with the same result by several exact

algorithms, a careful check of the identity of formulations and of numerical data appears to be a

reasonable first step; (b) if the same optimal value is found for two different versions of the same test

problem, it should be checked that those problems are really different (which may happen, e.g., if some
added constraints are redundant).

(iii) To detect possible errors, a few easy checks can be made, i.e., substitutions of reported numerical values

of variables in the, again reported, objective function and constraints. If objective function values do
not agree, clearly there are some errors in formulations or perhaps some typos in numerical values.

The same applies if violation of some constraints is larger than some small percentage ǫ (we do not

discuss here the fact that many global optimization algorithms provide solutions which do not strictly

satisfy all constraints). Note that such checks can be made only if numerical values for all variables are

reported (and not as it sometime the case only the optimal objective function value). Moreover, for
results to be significant, a sufficient number of decimals should be given.

(iv) To minimize the risk of mutations in test problems, it appears to be worthwhile to use problems

from well tested series instead of subsequent versions. Moreover, it is better to use the electronic files

(when available) instead of a paper version. Perhaps, as a rule, electronic files of test problems should
be always made available on the web. Those of the present paper are available in AMPL format at
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http://neumann.hec.ca/pages/sylvain.perron/. For global optimization, such test problems can be found,
e.g., in Floudas et al. (1999). For geometric programming, the best series of problems still appear to

be those of Dembo (1976); Rijckaert and Martens (1978).
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