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Abstract

Finding maximum likelihood parameter values for Finite Mixture Model (FMM) is often done with the
Expectation Maximization (EM) algorithm. However the choice of initial values can severely affect the
time to attain convergence of the algorithm and its efficiency in finding global maxima. We alleviate this
defect by embedding the EM algorithm within the variable Neighborhood Search (VNS) metaheuristic
framework. Computational experiment in several problems in literature as well as some larger ones are
reported.

Key Words: Maximization algorithm, Metaheuristic, Variable Neighborhood Search, Maximum Like-
lihood Estimation, Finite Gaussian Mixture Model, Global Optimization.

Résumé

Les techniques de classification probabilistes ont montrées des résultats très satisfaisants dans plusieurs
domaines d’applications. Les modèles de mélange gaussien fini (MMGF) sont les plus répandus pour les
données de grandes dimensions. La méthode de Maximum de Vrai Semblance (MVS) reconnue comme
l’une des meilleures méthodes d’estimation des paramètres du MMGF se fait via l’algorithme itératif
le plus utilisé, à savoir l’algorithme d’Estimation-Maximisation (EM). Cependant, le choix de la valeur
initiale peut affecter sévèrement la convergence de l’algorithme EM ainsi que l’efficience d’atteindre le
maximum global. Nous proposons de soulager cette faiblesse par l’incorporation de l’algorithme EM dans
le cadre de la métaheuristique de Recherche à Voisinage Variable (RVV). Nous étudions l’application du
nouvel algorithme proposé sur plusieurs problèmes avec divers degrés de complexités.
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1 Introduction

Finite Mixture Models (FMM) are strong tools for modeling of a wide variety of random phenomena and

to cluster data sets [2]. they provide an efficient platform for apprehending data with complex structure;

(see [8]). Because of their usefulness as a very flexible method of modeling, FMM have proved to be of

great interest over the years, both in theory and practice; (see [63]). Many problems of biology, physics and
social sciences are modelled using a finite mixture of distributions; (see [55]). Recently mixture model-based

methods has became very popular in cluster analysis, (see [42]) for an application of FMM to micro array

data.

Modeling using mixture distributions consists in the determination of the estimation of model parameters.

Maximum Likelihood Estimation (MLE) is considered to be the best method among many others, such as
the method of moments used by Pearson [54] and by Cohen [12], and the graphical techniques deployed

during the early and mid-1900’s by Harding [31] and extended by Cassie [11] (see [21]). For mixture models

problems, the likelihood equations are almost always nonlinear and can not be solved by analytic means.

Consequently, one must resort to seeking an approximate solution via some iterative procedure. Our main
interest here, is in a special iterative method called by Dempster et al. [14] EM algorithm.

However, the EM algorithm has some weaknesses in practice. Indeed it does not automatically provide

an estimate of the covariance matrix of the parameter estimates, it is sometimes very slow to converge and

in some problems, the E- or M-steps may be analytically intractable, and may converge to local optima

[43, 62]. Moreover, one should emphasize that in the FMM the likelihood function is usually not unimodal
and the likelihood equation has multiple roots corresponding each to local maxima; hence the EM algorithm

will be very sensitive to the choice of starting values. Wu [72] reported that in general, if the log-likelihood

has several (local or global) maxima and stationary points, like in the case of FMM, convergence of the EM

sequence to either type of points depends on the choice of starting point.

Many variants of the original EM algorithm have been proposed in this last decade by several authors to
overcome this local maxima problem. McLachlan [43] proposed the use of principle components to provide

suitable starting values in FMM context. Wright and Kennedy [71] use interval analysis methods to locate

multiple stationary points of a log likelihood within any designated region of the parameter space. Ueda

and Nakano [66] presented a deterministic annealing EM algorithm (DAEM) method for the EM iterative

process in order to be able to recover from a poor choice of starting value. By introducing the temperature
parameters to modify the posteriori probability in the E-step, they provided the EM with the ability to

avoid the local maxima in some specific cases but in the process make it slow so this approach may not be

appropriate in general (see [45]). Moreover, the DAEM and other similar extensions of EM are useless with

respect to the problem of inappropriate distribution of the components in data space when locally trapped.
Recently, in order to circumvent the local optimum problem of the EM algorithm for parameter estimation

in a FMM, Ueda et al. [67] proposed a split-and-merge EM (SMEM) algorithm in which they applied a split-

and-merge operation to the usual EM algorithm. The basic idea of the SMEM algorithm is the following:

after convergence of the usual EM algorithm, one first uses the split-and-merge operation to update the

values of some parameters among all the parameters, then one performs the next round of the usual EM
algorithm, and alternatively iterate the split-and-merge operation and the EM algorithm until some stopping

criterion is met. Obviously, this not only benefits from the appealing simplicity of the usual EM algorithm,

but also improves its global convergence capability. Vlassis and Likas [68] proposed a Greedy EM algorithm

for learning a FMM to overcome the limitation of getting trapped in one of the many local maxima of the
likelihood function when using the EM algorithm.

The choice of initial values is considered as a crucial point in the algorithm-based literature, as it can

severely affect the time to convergence of the algorithm and its efficiency to pinpoint the global maxima

(see [10]). Finch et al. [19] used a quasi-Newton method as an iterative algorithm and proposed, for two

component Gaussian mixture, that only the mixing weight should be given an initial value and the rest of the
parameters be automatically estimated based on this values. Karlis and Xekalki [36] presented a brief review

of such method. In recent paper Biernacki, Celeux, and Govaert [5] , propose a method for getting the highest
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likelihood value in the framework of FMM: they identify a strategy which is based on random initialization of
EM, characterized in three steps search/run/select in a fixed number of iterations. Biernacki [6] proposes a

strategy to initialize the EM algorithm in FMM context by defining a starting value distribution on a mixture

parameter space including all possible EM trajectories.

In this paper we develop a new method that combines a metaheuristic variable neighborhood search
(VNS) algorithm with the EM algorithm to overcome as much as possible the local maxima problem.

The present work thus illustrates the association of these two algorithms to overcome the negative effect of

the poor starting value choices; it is organized in six sections: (i) after this introduction (ii) we give a general

presentation of the FMM and MLE in literature and formulation of the data to be treated, (iii) introduction

and application of the EM algorithm for the FMM, (iv) presentation of the VNS algorithm associated with
EM algorithm as a basic solution (v) some implementation issues, and simulation as an experimental results

(vi) summary and discussion of the general procedure and results of the new approach in conclusions.

2 General Model and Data Presentation

In this section we shortly review and describe the mathematical framework and concepts behind FMM models

followed by the MLE procedure and assumption.

2.1 Mixture Model Review

According to review of the literature, the first published investigation relating to finite mixture models dates

back to the work of Newcomb [53] and Pearson. In such models, it is assumed that a sample of observations

is drawn from a specified number of the underlying populations of unknown proportions. A particular form
of the distributions of the observations in each of the underlying populations is specified, and the purpose

of the finite mixture approach is to decompose the sample into its mixture components. Specific forms

of distributions supposing a continuous variable which have been extensively used include the Gaussian

([13, 33, 69]), exponential ([64, 65]) and with a discrete variable Bernouili distribution typically known as
latent structure models ([26, 38]). However, most work on Finite Gaussian Mixture Model (FGMM) was

intended either to simplify or to offer more accessible estimates in restricted cases.

2.2 Finite Mixture Model Formulation

As a simple and general presentation of mixture distributions we suppose a random variable, X , takes values in

a sample space, Ω, with probability distribution P (x), where x is its realization. The probability distribution

can be written in the form of

P (x) =

k∑

j=1

πjPj(x) (1)

where Pj , j = 1, 2, . . . , k are the components distribution of the mixture, verifying a probability distribution
proprieties. The πj , j = 1, 2, . . . , k are called the mixing weight where πj > 0 for j = 1, 2, . . . , k and∑k

j=1 πj = 1. Frequently, component distributions are assumed to have non parametric forms. In this case,
they are parametrized by the elements of a set α = α1, α2, . . . , αk where αk is the unknown vector parameters

from the kth component of the mixture. The Eq. (1) will be

P (x) =

k∑

j=1

πjPj(x|αj) (2)

Thus, θ = {π1, π2, . . . , πk, α1, α2, . . . , αk} is considered to be the complete collection of all FMM parameters.
The mixture distribution then takes the form

P (x|θ) =

k∑

j=1

πjP̃j(x|αj) (3)
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where, each of α1, α2, . . . , αk belongs to the same parameter space, denoted by Θ and P̃j(.|αj) is assumed
to be a conditional distribution in each component. In this case π = (π1, π2, . . . , πk) may be defined as a

probability distribution over θ, where πj = Pr(α = αj), j = 1, 2, . . . , k.

2.3 Maximum Likelihood Estimation Review

Our main objective is to estimate θ as mixture model parameters. From the time of the appearance of

Pearson’s paper [54] only the method of moments was usually the method of choice for estimating the FMM
parameters. Following, the attention was focused on graphical techniques as an alternative for numerical

analysis, ([7, 11, 21, 31]).With the arrival of increasingly powerful computers and increasingly sophisticated

numerical methods during the 1960’s, investigators began to turn to the method of MLE, originally developed

by Fisher in the 1920’s [20] (see [1, 59]), as the most widely preferred approach to mixture density estimation

problems. Hasselblad [33] treated MLE for mixtures of any number of univariate Gaussian densities. The
general case of mixture of any number of multivariate Gaussian densities was considered by Wolf [69]. Hosmer

[40] compared the maximum likelihood estimates for two univariate Gaussian densities obtained from three

different types of samples. Fryer and Robertson , proved that the maximum likelihood has been shown to

be superior to the method of moments for the estimation of finite mixtures, from this time, the likelihood
approach for finite normal mixtures has become increasingly popular.

2.4 Maximum Likelihood Estimation Formulation

Given X = {X1, X2, . . . , Xi, . . . , Xm}, considered as m independent observations from the mixture, their

joint probability distribution is the product of each individual distribution. Therefore the likelihood function

is given by

P (X |θ) =

m∏

i=1

[

k∑

j=1

πjP̃j(xi|αj)] (4)

The maximum likelihood principle states that we should choose as an estimate of θ, a value of the observed

data x which maximizes P (x|θ). That is,

θ∗ = arg max
θ

P (X |θ). (5)

θ∗ is called the MLE of θ. In order to estimate θ, it is typical to introduce the log likelihood function defined

as

L(θ) = ln P (X |θ) (6)

Since ln P (x|θ) is a strictly increasing function, the value of θ which maximizes P (x|θ) also maximizes L(θ).

MLE corresponds to a solution of the following likelihood equation:

∂L/∂θ = 0. (7)

Involving the log of the sum makes the maximization of L numerically difficult. Eq. (7) becomes non linear

and closed form solution of this equation cannot be found. Therefore, some iterative methods should be

applied.

The likelihood log function associated to this model comprises multiple local maxima. In such situations,

the MLE must be sought numerically using non linear optimization algorithms and it may possible to compute
iteratively the MLE by using iterative procedures. There are many general iterative procedures which are

suitable for finding an approximate solution of likelihood equations. Rao [56] and Mendenhall [47] developed

iterative procedures which successfully used to obtain approximate solutions of nonlinear equations satisfied

by MLE. The main methods deployed are the Newton-Raphson maximization procedure or some variant

such as Fisher’s scoring method and quasi-Newton methods. Our main interest here, however, is in a special
iterative method which is unrelated to the above ones and which has been applied to a wide variety of mixture

problems over the last fifteen or so years called the EM algorithm.
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3 EM Algorithm

In this section we introduce a briefly review of the literature on the EM algorithm. After this, we present

an overview derivation of the EM algorithm as an alternative solution for missing or incomplete data, some

proprieties are also discussed.

3.1 EM Algorithm Review

The spirit of EM algorithm was revealed and deployed independently by several different researchers, such as
Newcomb [53] in his paper titled “A generalized Theory of the Combination of Observations so as to Obtain

the Best Result” he figured out the two steps of the algorithm, McKendrick [41] analyzed an epidemic

study linked to EM algorithm described in Meng [51], Hartley [32] had described the development the main

idea of the EM algorithm and many other authors cited by Meng and Van Dyk [49] and McLachlan and
Krishnan [42] until Dempster et al. [14] brought their ideas together, proved convergence, and coined the

term “EM algorithm”. Since the publication of Dempster et al. [14], an abundant number of papers have been

published employing the EM algorithm in many areas. Meng and Pedlow [50] found over 1000 EM-related

articles appearing in almost 300 journals. Typical application areas of the EM algorithm include genetics and

mixture distributions parameters estimation such as presented by Tan and Chang [60]. Further applications
in many different fields and contexts can be found in [39, 42, 45, 46, 57]. Therefore this algorithm is a largely

applicable approach to the iterative computation of MLE, useful in a variety of missing or incomplete-data

problems.

The EM algorithm has several appealing properties: it is numerically stable, iterations are computationally

attractive, the algorithm can usually be implemented easily, reliable global convergence is ensured, each EM
iteration increase the likelihood function. In particular, it is generally easy to program and requires small

storage space (see [42]). In fact the cost per iteration is generally low, which can offset the larger number of

iterations needed for the EM algorithm compared to other competing procedures such as Newton-Raphson

and it can be used to provide estimates of missing data. The EM algorithm is well known as a computationally
simpler algorithm for obtaining MLE.

3.2 EM Derivation

In the comments following in Eq. (7), estimating FMM parameters using MLE amounts to solving a non-

linear system of equations. However, the intuitive idea behind EM algorithm shows that, if we know the

component of the mixture form which an observed data point is generated then the problem would be
simpler and we get a closed-form solution of Eq. (7). Since this information is not known when the data is

observed, the sample of data is then termed as incomplete data. Define the complete data to be the fully

categorized data and the problem will be reformulated as an incomplete or hidden problem. Let C = (O, H)

being a sample of the complete data where O = {o1, o2, . . . , oi, . . . , om} is the sample of m observed data

and H = {h1, h2, . . . , hi, . . . , hm} defined as a sample of m hidden data. Each hi = (hi1, hi2, . . . , hij , . . . , hik)
where hij ∈ {0, 1} corresponding to the mixture component to which oi belongs. Thus, the likelihood function

for the complete data can be written as

P (C|θ) =

m∏

i=1

k∏

j=1

[πjPj(oi|αj)]hij (8)

This function is considered to be as joint complete distribution where the marginal distribution of O will be

P (O|θ) =
∑

h

P (C|θ) =
∑

z

P (O|h, θ)P (h|θ) (9)

The goal of EM in its basic idea is to find θ such that the likelihood P (O|θ) or equivalently L(θ) is maximized.

EM algorithm is an iterative procedure for maximizing L(θ). Assume that after the nth iteration the current
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estimate for θ is given by θ(n). Since the objective is to maximize L(θ), we wish to compute an update
estimate θ, such that

L(θ) > L(θ(n)) (10)

Equivalently, we want to find a new updated parameter, say θ(n+1) such

θ(n+1) = arg max
θ
{L(θ)− L(θ(n))} (11)

then the difference is

L(θ)− L(θ(n)) = log(
∑

h P (O|h, θ)P (h|θ)) − log(P (O|θ(n))

= log(
P

h P (O|h,θ)P (h|θ)

P (O|θ(n))
) (12)

However, using Bayes rules we get

P (h|O, θ(n)) =
P (O, h|θ(n))

P (O|θ(n))
(13)

the Eq. (12) could be write with

L(θ)− L(θ(n)) = log[

∑
h P (O|h, θ)P (h|θ).P (h|O, θ)n))

P (O, h|θ(n))
] (14)

Notice that this expression involves the logarithm of a sum. Since P (h|O, θ(n)) is a probability measure, we
have that P (h|O, θ(n)) ≥ 0 and

∑
h P (h|O, θ(n)) = 1. For instance, we may apply Jensen’s inequality1 to get

L(θ)− L(θ(n)) ≥
∑

h

P (h|O, θ(n)) log(
P (O|h, θ)P (h|θ)

P (O, h|θ(n))
) (15)

, ∆(θ|θ(n)) (16)

equivalently, Eq. (11) will be,

θ(n+1) = arg max
θ
{∆(θ|θ(n))} (17)

= arg max
θ

∑

h

P (h|O, θ(n)) log P (O, h|θ) (18)

= arg max
θ

Eh|O,θ(n) log P (O, h|θ) (19)

= arg max
θ

Eh|O,θ(n)  L(C|θ) (20)

= arg max
θ

Q(θ; θ(n)) (21)

In going from Eq. (17) to Eq. (18) we drop terms which are constant with respect to θ. Hence, the Eq. (20)

shows well the two EM algorithm steps which are:

1. E-step: Compute the conditional expectation of the complete data log likelihood Lc(θ), given the
observed data O, using the current iteration θ(n) for θ.

2. M-step: Update the value of θ, say θ(n+1), that maximizes the E-step The E- and M-steps are

continuous repeated until the difference |θ(n+1)−θ(n)| or |L(θ(n+1))−L(θ(n))| changes by an arbitrarily

small amount.

1for constants λi ≥ 0 with
P

i
λi = 1 it shown that log

P

i
λixi ≥

P

i
λi log(xi)
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3.3 EM Convergence

The crucial property of the EM algorithm proved by Dempster et al. (1977) is that the observed data log-

likelihood L(θ) can never decrease during the EM sequence. This process continues until L(θ) converges. In

fact we had in Eq. (16) that

L(θ) ≥ L(θ(n)) + ∆(θ|θ(n))

, ℓ(θ|θ(n))

Additionally, it is straightforward to show that ∆(θ(n)|θ(n)) = 0, hence,

ℓ(θ|θ(n)) = L(θ(n)) (22)

thus, the ℓ(θ|θ(n)) function is bounded above by the L(θ) likelihood function. The following Figure 1,

illustrates the EM procedure for two iterations.

Figure 1: EM computes the function ℓ(θ) using the current estimate θ(n) and choose the update estimate
θ(n) as the maximum point of ℓ(θ). In the next iteration at θ∗ the same ℓ(θ) will be generated causing the
algorithm to end.

Once our objective is to find θ(n+1) that maximize L(θ), we can deduct from Figure 1, that ℓ(θ(n+1)|θ(n)) ≥
L(θ(n)|θ(n)) = L(θ(n)). Therefore, at each iteration, L(θ) cannot decrease.

3.4 EM and Mixture Model

In MM context, the complete data likelihood in Eq. (8) is

L(C|θ) =

m∑

i=1

k∑

j=1

hij log{πjPj(oi|αj)} (23)
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Since L(C|θ) is a linear function of the hidden indicator variables hij , the E − step is reduces to the com-
putation of the conditional expectation of hij , which, given an observed data oi, using the current estimate

θ(n) for θ, is computed as

τ
(n)
ij = E[Hij |oi; θ

(n)] = P (Hij = 1|oi; θ
(n)) (24)

for each i,j, which is the current estimate of the posterior probability of the ith observation generated from j

component conditional on Pi and θ(n) given by

τ
(n)
ij =

π
(n−1)
j Pj(oi; α

(n−1)
j )

∑k
j=1 π

(n−1)
j Pj(pi; α

(n−1)
j )

(25)

On the M-step of (n + 1)th iteration, we update the value of θ, say θ(n+1), that maximizes

Q(θ; θ(n)) =

m∑

i=1

k∑

j=1

τ
(n)
ij log{πjPj(oi|αj)} (26)

For MM, the estimation of mixing weight is done by differentiating

Q(θ; θ(n))− λ(
k∑

j=1

πj − 1)

with respect to πj and setting derivative equal to zero, where λ is a lagrange multiplier, one has

π
(n+1)
j =

1

m

m∑

i=1

τ
(n)
ij (27)

As for the updating of θ, it is obtained as an appropriate root of

m∑

i=1

k∑

j=1

τ
(m)
ij

∂ log Pj(oi|αj)

∂θ
= 0 (28)

In the FMM context as shown in example of Figure 1, the likelihood function will most probably have many

local maxima, especially when the number of mixture-components is large (see [35]). However, performing

of the EM algorithm in FMM context will provide a local maxima of the likelihood function of the observed

data tend to converge to a local optima, and not necessarily the global one as results by Xu and Jordan [73].
Consequently, the EM algorithm will be very sensitive to the choice of the initial value θ(0). Specifically, the

effectiveness of the EM algorithm considerably depends on this first initialization. In the next section, we will

present a new variant of the EM algorithm to alleviate the influence of the initial values on the performance

of FMM estimation parameters.

4 Embedding EM in VNS

In this section, we propose a way to alleviate the local optima problem encountered when using EM alone.
We first present an overview of the literature and describe in general terms the basic rules of the VNS

metaheuristic.

4.1 EM and Global Optimization Problem

When local optima enumerates the EM algorithm can, and often does, lead to one of them instead of tow

the global maxima. In fact, as shown in Section 3.2, in the M-step of the EM algorithm we are concerned

with finding θ(n+1) such that

θ(n+1) = arg max
θ

Q(θ|θ(n)) (29)
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The Q(θ|θ(n)) function is multimodal. However, we can formulate the problem of the form (29) as;

max f(θ) = Q(θ|θ(n)) (30)

subject to θ ∈ Θ

where f(θ) is the objective function to be maximized and Θ is the set of feasible solutions. A solution θ∗ ∈ Θ

is optimal if f(θ∗) ≥ f(θ), ∀θ ∈ Θ.In other words, we can view this problem as a global optimization one.

Woodruff and Reiners [70] considered the modeling of such sophisticated topics commonly attends to

NP − hard problem. Such problems, particulary when involve continuous variables are often very difficult
to solve. So one can either limit oneself to small instances solvable global optimization technique, or limit

oneself to heuristic optimization. the later is in fact done by EM, but as we will show experimentally below

embedding it in the VNS format leads to a more efficient algorithm in terms of values of solution obtained

wile steel keeping resolution time reasonable.

Combinatorial and global optimization algorithms are typically attracted in solving instances of problems

that are believed to be hard in general. However, the use of available exact algorithms such branch-and-

bound, cutting planes, decomposition, Lagrangian relaxation, column generation, and many others may not
reach to solve very large instances. Moreover, Hansen and Mladenović [29], asserted that many practical

instances of such problems of the form (30), arising in Operations Research and other fields, are too complex

for an exact solution to be realized in conceivable time. Thus one has to endeavor to heuristics, which provide

an approximate solution, or sometimes an optimal but without proof of its optimality but for the favor of a

reasonable time realization. Local search is considered as one of the most used type of heuristic [28]. Local
search algorithms move from an initial solution to another neighborhood solution in the space of candidate

solutions by alternation of local changes, which improve at each time the objective function, until a solution

deemed optimal is found or a time bound is elapsed. Although, an EM algorithm can be employed to perform

local search for the problem of the form (30) [68].

4.2 VNS and Heuristics

Heuristic search procedures that aspire to find global optimal solutions to hard combinatorial optimization

problems usually require some type of adjustment to overcome local optimality. In recent years, many authors
extend this methodology and developed several metaheuristics algorithms for avoid being trapped in local

optima with a poor value. The most relevant procedures in terms of their application to a wide variety of

problems are: Tabu Search is by now a well-known metaheuristic for solving hard combinatorial optimization

problems ([23, 24, 25]), Multi Start (MS) methods are devoted to the Monte Carlo random re-start in the

context of nonlinear unconstrained optimization, where the method simply evaluates the objective function
at randomly generated points [58], adaptive multi-start [9], simulated annealing [37], one of the most well

known MS methods is the greedy adaptive search procedures (GRASP). The GRASP methodology was

introduced by Feo and Resende [18] and many others have contributed to an abundant enhanced results for

many combinatorial problems.

However, the performance apprehended and the sophistication of such heuristics makes it difficult to

allocate with a accuracy the reasons for their effectiveness. Mladenović and Hansen [52] had examined a

change of neighborhood in the search as a relatively unexplored reason and they proposed a new optimization

technique called variable neighborhood search VNS.

VNS is a metaheuristic method that embeds a local search heuristic for solving combinatorial and global

optimization problems. VNS performances systematically the idea of neighborhood change, both in ascendant

to local maxima and in escape from the hills which contain them [30].

4.3 VNS Algorithm

Local search algorithms are widely applied to numerous hard computational problems, including problems

from computer science and in particularly artificial intelligence, mathematics, operations research, engineer-
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ing, and bioinformatics. Moreover, they often are building blocs for more sophisticated heuristics. A basic
scheme for local search can be presented as follows

Initialization. Select a neighborhood structure N , that will be used in the search; find an initial
solution x;

Repeat the following until the stopping condition (i.e., finding a local optimum) is met:

(a) Find the best neighbor x′ ∈ N(x) of x;

(b) If x′ is not better than x, stop. Otherwise, set x = x′ and return to (a);

Step of local search heuristic.

The stopping condition of this heuristic, using one neighborhood structure is satisfied as soon as a local

optimum is reached. In our study the EM algorithm itself is considered as a local search structure. To

improve upon the basic scheme so obtained, one can use a MS strategy that iterates for a number of times

the local search from initial solution generated randomly until no further progress is made or an limit for
computing time for the step is reach. However, for a considerable number of local optima, the best of those

found by MS may be very far from the global optimum (Boese, Kahng and Muddu, [9]). Actually, the MS

method concentrates in exploring many hills but without exploring properties of local optima so found.

VNS and contrary to other metaheuristics based on local search methods, does not follow a trajectory but

explores increasingly distant neighborhoods of the current incumbent solution, and jumps from this solution
to a new one if and only if an improvement has been made. Several questions about selection of neighborhood

structures are in order [29]:

(i) What properties of the neighborhoods are mandatory for the resulting scheme to be able to find a

globally optimal or near-optimal solution?

(ii) What properties of the neighborhoods will be helpful in finding a near-optimal solution?

(iii) Should neighborhoods be nested? Otherwise how should they be ordered?

(iv) What are desirable properties of the sizes of neighborhoods?

The basic VNS method described by Hansen and Mladenović ([27, 28, 29]), combines deterministic and
stochastic changes of neighborhood. Denote with Nk(k = 1, 2, . . . , kmax) a finite set of preselected neigh-

borhood structures, and with Nk(x) the set of solutions in the kth neighborhood of x. Its steps are given

as:

Initialization. Select the set of neighborhood structures Nk, k = 1, 2, . . . , kmax, that will be used

in the search; find an initial solution x; choose a stopping condition;

Repeat the following until the stopping condition is met:

1. set k ← 1;

2. Repeat the following steps until k = kmax:

(a) Shaking. Generate a point x′ at random from the kth neighborhood of x (x′ ∈ Nk(x));

(b) Local search. Apply some local search method with x′ as initial solution; denote with
x′′ the so obtained local optimum;

(c) Move or not. If this local optimum is better than the incumbent, move there (x ←

x′′),and continue the search with N1(k ← 1); otherwise, set k ← k + 1;

Steps of the basic VNS

The stopping condition criteria could be such as maximum fixed number of iterations, maximum CPU

time allowed, or maximum number of iterations since the last increase in the Log likelihood function. One

of the major challenges in the metaheuristic VNS is the selection of neighborhood structures properties and
desirable properties of the sizes of neighborhoods in away to be able to find a global optimal or best optimal
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solution and to do so fairly in a reasonable time realization. In fact, To avoid being blocked in a hill, while
there may be higher ones, Hansen and Mladenović [29] suggested that the union of the neighborhoods around

any feasible solution θ should contain the whole feasible set:

Θ ⊆ N1(x) ∪N2(x) ∪ . . . ∪Nkmax(x), ∀x ∈ X.

These sets may cover X without necessarily partitioning it, which is easier to implement, e.g. when using

nested neighborhoods, i.e.,
N1(x) ⊂ N2(x) ⊂ . . . ⊂ Nkmax(x), ∀x ∈ X.

If these properties do not hold, one might still be able to explore X completely, by traversing small

neighborhoods around parameters values on some trajectory, but it is no more guaranteed. For instance, we

define a first neighborhood N1(x) as a subdivision of the interval data range and then iterating it k times
to obtain neighborhoods Nk(x) for k = 2, . . . , kmax. They have the property that their sizes are increasing.

Therefore if, as is often the case, one goes many times through the whole sequence of neighborhoods the first

ones will be explored more thoroughly than the last ones.

4.4 EM and VNS

To let EM algorithm to be not totally depending on the first initialization is to reformulated it using the VNS

method. We may consider EM as a local search in global optimization context and estimating the parameters
model by maximizing the Log likelihood function subject to each parameters belong to the set of feasible

solutions. We define the neighborhood structures as subintervals obtained from the data distribution range.

The algorithm will be a combination of the EM and VNS (EMVNS). Therefore the basic EMVNS steps are:

Initialization. Choose an initial solution θ; select the set of neighborhood structure by defining
the intervals range Ip for the means, covariances and mixing weights parameters and by choosing

the maximum number of embedded intervals in Ip (Ipk, k = 1, 2, . . . kmax); choose a stopping

condition, that will be used in the perturbation phase; choose a stopping condition;

Repeat the following until the stopping condition is met:

1. set k ← 1;

2. Repeat the following steps until k = kmax:

(a) Perturbation. Generate a parameter θ′ at random from the kth neighborhood of θ (θ′ ∈
Ipk(θ));

(b) Application of the EM algorithm with θ′ as initial solution; denote with θ′′ the so ob-

tained local optimum;

(c) Move or not. If this local optimum is better than the incumbent, move there (θ ←

θ′′),and continue the search with Ip1(k ← 1); otherwise, set k ← k + 1;

Steps of the basic EMVNS

A general procedure of the EMVNS approach is presented in Figure 2.

5 Application to Finite Gaussian Mixture Model

In this section we apply our method to eight FGMM examples with different degree of complexity in order to

show the effectiveness of the EMVNS approach comparing to MS method over these degree of the problem
complexity.
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Figure 2: General procedure of EMVNS scheme

5.1 EM and FGMM

To establish FGMM parameters estimation, we explicitly derive the EM steps for Finite d-dimensional Gaus-

sian Mixture Model. The mixed weight πj is the unknown probability of occurrence of the jth component in

the mixture. Assume that each parameters Gaussian components αj has a vector mean µj and covariance

matrix Σj = σ2I where Σj is a positif definite symetric matrix. The marginal Finite d-dimensional Gaussian

Model distribution is given by

P (O) =

k∑

j=1

πj

(2π)d/2|Σj |1/2
exp{−

1

2
(o− µj)tΣ−1

j (o− µj)} (31)

The parameters to be estimated are αj = (µj , σj), and πj , j = 1, 2, . . . , k. Then using the two steps for

estimating the model parameters denoted by, θ = (µj , σj , πj ; j = 1, 2 . . . , k) show that E-step:

τ
(n)
ij =

σ−d
j exp{−‖o− µj(n)‖2/2σ2

j (n)}
∑k

j=1 σ−d
j (n)exp{−‖o− µj(n)‖2/2σ2

j (n)}
(32)

M-step:

π
(n+1)
j =

1

m

m∑

i=1

τij (33)

µ
(n+1)
j =

∑m
i=1 τijoi∑m
i=1 τij

(34)

σ
(n+1)
j =

∑m
i=1 τij‖oi − µj(n + 1)‖2∑m

i=1 τij
(35)

We denote by c-G-d-MM the c component of Gaussian with d dimensional Mixture Model (e.g. 6G2MM is

FGMM with 6 components in two dimension space). The eight examples chosen are displayed in Table 1.
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Table 1: Examples treated

MODEL DATA MEAN COVARIANCE MIXING WEIGHT π

2G1MM
REAL µ = [15; 9.5] σ = [2.1; 2.1] [0.3; 0.7]

INITIAL µ = [10.76; 16.62] σ = [1.6; 0.01] [0.98; 0.02]

3G1MM
REAL µ = [−5; 0; 2] σ = [0.5; 0.5; 0.5] [0.5; 0.3; 0.2]

INITIAL µ = [0.73;−4.72;−5.86] σ = [1.14; 0.23; 0.10] [0.49; 0.44; 0.07]

2G2MM
REAL µ1 = [0; 0] Σ1 = [3, 0; 0, 1/3]

µ2 = [0; 0] Σ2 = [1/3, 0; 0, 3] [0.7, 0.3]
INITIAL µ1 = [0.14;−0.04] Σ1 = [1, 0.3; 0.3, 1]

µ2 = [−1.82; 1.94] Σ2 = [1, 0.5; 0.5, 1] [0.96, 0.04]

3G2MM
REAL µ1 = [0; 1] Σ1 = Σ2 = Σ3 [0.3; 0.3; 0.4]

µ2 = [0;−1] µ3 = [−1; 2] = [0.2, 0.1; 0.1, 0.2]
INITIAL µ1 = [−1.53; 1.73] Σ1 = Σ2 = Σ3 [0.46; 0.01; 0.53]

µ2 = [−0.08; 1.92] µ3 = [0.52; 0.19] = [1, 0.3; 0.3, 1]

4G2MM

REAL µ1 = [0;−2]µ2 = [2, 0] Σ1 = Σ3 = [3, 0; 0, 1/3]
µ3 = [0; 2]µ4 = [−2, 0] Σ2 = σ4 = [1/3, 0; 0, 3] [0.25, 0.25, 0.25, 0.25]

INITIAL µ1 = [−0.3; 1.1]µ2 = [1.9; 0] Σ1 = Σ2 = Σ3

µ3 = [−1.6; 1.2]µ4 = [0.6; 0.1] = Σ4 = [0.6, 0.9; 0.9, 0.4] [0.41, 0.26, 0.18, 0.16]

6G2MM

µ1 = [0.75;−0.5] µ2 = [0.5; 1] Σ1 = Σ2 = Σ3

REAL µ3 = [0; 1.5] µ4 = [−1;−0.5] Σ4 = Σ5 = Σ6 [1/6; 1/6; 1/6; 1/6; 1/6; 1/6]
µ5 = [−1.5; 0] µ6 = [1;−1.5] = [0.05, 0; 0, 0.2]
µ1 = [−0.3; 1.1] µ2 = [1.9; 0] Σ1 = Σ2 = Σ3

INITIAL µ3 = [−1.6; 1.2] µ4 = [0.6; 0.1] Σ4 = Σ5 = Σ6 [0.11; 0.20; 0.18; 0.16; 0.17; 0.18]
µ5 = [0; 1.5] µ6 = [1.1;−0.5] = [0.6, 0.9; 0.9, 0.4]

8G2MM

µ1 = [1.5; 0] µ2 = [1; 1] Σ1 = Σ2 = Σ3

REAL µ3 = [0; 1.5] µ4 = [−1; 1] Σ4 = Σ5 = Σ6 [1/8; 1/8; 1/8; 1/8; 1/8; 1/8; 1/8; 1/8]
µ5 = [−1.5; 0] µ6 = [−1;−1] Σ7 = Σ8

µ7 = [0;−1.5] µ8 = [1;−1] = [0.01, 0; 0, 0.1]
µ1 = [−0.3; 1.4] µ2 = [1.9;−0.2] Σ1 = Σ2 = Σ3

INITIAL µ3 = [−1.6; 1.2] µ4 = [0.6; 0.1] Σ4 = Σ5 = Σ6 [0.01; 0.23; 0.29; 0.12; 0.04; 0.06; 0.17; 0.08]
µ5 = [0.3;−0.7] µ6 = [1.11;−0.5] Σ7 = Σ8

µ7 = [1.6;−0.5] µ8 = [1.2; 1.3] = [0.06, 0.95; 0.95, 0.48]

10G2MM

µ1 = [1.25; 0] µ2 = [1; 1] Σ1 = Σ2 = Σ3

µ3 = [0; 1.5] µ4 = [−1; 1] Σ4 = Σ5 = Σ6 [0.1; 0.1; 0.1; 0.15; 0.1; 0.15; 0.1; 0.1; 0.05; 0.05]
REAL µ5 = [−1.5; 0] µ6 = [−1.5;−1] Σ7 = Σ8 = Σ9

µ7 = [0;−1.5] µ8 = [1;−1] = Σ10 = [0.01, 0; 0, 0.1]
µ9 = [0.5;−1.5]µ10 = [1;−1.5]

µ1 = [−0.3; 1.4] µ2 = [1.9;−0.2] Σ1 = Σ2 = Σ3

µ3 = [−1.6; 1.2] µ4 = [0.6; 0.1] Σ4 = Σ5 = Σ6 [0.1; 0.1; 0.1; 0.15; 0.1; 0.15; 0.1; 0.1; 0.05; 0.05]
INITIAL µ5 = [0.3;−0.7] µ6 = [1.11;−0.5] Σ7 = Σ8 = Σ9

µ7 = [1.6;−0.5] µ8 = [1.2; 1.3] = Σ10 = [0.06, 0.95; 0.95, 0.48]
µ9 = [1.1;−0.15]µ10 = [1.5;−1.3]



Les Cahiers du GERAD G–2009–07 13

5.2 Experimental Procedure

Before detailing the experimental procedure, we describe the sensibility of EM using a “poor” initialization

to get a local maxima. We use 150 observations generated from 3G1MM described in Table 1. Our algorithm

is applied using the same ’poor’ starting value and as shown in Figure 3 the EMVNS can easily improve the

parameters model estimation.
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(a) EM is applied with poor initialization
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(b) using EMVNS with the same poor initialization

Figure 3: The use of EM can lead in general to a local maxima and not to the global one. However the
implementation of EMVNS using the same poor initialization guarantee a better result.

5.2.1 Methods Deployed

In this paper, we limit our study to comparing the EMVNS with the MS method. In deed, the MS method

is the most used means of initiating EM and is considered as reference method for almost any comparison

method (see [5]). In MS method the means are generated from an interval from the data range, the covariances
are generated from the an interval ranging from zero to the value of sample covariances and the mixing weight

are generated from a Dirichlet distribution. In EMVNS approach, we choose Ip for the means as the interval

data range, for the covariances as an interval ranging from 0 to the value of sample covariances and an

interval ranging from 0 to 0.9 for mixing weights. Note that EM was used in its standard form and without
any acceleration scheme. To avoid the unbounded likelihoods problems, all components are chosen to have a

common variance or equal determinants (see [45]).

5.2.2 Examples Treated

In order to give an acceptable credibility to the results provided by both methods, we choose a variety of

situations, but far to be exclusive. In fact, as we will discuss later, the EM performance results are directly

related to the attraction basin size and dimension of local and global maxima of the likelihood function (see

[4]), thus, we considered eight examples displayed in Table 1 with different degree of complexity resumed
in both component dimension and data distribution. From the Probability Density Function (PDF) of 8

FGMM examples shown in Figure 4, we can observe the diversity of data distribution from well separated

as 8G2MM example to poorly separated as 2G2MM example. Figure 5 provides the information about the

approximate local maxima number from a very reduced as in 2G1MM to very considerable as 10G2MM.

The dendrograms in Figure 5 illustrate that the number of local maxima values is dependent on the problem
complexity characterized by the number of component and data distribution.
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(b) FGMM in one dimension space
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(c) The two model components are poorly separated
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(d) The model components are relatively poor separated
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(e) The four model components are well separated
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(f) The model components are quite poorly separated
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(g) The model components are very clearly separated
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(h) The model components are quite separated

Figure 4: The PDF of eight FGMM examples are very diversified with different degree of complexity resumed
in both component dimension and data distribution.
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5.2.3 Criteria Selected

To analyze the performance of each method we define some criteria. Our main objective is to reach the highest

likelihood regardless of the time of realization even though the CPU time realization is less for EMVNS than

for MS method. For instance, for the last 10G2MM example, one iteration with MS took 0.26s and only 0.14s

with EMVNS. Therefore we choose a fixed number of iteration as stopping condition for both methods. To
perform the competition between the two methods we limit to 100 the number of iterations relatively to the

number of local maxima as presented in Figure 5. For being more realistic we choose a “poor” and random

starting parameter value for EMVNS method as shown in Table 1. We fixed to 25 the maximum number of

embedded intervals and for simplicity we choose the same incremental step for getting all Ipk as 30% of Ip

(i,e. Ip1 = 30%Ip, Ip2 = 60%IP , etc). We devote 10 trials twice for each example sample. For both methods,
we record after each trial the highest Log likelihood considered as the best associated global maxima. The

second criteria which is the local maxima range that give us an idea about the ability of EMVNS method

to improve the search for getting the best local maxima by jumping from hill to hill and from MS method

it informs us about the approximately wide range of the local maxima. The last criteria is the percentage
of getting the associated global one; it characterizes the degree of complexity of the problem we treat. This

percentage provided by EMVNS interpreted the percentage of time being in this global maxima hill by this

method. Nevertheless, from MS method this percentage explained essentially the attraction basin size of the

local maxima.

5.3 Results Obtained

The results for both poor and random and for both trials displayed in Tables 2, 3, 4, 5, 6, 7, 8, and 9 illustrated

that for 2G1MM, 2G2MM and 4G2MM examples, both methods reached the same global maxima. Thus,

we can depict from Figure 5 that the number of local maxima associated to 2G1MM example is very much

reduced and regardless of the attraction basin size of global maxima it’s easy in this case for any simple

method to gain in 100 iterations the global one. For the 2G2MM and 4G2MM took from Biernacki, Celeux
and Govaert [5] examples with a considerable number of local maxima as shown in Figure 5, the percentage

in getting the global maxima with MS method is very important leading to large attraction basin of global

max. In this case it’s easy too to get to the global maxima regardless the components are well or poorly

separated and it’s confirmed by Biernacki, Celeux and Govaert [5] results. In 8G2MM example, where the
components of the model are well separated, the MS method reached in the common trials to the same global

maxima as EMVNS method but as shown by Tables 5, 9, 3 and 7 it succeeded in a few trials to get the

highest log likelihood. This result could be clarified by the considerable number of local maxima of the Log

likelihood function with visibly large attraction basin. Thus, it is easy for MS to get the global max with a

comparatively small percentage such as less than 12% and that let EMVNS in a few times passing his 100
iterations in other large attraction basin of the local maxima. Since the limit number of iterations, this is the

only case where MS can perform well rather than EMVNS. For the 3G1MM considered as a simple example

in one dimension space with a reduced local maxima number, the EMVNS thrived in the majority of trials

to get to the highest Log likelihood. In fact, when the attraction basin size is large for a local maxima and a
small for the global maxima, as argued by the quite great percentage for getting the global maxima with MS,

EMVNS succeeded to jump to other local maxima until get to best hill; nonetheless, MS get trapped in this

local maxima. In 6G2MM and 10G2MM examples, having a significant important number of local maxima,

the competition between both methods is very rude. In deed, the percentage of getting the global maxima

in MS is very small as it did not exceeded 2%, consequently, the most of local maxima had a very small
attraction basin. In this case, as showing in Table 3, EMVNS had a more chance to get to the best result.

The 3G2MM example resumed almost all situations discussed in the rest of the other examples. In fact, the

percentage for reaching the global maxima with MS is varied from small to relatively great percentage, hence,

in this situation the attraction basin size of the local maxima varied also from small to large size. In this
case, EMVNS succeeded as well to get to the highest hill in the majority of trials. Therefore, we can deduct

from the local maxima average and from the comparatively great percentage of getting the global maxima
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with EMVNS method, that in almost all situations there is no difficulty for the EMVNS method to improve
the accuracy of model parameters estimation and attain the best global maxima.

5.4 Discussions

Its well shown the impact of starting value in the degree of accuracy of FMM parameters estimation using

EM algorithm. Indeed, its clear that EM is a very sensitive to the initial values.

From the experiment results, we can briefly resume all possible situations in three cases. First, when the

attraction basin of the local maxima is relatively large supported by the percentage of getting the global
maxima with MS method such as more than 15%, the EMVNS guarantees to get the highest Log likelihood

or at least the same than MS but not in any case the MS will have a best result than EMVNS. The second

case manifested by a very important number of local maxima with relatively the same attraction basin size

explained by the relatively percentage of global maxima with MS method such as between 15 to 5% and that
lead, in the majority of trials, to have the same global maxima for both methods with a slight amelioration

with MS method. The last case is the challenge one, because the number of local maxima is very important

with a small attraction basin size argued by the small percentage in getting the global maxima with MS

method that did not exceeded 5% and even in this case EMVNS succeeded in the best part of trials to reach

the greatest global maxima.

In fact, the large number of local maxima that conduct to large number of parameters estimation solutions,

depending on the complexity of the problem. As shown, when the number of local maxima is very much

reduced or when the basin attraction of the global maxima is visibly large, we can use an ordinary method

as MS or any other simple method for getting best results to overcome initial values problem caused by EM

algorithm. However, in practice, the data dimension is very large modeled by FMM and without guarantees
to have a large basin attraction of the global max. In spite of this, the need of applying a robust method for a

complex problems is necessary. As described in Section 4.2, contrarily to other methods based in local search,

VNS provide a powerful and simple tool to implement for getting a best results comparing to competitive

methods (see [28]). Moreover, the use of the appropriate structures in VNS leads not only to improve the
Maximization of the likelihood function but with best time realization.

6 Conclusions

The choice of initial values is considered as crucial point in the algorithm-based literature as it can severely

affect the time realization of convergence of the algorithm and its efficiency to pinpoint the global maxima.

A novel EMVNS algorithm for estimating FMM parameters is proposed in this paper to overcome one

of the main drawbacks of EM algorithm often getting trapped at local maxima. The VNS method largely
deployed in many examples had shown his efficient in getting best improvement results which exploits sys-

tematically the idea of neighborhood change, both in ascendant to local maxima and in escape from the hills

which contain them. The algorithm is computationally efficient and easily implemented.

The experimental results of employing FGMM for a variety of degree of complexity of data dimension

show that our algorithm can find excellent solutions with best time realization than MS method, especially
in complicated situations.

The EMVNS algorithm use the VNS in his basic scheme and is focus on the estimation of FMM parameters

supposing the number of FMM components are known before. therefore, developing EMVNS using several

VNS extensions and finding more appropriate structures for resolving such problem appears to be desirable.
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Table 2: First trials of EMVNS Performance with poor starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

2G1MM 100 1 -235.8753 -235.8753 10.1791 8.4856 98 94
2 -234.4101 -234.4101 13.2288 11.1921 96 95
3 -239.2080 -239.2080 10.4160 10.4160 97 92
4 -238.0905 -238.0905 14.4562 15.3911 99 94
5 -235.1474 -235.1474 16.2545 13.2589 94 96
6 -236.2357 -236.2357 11.6521 13.2587 91 93
7 -233.9541 -231.9541 14.6523 14.3251 93 96
8 -237.0245 -237.0245 16.2124 11.3547 98 94
9 -238.1544 -238.1544 13.2574 11.2541 92 93
10 -238.8563 -238.8563 11.6523 12.6523 96 91

3G1MM 150 1 -290.0475 -286.6524 1.9924 3.3951 17 17
2 -307.6195 -307.6195 4.0851 3.4112 47 79
3 -296.8935 -296.8481 2.0226 2.0680 19 70
4 -318.4914 -316.7653 1.8197 3.5458 65 79
5 -299.0124 -299.0124 12.2900 11.4197 42 88
6 -306.7865 -304.4735 2.1404 5.0500 72 7
7 -292.1598 -292.1598 5.6254 5.2654 76 75
8 -303.1527 -303.0161 7.0874 7.1822 6 68
9 -312.3613 -312.3613 3.1955 3.1675 74 91
10 -301.1689 -301.1689 3.1113 3.1113 65 74

2G2MM 200 1 -641.2487 -641.2487 46.5814 22.3507 36 76
2 -632.5786 -632.5786 45.3939 3.4112 27 79
3 -600.5044 -600.5044 62.6585 48.2360 40 93
4 -620.1937 -620.1937 36.1978 34.3310 31 82
5 -627.4071 -627.4071 53.7468 42.9049 17 18
6 -649.4448 -649.4448 57.4785 56.8515 29 86
7 -611.8998 -611.8998 47.3719 32.4887 37 96
8 -614.0520 -614.0520 24.3866 17.9981 3 80
9 -601.6633 -601.6633 36.8120 34.5052 34 96
10 -639.6007 -639.6007 51.6233 32.7748 12 73

3G2MM 200 1 -652.5217 -648.1404 47.2736 14.9758 6 83
2 -646.0257 -622.5508 57.1086 23.4749 2 49
3 -605.1128 -584.6639 65.7443 20.4489 35 33
4 -655.8673 -655.8673 53.0580 3.7038 17 87
5 -610.5412 -612.5774 71.2584 12.5263 12 20
6 -630.8122 -630.8122 54.6093 6.9880 16 81
7 -614.8514 -614.8514 61.9125 21.7185 14 68
8 -643.9878 -639.1087 64.8320 6.9985 1 64
9 -653.0959 -652.4204 67.4756 2.8292 1 34
10 -646.1953 -646.1953 66.0131 4.2911 29 93
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Table 3: First trials of EMVNS Performance with poor starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

4G2MM 200 1 -770.1656 -770.1656 79.2570 57.8955 26 90
2 -749.1386 -749.1386 89.8699 78.8091 24 74
3 -741.2514 -741.2514 74.5417 65.2155 21 71
4 -760.7066 -760.7066 68.8641 61.2430 32 55
5 -776.4492 -776.4492 81.8411 59.6209 40 79
6 -744.2546 -744.2546 80.3412 59.7544 23 81
7 -751.1382 -751.1382 76.6545 66.2541 24 80
8 -748.2112 -748.2112 81.6995 72.4121 23 73
9 -752.2243 -752.2243 82.2546 77.5546 25 78
10 -761.9663 -761.9663 72.8910 66.2096 37 66

6G2MM 500 1 -1.0041e+03 -999.7815 421.4680 349.8224 1 1
2 -958.0554 -958.0554 450.9760 379.5808 2 64
3 -989.4930 -987.6576 423.2859 357.9227 1 20
4 -1.0137e+03 -1.0137e+03 383.7455 4328.2597 1 42
5 -953.4334 -944.4864 468.9808 407.8856 1 54
6 -989.7588 -981.1017 428.3935 354.6687 1 23
7 -985.7730 -969.1041 439.6149 370.9343 1 5
8 -1.0255e+03 -1.0255e+03 429.1275 330.0983 1 64
9 -1.0173e+03 -1.0083e+03 394.4401 350.0143 1 77
10 -1.0300e+03 -1.0314e+03 398.5337 315.0695 1 45

8G2MM 700 1 -1.0042e+03 -1.0042e+03 1.0154e+03 967.0880 8 55
2 -1.0437e+03 -1.0437e+03 938.1917 910.6738 4 53
3 -973.2614 -973.2614 1.0736e+03 974.4371 8 76
4 -961.2759 -961.2759 1.0453e+03 989.5428 6 52
5 -1.0055e+03 -1.0055e+03 1.0059e+03 967.4489 5 56
6 -978.1461 -978.1461 1.0165e+03 982.0156 12 41
7 -973.6314 -1.2444e+03 1.0098e+03 587.4345 12 27
8 -1.0117e+03 -1.0117e+03 1.0023e+03 954.3250 8 18
9 -1.0513e+03 -1.1150e+03 988.7539 917.9848 8 54
10 -974.6313 -974.6313 1.0133e+03 923.3240 10 85

10G2MM 800 1 -1.1078e+03 -1.1022e+03 1.2953e+03 1.0856e+03 1 66
2 -1.1656e+03 -1.1623e+03 1.2360e+03 1.0111e+03 1 10
3 -1.1161e+03 -1.1109e+03 1.2805e+03 1.0489e+03 1 72
4 -1.1512e+03 -1.1392e+03 1.2298e+03 1.0308e+03 1 29
5 -1.1552e+03 -1.1552e+03 1.2319e+03 954.9397 1 42
6 -1.1330e+03 -1.1681e+03 1.1882e+03 1.0101e+03 1 16
7 -1.1360e+03 -1.1341e+03 1.2245e+03 1.0442e+03 1 55
8 -1.1137e+03 -1.1850e+03 1.2506e+03 1.0221e+03 1 1
9 -1.1642e+03 -1.1560e+03 1.2532e+03 1.0519e+03 1 48
10 -1.1731e+03 -1.1684e+03 1.2141e+03 1.0132e+03 1 37
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Table 4: First trials of EMVNS Performance with random starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

2G1MM 100 1 -234.8521 -234.8521 11.1269 9.5632 94 91
2 -236.5411 -236.5411 16.2541 3.1695 95 98
3 -239.6056 -239.6056 13.8891 1.9895e-13 96 100
4 -236.2693 -236.2693 13.6254 7.3254 95 97
5 -228.3542 -228.3542 4.5214e-13 2.9562e-13 100 100
6 -237.1642 -237.1642 14.2671 10.1547 91 93
7 -226.8521 -226.8521 12.0652 4.0516e-13 92 100
8 -235.1245 -235.1245 16.2547 15.2541 96 92
9 -234.0251 -234.0251 12.3658 10.3596 91 94
10 -220.8229 -220.8229 17.3641 3.9790e-13 99 100

3G1MM 150 1 -290.1672 -290.1672 55.7924 0.2672 35 96
2 -298.0510 -296.8191 2.7856 1.2320 74 25
3 -288.9858 -288.9070 2.0077 1.5669 8 71
4 -293.7079 -293.7079 1.0692 1.0692 64 99
5 -281.0147 -281.0147 4.7916 1.3642e-12 72 100
6 -289.9147 -289.5405 2.9777 2.0934 77 60
7 -276.1808 -276.1808 12.4557 11.2750 70 98
8 -307.4659 -306.6627 2.4843 3.2876 70 84
9 -296.5679 -295.2190 4.7682 1.3489 81 71
10 -304.4261 -304.4261 6.9570 6.2528e-13 74 100

2G2MM 200 1 -643.3488 -643.3488 48.9028 1.2506e-12 38 100
2 -618.4387 -618.4387 39.2941 18.7931 16 98
3 -629.2587 -629.2587 62.3592 44.0413 23 98
4 -627.5673 -627.5673 37.3981 3.4106e-13 30 100
5 -581.3516 -581.3516 12.2900 1.1369e-12 40 98
6 -631.5586 -631.5586 43.3517 3.1243 29 81
7 -601.5012 -601.5012 57.6534 39.2371 41 92
8 -625.3583 -625.3583 41.2587 3.8471e-13 31 100
9 -585.2847 -585.2847 22.12544 1.21459e-12 40 100
5 -635.7149 -635.7149 38.8518 20.5429 1 61

3G2MM 200 1 -648.9412 -649.4180 76.1761 2.7151 1 15
2 -659.7583 -658.1108 53.9242 6.8212e-13 2 100
3 -635.7000 -635.3556 51.5436 43.8824 17 15
4 -653.9328 -652.8712 59.6598 3.8281 8 11
5 -620.8220 -619.0844 55.3170 1.7377 22 97
6 -643.2921 -643.2921 66.4684 55.2612 2 72
7 -642.6907 -641.2610 63.3844 1.4297 1 58
8 -613.5389 -613.5389 51.6619 47.2346 1 33
9 -619.8786 -617.6769 65.2008 56.4982 31 30
10 -611.3266 -624.4769 77.3488 2.7285e-12 1 100
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Table 5: First trials of EMVNS Performance with random starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

4G2MM 200 1 -752.1700 -752.1700 82.1010 15.1649 35 99
2 -797.6400 -797.6400 67.9817 12.9877 4 79
3 -742.1413 -742.1413 79.3266 68.4991 30 64
4 -760.7066 -760.7066 68.8641 61.2430 32 55
5 -758.0660 -758.0660 66.2370 34.3501 16 55
6 -751.1227 -751.1227 87.0018 71.5188 24 99
7 -772.2980 -772.2980 64.9957 0.4575 20 99
8 -756.3823 -756.3823 79.1321 72.6345 14 57
9 -740.3214 -740.3214 84.8219 58.9910 4 39
10 -755.9385 -755.9385 87.8174 6.7298 21 92

6G2MM 500 1 -1.0039e+03 -1.0002e+03 417.7638 8.8476 1 8
2 -1.0264e+03 -1.0278e+03 392.8282 247.8544 4 25
3 -1.0264e+03 -1.0056e+03 392.8282 24.5343 4 93
4 -1.0072e+03 -1.0101e+03 431.1072 333.6097 4 57
5 -1.0072e+03 -1.0068e+03 431.1072 5.8514 1 5
6 -1.0172e+03 -992.2265 378.7475 30.4581 1 42
7 -1.0277e+03 -1.0223e+03 387.7640 273.8456 1 43
8 -1.0183e+03 -1.0179e+03 393.6705 14.5584 3 8
9 -1.0159e+03 -1.0159e+03 400.5788 19.9525 1 67
10 -999.3922 -977.3866 450.8094 26.9714 1 87

8G2MM 700 1 -984.4266 -984.4266 1.0154e+03 76.1694 8 35
2 -985.7864 -985.7864 1.0218e+03 913.5765 12 87
3 -983.4621 -983.4621 1.0136e+03 53.6341 4 84
4 -968.0664 -968.0664 1.0133e+03 967.1979 7 62
5 -993.8567 -1.0562e+03 995.0358 906.2064 10 82
6 -1.0237e+03 -1.0237e+03 996.4803 77.6997 7 99
7 -1.0026e+03 -1.0026e+03 981.5858 81.8980 11 92
8 -998.8686 -998.8686 1.0001e+03 66.4924 7 16
9 -988.1429 -988.1429 975.6521 53.8557 8 99
10 -1.0147e+03 -1.0147e+03 979.8081e+03 931.5988 10 64

10G2MM 800 1 -1.1385e+03 -1.1366e+03 1.2299e+03 22.2510 1 38
2 -1.1551e+03 -1.1478e+03 1.2290e+03 38.0575 1 93
3 -1.1093e+03 -1.1068e+03 1.2574e+03 1.1802e+03 1 44
4 -1.1694e+03 -1.1732e+03 1.2309e+03 1.0507e+03 1 78
5 -1.1483e+03 -1.1472e+03 1.2040e+03 33.5633 1 12
6 -1.1082e+03 -1.1030e+03 1.3031e+03 10.8805 1 59
7 -1.1360e+03 -1.1341e+03 1.2245e+03 1.0442e+03 1 55
8 -1.1254e+03 -1.1154e+03 1.2621e+03 521.2814 1 12
9 -1.1621e+03 -1.1698e+03 1.2486e+03 38.1673 1 10
10 -1.5471e+03 -1.5455e+03 717.9538 684.8795 1 31
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Table 6: Second trials of EMVNS Performance with poor starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

2G1MM 100 1 -235.8753 -235.8753 10.1791 8.4856 98 94
2 -236.5277 -236.5277 11.5142 9.6211 91 96
3 -238.2114 -238.2114 12.8411 11.6244 94 96
4 -234.1433 -234.1433 11.3266 10.6521 94 98
5 -238.2510 -238.2510 13.5413 11.3210 91 93
6 -235.0125 -235.0125 16.3214 10.1048 98 94
7 -236.2301 -236.2301 14.0477 13.5109 91 96
8 -237.4523 -237.4523 11.2036 9.3254 92 96
9 -235.3580 -235.3580 13.0911 12.9154 92 91
10 -233.2866 -233.2866 16.8205 10.2144 90 92

3G1MM 150 1 -288.5110 -288.5100 3.2262 1.4254 48 99
2 -282.1450 -278.7498 5.1305 5.8677 4 47
3 -294.5143 -294.5143 3.2514 2.6347 18 74
4 -290.1672 -290.1672 4.7367 3.2314 16 81
5 -295.4229 -290.4305 2.2856 6.3440 32 44
6 -298.0510 -296.8191 2.7856 4.01764 70 1
7 -275.8961 -275.8961 4.3314 3.8048 1 76
8 -290.9747 -289.2354 5.3697 5.3159 58 83
9 -317.6993 -317.5027 5.8401 5.3555 80 53
10 -293.7200 292.3509 2.7478 3.8355 13 43

2G2MM 200 1 -641.2487 -641.2487 46.5814 22.3507 36 76
2 -639.6214 -639.6214 41.2147 28.6211 24 75
3 -614.6207 -614.6207 51.6503 46.2217 32 76
4 -649.0452 -649.0452 41.9605 32.6072 38 90
5 -601.2019 -601.2019 48.6263 42.2851 24 28
6 -639.3088 -639.3088 48.3644 30.6249 32 92
7 -620.3321 -620.3321 51.3017 38.6328 28 84
8 -628.3622 -628.3622 50.9423 31.3301 38 94
9 -638.0752 -638.0752 42.3285 31.0866 28 86
10 -608.6429 -608.6429 45.6275 40.9004 32 76

3G2MM 200 1 -649.2168 -649.2168 59.0776 50.7962 2 73
2 -623.7199 -617.6543 58.4495 62.3994 26 76
3 -651.1126 -643.0419 54.814 46.1338 1 76
4 -633.3075 -633.3075 59.0551 50.5428 13 81
5 -642.5767 -642.5767 58.1452 50.2351 13 43
6 -630.5347 -625.4970 54.6974 48.3538 3 54
7 -640.8798 -625.6880 59.4298 71.9445 1 50
8 -638.4954 -638.4954 53.5249 46.9954 14 61
9 -620.5147 -623.3256 61.2547 51.2156 13 36
10 -622.9948 -607.1670 62.7560 67.7480 3 67
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Table 7: Second trials of EMVNS Performance with poor starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

4G2MM 200 1 -743.1162 -743.1162 75.1187 73.6494 39 94
2 -749.2199 -749.2199 86.3220 71.0821 28 94
3 -756.3678 -756.3678 79.3128 65.2155 29 71
4 -760.3703 -760.3703 91.1277 78.7588 38 92
5 -763.3643 -763.3643 62.8596 71.2364 16 76
6 -741.3652 -741.3652 79.6966 70.9122 24 75
7 -752.9941 -752.9941 81.2247 71.3221 31 80
8 -752.2411 -752.2411 74.3248 70.6912 30 76
9 -748.2610 -748.2610 65.2544 69.6523 34 81
10 -758.6311 -758.6311 80.9817 71.9122 31 91

6G2MM 500 1 -1.0277e+03 -1.0331e+03 366.3842 349.8224 1 40
2 -977.9569 -944.0497 405.4793 367.8062 3 24
3 -1.0408e+03 -1.0408e+03 399.9315 334.7967 1 21
4 -975.4794 -974.8529 429.9173 306.8197 1 79
5 -998.3713 -995.8678 423.5845 243.0707 1 41
6 -989.1698 -987.4594 417.2788 232.7691 1 34
7 -995.4418 -990.2266 434.6577 318.9361 1 21
8 -1.0046e+03 -1.0046e+03 446.2635 376.4621 1 58
9 -1.0188e+03 -1.0189e+03 429.0988 328.1266 1 83
10 -1.0463e+03 -1.0437e+03 401.8871 267.3516 1 9

8G2MM 700 1 958.6579 958.6579 1.0557e+03 1.0242e+03 2 17
2 -1.0081e+03 -1.0081e+03 9967.5115 905.1947 10 7
3 -1.0472e+03 -1.0472e+03 954.5972 936.1669 5 28
4 -1.0077e+03 -1.0077e+03 972.6653 901.8672 6 21
5 -1.0040e+03 -1.0040e+03 986.8095 948.3994 11 72
6 -1.0090e+03 -1.0090e+03 983.9204 953.1839 5 88
7 -1.0084e+03 -1.0084e+03 994.5039 858.3365 6 27
8 -984.7680 -1.0491e+03 1.06044 908.0154 7 45
9 -1.0171e+03 -1.0941e+03 990.3082 834.4988 7 30
10 -978.5214 -978.5214 985.9514 854.2145 11 64

10G2MM 800 1 -1.1093e+03 -1.1068e+03 1.2574e+03 1.1802e+03 1 44
2 -1.1698e+03 -1.1582e+03 1.2375e+03 1.1437e+03 1 18
3 -1.1093e+03 -1.1068e+03 1.2805e+03 1.1802e+03 1 44
4 -1.1848e+03 -1.1797e+03 1.2298e+03 1.0362e+03 1 87
5 -1.1469e+03 -1.1447e+03 1.2061e+03 1.0662e+03 1 1
6 -1.1682e+03 -1.1826e+03 1.2315e+03 1.1525e+03 1 4
7 -1.1405e+03 -1.1741e+03 1.2375e+03 1.1044e+03 1 18
8 -1.1202e+03 -1.1226e+03 1.2888e+03 1.1900e+03 1 27
9 -1.1308e+03 -1.1303e+03 1.2363e+03 1.1382e+03 1 26
10 -1.0882e+03 -1.0879e+03 1.3139e+03 1.0151e+03 1 48
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Table 8: Second trials of EMVNS Performance with random starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

2G1MM 100 1 -235.8753 -235.8753 10.1791 1.6422e-13 98 100
2 -236.5277 -236.5277 11.5142 8.2141 91 95
3 -238.2114 -238.2114 12.8411 10.3249 94 91
4 -234.1433 -234.1433 11.3266 1.5211e-13 94 100
5 -238.2510 -238.2510 13.5413 2.3521 91 98
6 -235.0125 -235.0125 16.3214 10.5211 98 96
7 -236.2301 -236.2301 14.0477 1.4136e-13 91 100
8 -237.4523 -237.4523 11.2036 8.2183 92 94
9 -235.3580 -235.3580 13.0911 6.6271 92 96
10 -233.2866 -233.2866 16.8205 11.9521 90 94

3G1MM 150 1 -288.5110 -288.1290 3.2262 1.8074 48 41
2 -282.1450 -279.2184 5.1305 3.0781 4 18
3 -294.5143 -294.5143 3.2514 1.6270 18 86
4 -290.1672 -290.1672 4.7367 0.2672 16 88
5 -295.4229 -293.0061 2.2856 2.4169 32 84
6 -298.0510 -296.8191 2.7856 1.4551 70 35
7 -275.8961 -275.8961 4.3314 0.2888 1 99
8 -290.9747 -289.2354 5.3697 1.7393 58 52
9 -317.6993 -317.6993 5.8401 5.1589 80 87
10 -293.7200 -291.5225 2.7478 3.4538 13 71

2G2MM 200 1 -641.2487 -641.2487 46.5814 8.5470 36 84
2 -639.6214 -639.6214 41.2147 10.9624 24 90
3 -614.6207 -614.6207 51.6503 6.4063 32 86
4 -649.0452 -649.0452 41.9605 44.9120 38 74
5 -601.2019 -601.2019 48.6263 13.5209 24 92
6 -639.3088 -639.3088 48.3644 36.0411 32 82
7 -620.3321 -620.3321 51.3017 8.6157 28 92
8 -628.3622 -628.3622 50.9423 40.6184 38 76
9 -638.0752 -638.0752 42.3285 28.5713 28 74
10 -608.6429 -608.6429 45.6275 36.2843 32 84

3G2MM 200 1 -649.2168 -649.2168 59.0776 5.7646 2 92
2 -623.7199 -623.7199 58.4495 48.0424 26 16
3 -651.1126 -650.5690 54.814 16.0921 1 47
4 -633.3075 -633.3075 59.0551 32.7674 13 63
5 -642.5767 -642.5767 58.1452 24.5217 13 68
6 -630.5347 -625.4970 54.6974 8.2842 3 62
7 -640.8798 -634.9935 59.4298 9.8502 1 97
8 -638.4954 -638.4954 53.5249 37.5486 14 53
9 -620.5147 -621.5142 61.2547 48.2547 13 41
10 622.9948 -621.5530 62.7560 2.7384 3 33
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Table 9: Second trials of EMVNS Performance with random starting point

Model Sample TRIALS Global Maxima Local Maxima AVERAGE % Global Maxima
MS EMVNS MS EMVNS MS EMVNS

4G2MM 200 1 -743.1162 -743.1162 75.1187 50.8358 39 92
2 -749.2199 -749.2199 86.3220 64.6878 28 92
3 -756.3678 -756.3678 79.3128 68.4991 29 64
4 -760.3703 -760.3703 91.1277 55.7623 38 81
5 -763.3643 -763.3643 62.8596 58.2318 16 91
6 -741.3652 -741.3652 79.6966 20.2514 24 91
7 -752.9941 -752.9941 81.2247 34.6621 31 82
8 -752.2411 -752.2411 74.3248 56.7752 30 74
9 -748.2610 -748.2610 65.2544 12.5411 34 93
10 -758.6311 -758.6311 80.9817 70.2286 31 87

6G2MM 500 1 -1.0277e+03 -1.0277e+03 403.7125 4.5753 1 98
2 -977.9569 -981.0494 405.4793 4.3618 3 86
3 -1.0408e+03 -1.0400e+03 399.9315 126.5601 1 5
4 -975.4794 -970.2479 429.9173 7.1039 1 12
5 -998.3713 -995.6342 423.5845 243.0707 1 41
6 -989.1698 -986.5160 417.2788 12.1357 1 68
7 -995.4418 -994.0682 434.6577 191.5254 1 31
8 -1.0046e+03 -995.0639 446.2635 416.3952 1 31
9 -1.0188e+03 -1.0178e+03 429.0988 13.4971 1 48
10 -1.0463e+03 -1.0451e+03 401.8871 4.0569 1 85

8G2MM 700 1 -958.6579 -958.6579 1.0557e+03 75.3492 2 54
2 -1.0081e+03 -1.0081e+03 967.5115 73.8963 10 86
3 -1.0472e+03 -1.0472e+03 954.5972 125.2951 5 89
4 -1.0077e+03 -1.0077e+03 972.6653 147.8416 6 95
5 -1.0040e+03 -1.0040e+03 986.8095 201.4950 11 49
6 -1.0090e+03 -1.0090e+03 983.9204 881.9820 5 75
7 -1.0084e+03 -1.0732e+03 994.5039 10.3180 6 63
8 -984.7680 -984.7680 948.6578 76.3896 7 61
9 -1.0171e+03 -1.0171e+03 990.3082 744.9327 7 48
10 -978.5214 -978.5214 985.9514 601.1251 11 64

10G2MM 800 1 -1.1093e+03 -1.1065e+03 1.2574e+03 11.4995 1 24
2 -1.1698e+03 -1.1685e+03 1.2375e+03 6.0270 1 43
3 -1.1093e+03 -1.1076e+03 1.2574e+03 166.1510 1 19
4 -1.1848e+03 -1.1711e+03 1.2309e+03 18.0059 1 84
5 -1.1469e+03 -1.1466e+03 1.2061e+03 54.1790 1 8
6 -1.1682e+03 -1.1784e+03 1.2315e+03 971.8920 1 16
7 -1.1405e+03 -1.1329e+03 1.2375e+03 31.4003 1 15
8 -1.1202e+03 -1.1256e+03 1.2888e+03 30.4336 1 22
9 -1.1308e+03 -1.1074e+03 1.2363e+03 33.1973 1 28
10 -1.0882e+03 -1.0968e+03 1.3139e+03 5.9767 1 33
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