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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs.
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Abstract

This paper deals with the class of continuous-time singular uncertain linear systems
with time-varying delay in the state vector. The uncertainties we are considering are of
norm bounded type. Delay-dependent sufficient conditions on robust stability and robust
stabilizability are developed. A design algorithm for a memoryless state feedback con-
troller which guarantees that the closed-loop dynamics will be regular, impulse-free and
robust stable is proposed in terms of the solutions to linear matrix inequalities (LMIs).

Key Words: Singular systems, Continuous-time uncertain linear systems, Norm
bounded type uncertainties, Linear matrix inequality, Robust stability, Robust stabiliz-
ability, Memoryless state feedback.

Résumé

Cet article traite de la classe des systèmes incertains singuliers continus avec retard
variant dans le temps. Les incertitudes sont bornées en norme. Des conditions suffisantes
dépendantes du délai sur la stabilité et la stabilisabilité sont établies. Un algorithme de
design d’un correcteur par retour d’état assurant que le système en boucle fermée soit
régulier, sans impulsion et stable, est proposé sous forme d’inégalités matricielles.
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1 Introduction

During the last decades, we witnessed an increasing interest to the class of singular continuous-
time linear systems. Researchers from mathematics and control communities have contributed
widely to the development of the control of this class of systems which is also referred to as
descriptor systems, implicit systems, generalized state-space systems, differential-algebraic
systems or semi-state systems (see [1, 2]). Singular systems are more appropriate to describe
the behavior of some practical systems in different fields (see [1, 3–5]). Many problems for
the class of continuous-time and discrete-time singular linear systems have been tackled and
interesting results have been reported in the literature. Among these contributions we quote
those of [6–17], and the references therein.

Some practical systems that can be adequately modelled by the class of singular systems
that we are considering here may have time-delay and uncertainties in their dynamics which
may be the cause of instability and performance degradation of such systems (see [18]). There-
fore, more attention should be paid to this class of systems. To the best of our knowledge,
the class of continuous-time uncertain linear singular systems with time delays has not yet
been fully investigated. Particularly delay-dependent sufficient conditions are few even not
existing in the literature.

When the system is nonsingular and has time-delay either time-varying or constant delay,
the problem of stability or the one of stabilizability have been tackled by many researchers
and many results in the LMI setting have been reported in the literature. These results can
be divided in two categories, delay-independent and delay-dependent. The delay-independent
conditions are in general more conservative than the delay-dependent ones. But even for
the delay-dependent conditions the conservatism will dependent on the chosen Lyapunov
functional to establish the results. For more details on this matter, we refer the reader
to [18–26] and the references therein. In these references we witnessed interesting results with
less conservatism. A good review of the literature on all the recent advances on the class of
time-delay systems up to 2003 can be find in [24].

This paper deals with the problems of robust stability analysis and robust stabilization
for singular continuous-time linear systems with time delays. Firstly, we develop a delay-
dependent sufficient condition, which guarantees that the system is regular, impulse-free and
stable for all admissible uncertainties. Based on this, a delay-dependent sufficient condition
for the existence of a state feedback controller guaranteeing that the closed-loop dynamics
is regular, impulse-free and stable is proposed. Finally, a numerical example is provided to
demonstrate the effectiveness of the proposed results. All the developed results are in the
LMI framework which makes them more interesting since the solutions are easily obtained
using existing powerful tools like the LMI toolbox of Matlab or any equivalent tool.

The rest of this paper is organized as follows. In Section 2, the problem is formulated and
the goal of the paper is stated. In Section 3, the main results are given and they include
results on robust stability, and robust stabilizability. A memoryless controller is used in this
paper and a design algorithm in terms of the solutions to linear matrix inequalities is proposed
to synthesize the controller gains we are using.

Notation. Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional
Euclidean space and the set of all n × m real matrices. The superscript “T” denotes matrix
transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric
matrices, means that X −Y is positive semi-definite (respectively, positive definite). λmin(A)
and λmax(A) are minimal and maximal eigenvalues of the matrix A. I is the identity matrices
with compatible dimensions. L2 is the space of integral vector over [0,∞). ‖ · ‖ will refer to
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the Euclidean vector norm whereas ‖ · ‖ denotes the L2-norm over [0,∞) defined as ‖f‖2 =∫ ∞

0 fT (t)f(t) dt.

2 Problem Statement

Let x(t) ∈ R
n be the physical state of the studied system, which is assumed to satisfy the

following dynamics:

{
Eẋ(t) = [A + DAFAEA]x(t) + [A1 + DA1

FA1
EA1

] x(t − h(t)) + [B + DBFBEB ]u(t),

x(s) = φ(s), s ∈ [−h̄, 0]
(1)

where u(t) ∈ R
m is the control input system, A, A1, B, DA, EA, DA1

, EA1
, DB, and EB

are known real matrices with appropriate dimensions, the matrix E may be singular, and we
assume that rank(E) = nE ≤ n, h(t) represents the system delay that we assume to satisfy
0 ≤ h(t) ≤ h̄, with h̄ is a known constant, and φ(t) is a smooth vector-valued initial function

in [−h̄, 0] representing the initial condition of the system such that x(s) = φ(s) ∈ L2[−h, 0]
∆
=

{f(·)|
∫ ∞

0 f⊤(t)f(t)dt < ∞}.

The uncertainties FA, FA1
and FB are assumed to satisfy the following conditions:





F⊤
A

FA ≤ I

F⊤
A1

FA1
≤ I

F⊤
B

FB ≤ I

The uncertainties that satisfy these conditions are referred to as admissible.

Remark 2.1 When the matrix E = I the system will be called nonsingular and otherwise it
will be referred to as singular as it is the case in this paper. Most of the results on singular
systems will be in theorems and the ones related to nonsingular systems are given in form of
corollaries.

The following definitions will be used in the rest of this paper. For more details on the
singular systems properties, we refer the reader to [1, 13] and the references therein.

Definition 2.1 [13]

i. System (1) is said to be regular if the characteristic polynomial, det(sE − A) is not
identically zero.

ii. System (1) is said to be impulse-free, i.e. deg(det(sE − A)) = rank(E).

For more details on other properties and the existence of the solution of system (1), we refer
the reader to [13], and the references therein. In general, the regularity is often a sufficient
condition for the analysis and the synthesis of singular systems.

This paper studies the robust stability and the robust stabilizability of the class of systems
(1). Our main objective in this paper is to design a state feedback controller guaranteeing
that the closed-loop is regular, impulse-free and robust stable. In the rest of this paper, we
will assume the complete access to the system state. Our methodology in this paper will be
mainly based on the Lyapunov theory and some algebraic results. The conditions we will
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develop here will be in terms of the solutions to linear matrix inequalities that can be easily
obtained using LMI control toolbox. These conditions are delay-dependent, which makes
them less conservative compared to delay-independent conditions. The stabilizing controller
that we would like to design has the following form:

u(t) = Kx(t) (2)

where K is a design parameter that has to be determined.

Before closing this section, let us give some lemmas that we will use in our development.
The proofs of these lemmas can be found in the cited references.

Lemma 2.1 [18] Let H, F and G be real matrices of appropriate dimensions then, for any
scalar ε > 0 for all matrices F satisfying F⊤F ≤ I, we have:

HFG + G⊤F⊤H⊤ ≤ εHH⊤ + ε−1G⊤G (3)

Lemma 2.2 [18] The linear matrix inequality

[
H S⊤

S R

]
> 0

is equivalent to

R > 0,H − S⊤R−1S > 0

where H = H⊤, R = R⊤ and S is a constant matrix.

3 Main Results

In this section, we will firstly develop results that assure that the free system (i.e. u(t) = 0 for
all t ≥ 0) is regular, impulse-free and robust stable. Then using these results, we will design
a state feedback controller of the form (2) that guarantees the same goal. Delay-dependent
sufficient conditions are developed in the LMI setting.

Let us now consider the free nominal system (all the uncertainties are equal to zero) and see
under which conditions the corresponding dynamics will be regular, impulse-free and stable.
The following theorem gives such results.

Theorem 3.1 The free nominal singular linear system (1) is regular, impulse-free and stable
if there exist a nonsingular matrix P and symmetric and positive-definite matrices Q > 0,
and R > 0, such that the following set of LMIs holds:

E⊤P = P⊤E ≥ 0 (4)[
R P⊤

P I

]
> 0 (5)




J P⊤A1 − P⊤E h̄A⊤

A⊤
1 P − E⊤P −Q h̄A⊤

1

h̄A h̄A1 −h̄I


 < 0. (6)

where J = P⊤A + A⊤P + Q + P⊤E + E⊤P + h̄R.
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Proof. The proof of this theorem is divided into two parts. The first one deals with the
regularity and impulse-free properties and the second one treats the stability property of the
studied class of systems. Let us first of all show that the free system (1) is regular and impulse-
free, which is equivalent to say that (E,A + A1) and (E,A) are regular and impulse-free for
any time-delay h(t) ≥ 0. Using (6), it is easy to see that the following holds:

[
J P⊤A1 − P⊤E

A⊤
1 P − E⊤P −Q

]
< 0

which gives:

J +
(
P⊤A1 − P⊤E

)
Q−1

(
A⊤

1 P − E⊤P
)

< 0

Using the fact that:

(
P⊤A1 − P⊤E

)
+

(
A⊤

1 P − E⊤P
)
≤ Q +

(
P⊤A1 − P⊤E

)
Q−1

(
A⊤

1 P − E⊤P
)

and the fact that Q > 0, R > 0 and h̄ > 0, we get:

(A + A1)
⊤ P + P⊤ (A + A1) < 0

which implies that (E,A + A1) is regular and impulse-free.

Similarly using (6), it is easy to see that the following holds:

P⊤A + A⊤P < 0 (7)

Now, choose two nonsingular matrices M̂ and N̂ such that

M̂EN̂ =

[
I 0
0 0

]

and write

M̂AN̂ =

[
Â1 Â2

Â3 Â4

]
, M̂−⊤PN̂ =

[
P̂1 P̂2

P̂3 P̂4

]
.

Then, using (4), it can be shown that P̂2 = 0. Pre- and post-multiplying (7) by N̂⊤ and

N̂ , respectively, we get:

[
⋆ ⋆

⋆ Â⊤
4 P̂4 + P̂⊤

4 Â4

]
< 0,

where ⋆ will not be used in the following development. Then, from this, we get:

Â⊤
4 P̂4 + P̂⊤

4 Â4 < 0

which implies that Â4 is nonsingular. Therefore, system (1) is regular and impulse-free.
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Let us now show the stability. For this purpose, since the free system (1) is regular and

impulse-free, we can choose two nonsingular matrices M̃ and Ñ such that

M̃EÑ =

[
I 0
0 0

]
, M̃AÑ =

[
Ã 0
0 I

]
.

Then, by defining:

P̃ = M̃−⊤PÑ =

[
P̃1 P̃2

P̃3 P̃4

]
, Q̃ = Ñ⊤QÑ =

[
Q̃1 Q̃2

Q̃⊤
2 Q̃4

]
,

M̃A1Ñ =

[
Ã11 Ã12

Ã13 Ã14

]
, R̃ = Ñ⊤RÑ =

[
R̃1 R̃2

R̃⊤
2 R̃4

]
,

then, system (1) becomes equivalent to the following one:

ξ̇1(t) = Aξ1(t) + Ã11ξ1(t − h(t)) + Ã12ξ2(t − h(t)),

0 = ξ2(t) + Ã13ξ1(t − h(t)) + Ã14ξ2(t − h(t)).

where

ξ(t) =

[
ξ1(t)
ξ2(t)

]
= Ñ−1x(t).

Using (6), it is easy to see that the following holds:

[
J P⊤A1 − P⊤E

A⊤
1 P − E⊤P −Q

]
< 0 (8)

Now, pre- and post-multiplying (8) by diag
(
Ñ⊤, Ñ⊤

)
and its transpose, and using the

fact that P̃2 = 0, we get:




⋆ ⋆ ⋆ ⋆

⋆ P̃4 + P̃⊤
4 + Q̃4 + h̄R̃4 ⋆ P̃⊤

4 Ã14

⋆ ⋆ ⋆ ⋆

⋆ Ã⊤
14P̃4 ⋆ −Q̃4


 < 0

which implies that the following holds:

[
P̃4 + P̃⊤

4 + Q̃4 + h̄R̃4 P̃⊤
4 Ã14

Ã⊤
14P4 −Q̃4

]
< 0.

Using the fact that R̃ > 0 and pre- and post-multiply this by
[
−Ã⊤

14 I

]
and

[
−Ã14

I

]

respectively, we get: Ã⊤
14Q̃4Ã14 − Q̃4 < 0. Therefore, it results that the following holds:
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ρ
(
Ã14

)
< 1. (9)

where ρ(Ã14) is the spectral radius of the matrix Ã14.

Now, let us choose the following Lyapunov functional:

V (x(t), rt) = x⊤(t)E⊤Px(t) +

∫ 0

−h̄

Q(t, s)ds +

∫ 0

−h̄

∫
t

t+v

(Eẋ(s))⊤IEẋ(s)dsdv

+

∫
t

0

∫
v

v−h(v)

[
x⊤(v) (Eẋ(s))⊤

] [
R P⊤

P I

] [
x(v)

Eẋ(s)

]
dsdv,

with Q(t, s) = sups≤v≤0 x⊤(t + v)Qx(t + v).

Then, we have

V̇ (x(t)) ≤ x⊤(t)
[
A⊤P + P⊤A + Q + P⊤E + E⊤P + h̄R

]
x(t)

+x⊤(t)h̄A⊤
IAx(t) + x⊤(t)

[
P⊤A1 + h̄A⊤

IA1 − P⊤E
]
x(t − h(t))

+x⊤(t − h(t))
[
A⊤

1 P + h̄A⊤
1 IA − E⊤P

]
x(t)

+x⊤(t − h(t))
[
−Q + h̄A⊤

1 IA1

]
x(t − h(t))

, χ⊤(t)

[
Ψ + h̄

[
A⊤

A⊤
1

]
I
[

A A1

]]
χ(t) = χ⊤(t)Γχ(t) (10)

where

χ(t) =
[

x⊤(t) x⊤(t − h(t))
]⊤

,

Ψ =

[
J P⊤A1 − P⊤E

A⊤
1 P − E⊤P −Q

]
.

Using now (6), (9), (10), we conclude that V̇ (x(t)) < 0. Using now this fact and the change

of variable, ξ(t) = Ñ−1x(t), we get:

α‖ξ1(t)‖
2 − V (x(0)) ≤ x⊤(t)E⊤Px(t) − V (x(0))

≤ V (x(t) − V (x(0))

,

∫
t

0
V̇ (Ñξ(v))dv

≤ −β

∫
t

0
‖ξ(v)‖2dv

≤ −β

∫
t

0
‖ξ1(v)‖2dv < 0

with α = λmin(P̂1) > 0 and β = −λmax(Ñ⊤ΓÑ) > 0.
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From this we conclude that α‖ξ1(t)‖
2 + β

∫
t

0 ‖ξ1(v)‖2dv ≤ V (x(0)), which implies that

‖ξ1(t)‖ and
∫

t

0 ‖ξ1(v)‖2dv are bounded, i.e.:

0 ≤ ‖ξ1(t)‖
2 ≤ α−1V (x(0))

0 ≤

∫
t

0
‖ξ1(v)‖2dv ≤ β−1V (x(0))

which implies in turn that ‖ξ2(t)‖ is bounded too from the equivalent dynamics after the

variable change. In consequence, ‖ξ̇(t)‖ is bounded and uniformly continuous and by using
the well known Barbalat’s results we conclude that ξ1(t) goes to zero as t goes to infinity.

From the other side, using the fact that: 0 = ξ2(t) + Ã13ξ1(t − h(t)) + Ã14ξ2(t − h(t)), we
conclude also that ξ2(t) will go to zero when t goes to infinity. This implies that system (1)
is stable. This completes the proof. 2

Remark 3.1 The condition we developed in this theorem gives a delay-dependent sufficient
condition which once it is satisfied will guarantee that the considered system is regular, impulse-
free and stable. The results of this theorem can be easily extended to handle the case of multiple
time-varying delays with the classical appropriate assumptions.

Let us now see how we can design a state feedback controller that guarantees that the
closed-loop dynamics of the nominal system will be regular, impulse-free and stable. Com-
bining the dynamics of the nominal system and the controller expression give:

Eẋ(t) = Ax(t) + A1x(t − h(t)) + BKx(t) = [A + BK]x(t) + A1x(t − h(t))

= Aclx(t) + A1x(t − h(t))

x(s) = φ(s), s ∈ [−h̄, 0]

with Acl = A + BK.

Based on the results of Theorem 3.1, this dynamics will be regular, impulse-free and stable
if there exist a nonsingular matrix P and symmetric and positive-definite matrices Q > 0,
and R > 0 such the following set of LMIs holds:

E⊤P = P⊤E ≥ 0[
R P⊤

P I

]
> 0




J P⊤A1 − P⊤E h̄ [A + BK]⊤

A⊤
1 P − E⊤P −Q h̄A⊤

1

h̄ [A + BK] h̄A1 −h̄I


 < 0,

where J = P⊤ [A + BK] + [A + BK]⊤ P + Q + P⊤E + E⊤P + h̄R.

Pre- and post-multiplying the last matrix inequality respectively by diag
(
P−⊤, P−⊤, I

)

and its transpose, give:




JP A1P
−1 − EP−1 h̄

[
AP−1 + BKP−1

]⊤
P−⊤A⊤

1 − P−⊤E⊤ −P−⊤QP−1 h̄P−⊤A⊤
1

h̄
[
AP−1 + BKP−1

]
h̄A1P

−1 −h̄I


 < 0,
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where JP =
[
AP−1 + BKP−1

]
+

[
AP−1 + BKP−1

]⊤
+ P−⊤QP−1 + EP−1 + P−⊤E⊤ +

h̄P−⊤RP−1.

Letting X = P−1, Z = P−⊤QP−1, W = P−⊤RP−1, and Y = KX, we get:




JX A1X − EX h̄ [AX + BY ]⊤

X⊤A⊤
1 − X⊤E⊤ −Z h̄X⊤A⊤

1

h̄ [AX + BY ] h̄A1X −h̄I


 < 0,

where JX = AX + BY + X⊤A⊤ + Y ⊤B⊤ + Z + EX + X⊤E⊤ + h̄W .

Noting that

[
R P⊤

P I

]
> 0 can be rewritten after pre- and post-multiplying the left hand

side respectively by diag
(
P−⊤, I

)
and its transpose as follows:

[
W I

I I

]
> 0. In a similar

way the condition E⊤P = P⊤E ≥ 0 can be rewritten as: X⊤E⊤ = EX ≥ 0.

Using now all these developments, we get the following results for the stabilization for our
class of systems.

Theorem 3.2 There exists a state feedback controller of the form (2) such that the closed-
loop system (1) is regular, impulse-free and stable if there exist a nonsingular matrix X, a
matrix Y , and symmetric and positive-definite matrices Z > 0, and W > 0, such that the
following set of LMIs holds:

X⊤E⊤ = EX ≥ 0 (11)[
W I

I I

]
> 0 (12)




JX A1X − EX h̄ [AX + BY ]⊤

X⊤A⊤
1 − X⊤E⊤ −Z h̄X⊤A⊤

1

h̄ [AX + BY ] h̄A1X −h̄I


 < 0, (13)

where

JX = AX + X⊤A⊤ + BY + B⊤Y ⊤ + EX + X⊤E⊤ + Z + h̄W

The stabilizing controller gain is given by K = Y X−1.

Let us now consider the effect of the uncertainties and develop similar results on robust
stability. For this purpose, let us consider the free uncertain system (1). Based on the results
of Theorem 3.1, this dynamics will be regular, impulse-free and stable if there exist a matrix
P and symmetric and positive-definite matrices Q > 0, and R > 0 such the following set of
LMIs holds:

E⊤P = P⊤E ≥ 0[
R P⊤

P I

]
> 0




J P⊤ [A1 + DA1
FA1

EA1
] − P⊤E h̄ [A + DAFAEA]⊤

[A1 + DA1
FA1

EA1
]⊤ P − E⊤P −Q h̄ [A1 + DA1

FA1
EA1

]⊤

h̄ [A + DAFAEA] h̄ [A1 + DA1
FA1

EA1
] −h̄I


 < 0,
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where J = P⊤ [A + DAFAEA] + [A + DAFAEA]⊤ P + Q + P⊤E + E⊤P + h̄R.

The last LMI can be rewritten as follows:



J0 P⊤A1 − P⊤E h̄A⊤

A⊤
1 P − E⊤P −Q h̄A⊤

1

h̄A h̄A1 −h̄I


 +




P⊤DA

0
h̄DA


 FA

[
EA 0 0

]

+






P⊤DA

0
h̄DA


 FA

[
EA 0 0

]


⊤

+




P⊤DA1

0
h̄DA1


FA1

[
0 EA1

0
]

+






P⊤DA1

0
h̄DA1


FA1

[
0 EA1

0
]


⊤

< 0,

where J0 = P⊤A + A⊤P + Q + P⊤E + E⊤P + h̄R.

Using Lemma 2.1 and Schur complement, we get the following results.

Theorem 3.3 The free singular linear system (1) is regular, impulse-free and robust stable if
there exist a nonsingular matrix P , and symmetric and positive-definite matrices Q > 0, and
R > 0, and positive scalars εA and εA1

such that the following set of LMIs holds:

E⊤P = P⊤E ≥ 0 (14)[
R P⊤

P I

]
> 0 (15)




J P⊤A1 − P⊤E h̄A⊤ P⊤DA P⊤DA1

A⊤
1 P − E⊤P −Q + εA1

E⊤
A1

EA1
h̄A⊤

1 0 0

h̄A h̄A1 −h̄I h̄DA h̄DA1

D⊤
A

P 0 h̄D⊤
A

−εAI 0
D⊤

A1
P 0 h̄D⊤

A1
0 −εA1

I




< 0, (16)

where J = P⊤A + A⊤P + Q + P⊤E + E⊤P + h̄R + εAE⊤
A

EA.

Remark 3.2 Notice that our conditions are only sufficient and they should be satisfied to
conclude on the robust stability of our systems. When the conditions are not satisfied no
conclusion can be given. This means that we cannot conclude that the system is not robustly
stable.

When the matrix E is nonsingular, the results in this case can be obtained by setting E
equal to I with the appropriate transformations. The corresponding results are given by the
following corollary:

Corollary 3.1 The free singular linear system (1) is regular, impulse-free and robust stable
if there exist symmetric and positive-definite matrices P , Q > 0, and R > 0, and positive
scalars εA and εA1

such that the following set of LMIs holds: (15) and (16) with E = I.

Let us now concentrate on the design of a state feedback controller of the form (2) which
guarantees that the closed-loop will be regular, impulse-free and robust stable. Our objective
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is to establish LMI conditions that can determine the gain, K of the desired controller. To
assure less conservatism a delay-dependent sufficient conditions are needed. For this purpose,
we will use our previous results of Theorem 3.2. Plugging now, the controller (2) in the
dynamics (1) gives:

{
ẋ(t) = Aclx(t) + [A1 + DA1

FA1
EA1

] x(t − h(t))

x(s) = φ(s), s ∈ [−h̄, 0]
(17)

where Acl = A + DAFAEA + BK + DBFBEBK.

Based on the results of Theorem 3.2, this dynamics will be regular, impulse-free and robust
stable if there exist a nonsingular matrix X, a matrix Y , and symmetric and positive-definite
matrices Z > 0, and W > 0, such that the following set of LMIs holds:

X⊤E⊤ = EX ≥ 0,[
W I

I I

]
> 0,




ĴX U T

U⊤ −Z h̄X⊤A⊤
1 + h [DA1

FA1
EA1

X]⊤

T⊤ h̄A1X + DA1
FA1

EA1
X −h̄I


 < 0,

where

T = h̄ [AX + BY ]⊤ + h [DAFAEAX]⊤ + h [DBFBEBY ]⊤

U = A1X − EX + DA1
FA1

EA1
X

ĴX = AX + X⊤A⊤ + BY + B⊤Y ⊤ + EX + X⊤E⊤ + Z + h̄W

+DAFAEAX + X⊤E⊤
AF⊤

A D⊤
A + DBFBEBY + Y ⊤E⊤

BF⊤
B D⊤

B

Using the fact that:



DAFAEAX 0 0
0 0 0

h̄DAFAEAX 0 0


 =




DA

0
h̄DA


 FA

[
EAX 0 0

]




DA1
FA1

EA1
X 0 0

0 0 0
0 h̄DA1

FA1
EA1

X 0


 =




DA1

0
h̄DA1


 FA1

[
0 EA1

X 0
]




DBFBEBY 0 0
0 0 0

h̄DBFBEBY 0 0


 =




DB

0
h̄DB


 FB

[
EBY 0 0

]

the third matrix inequality can be rewritten as follows:




ĴX A1X − EX h̄ [AX + BY ]⊤

X⊤A⊤
1 − X⊤E⊤ −Z h̄X⊤A⊤

1

h̄ [AX + BY ] h̄A1X −h̄I
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+




DA

0
h̄DA


 FA

[
EAX 0 0

]
+






DA

0
h̄DA


 FA

[
EAX 0 0

]


⊤

+




DA1

0
h̄DA1


 FA1

[
0 EA1

X 0
]
+






DA1

0
h̄DA1


 FA1

[
0 EA1

X 0
]


⊤

+




DB

0
h̄DB


 FB

[
EBY 0 0

]
+







DB

0
h̄DB


 FB

[
EBY 0 0

]


⊤

< 0,

where

ĴX = AX + X⊤A⊤ + BY + B⊤Y ⊤ + EX + X⊤E⊤ + Z + h̄W.

Using now Lemma 2.1, we get:



ĴX A1X − EX h̄ [AX + BY ]⊤

X⊤A⊤
1 − X⊤E⊤ −Z h̄X⊤A⊤

1

h̄ [AX + BY ] h̄A1X −h̄I




+εA




DA

0
h̄DA


 [

D⊤
A

0 h̄D⊤
A

]
+ ε−1

A




X⊤E⊤
A

0
0


[

EAX 0 0
]

+εA1




DA1

0
h̄DA1


 [

D⊤
A1

0 h̄D⊤
A1

]
+ ε−1

A1




0
X⊤E⊤

A1

0


 [

0 EA1
X 0

]

+εB




DB

0
h̄DB


[

D⊤
B

0 h̄D⊤
B

]
+ ε−1

B




Y ⊤E⊤
B

0
0


[

EBY 0 0
]

< 0,

which can be rewritten as:



ĴX A1X − EX h̄ [AX + BY ]⊤

X⊤A⊤
1 − X⊤E⊤ −Z h̄X⊤A⊤

1

h̄ [AX + BY ] h̄A1X −h̄I




+εA




DAD⊤
A

0 h̄DAD⊤
A

0 0 0
h̄DAD⊤

A
0 h̄2DAD⊤

A


 + ε−1

A




X⊤E⊤
A

0
0


[

EAX 0 0
]

+εA1




DA1
D⊤

A1
0 h̄DA1

D⊤
A1

0 0 0
h̄DA1

D⊤
A1

0 h̄2DA1
D⊤

A1


 + ε−1

A1




0
X⊤E⊤

A1

0


 [

0 EA1
X 0

]

+εB




DBD⊤
B

0 h̄DBD⊤
B

0 0 0
h̄DBD⊤

B
0 h̄2DBD⊤

B


 + ε−1

B




Y ⊤E⊤
B

0
0


 [

EBY 0 0
]

< 0,

Using now Schur complement 2.2, we get the results for the stabilization for our class of
systems.
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Theorem 3.4 There exists a state feedback controller of the form (2) such that the closed-
loop system (1) is regular, impulse-free and stable if there exist a nonsingular matrix X, a
matrix Y , and symmetric and positive-definite matrices Z > 0, and W > 0, such that the
following set of LMIs holds:

X⊤E⊤ = EX ≥ 0 (18)[
W I

I I

]
> 0 (19)




ĴX + V A1X − EX h̄ [AX + BY ]⊤ + h̄V

X⊤A⊤
1 − X⊤E⊤ −Z h̄X⊤A⊤

1

h̄ [AX + BY ] + h̄V h̄A1X −h̄I + h̄2V

EAX 0 0
0 EA1

X 0
EBY 0 0

X⊤E⊤
A

0 Y ⊤E⊤
B

0 X⊤E⊤
A1

0

0 0 0
−εAI 0 0

0 −εA1
I 0

0 0 −εBI




< 0, (20)

where

ĴX = AX + X⊤A⊤ + BY + B⊤Y ⊤ + EX + X⊤E⊤ + Z + h̄W

V = εADAD⊤
A + εA1

DA1
D⊤

A1
+ εBDBD⊤

B

The stabilizing controller gain is given by K = Y X−1.

In a similar way, we can get the following results for nonsingular systems with time-delay
in the state vector.

Corollary 3.2 There exists a state feedback controller of the form (2) such that the closed-
loop system (1) is regular, impulse-free and stable if there exist a matrix Y , and symmetric
and positive-definite matrices X > 0, Z > 0, and W > 0 such that the following set of LMIs
holds: (19) and (20) with E = I. The stabilizing controller gain is given by K = Y X−1.

4 Numerical Example

To show the validness of our results, let us consider a numerical example of a singular system
with state space in R

3. The date of this system are as follow:

A =




1.0 1.5 1.0
−0.2 1.0 2.0
0.0 0.0 0.1


 , A1 =




−1.5 1.0 0.0
0.2 0.0 0.5
1.3 0.5 −1.6


 , B =




1.5 0.0 0.0
1.0 −1.0 0.0
−1 0.0 −2.0




DA = diag [0.1, 0.2, 0.1] , EA = diag [0.3, 0.1, 0.1] ,DA1
= diag [0.2, 0.2, 0.3] ,

EA1
= diag [0.1, 0.1, 0.2] ,DB = diag [0.3, 0.1, 0.4] , EB = diag [0.1, 0.2, 0.2] ,
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The singular matrix E is given by the following expression:

E =




1 0 0
0 1 0
0 0 0


 ,

Solving the LMIs (18)-(20) with h̄ = 0.64, d = 0.8 and εA = εA1
= εB = 0.1, we get:

Z =




0.2340 0.1320 −0.0632
0.1320 0.1791 −0.0135
−0.0632 −0.0135 0.3462


 ,X =




0.0248 0.0174 0
0.0174 0.0236 0
0.0041 −0.0259 −0.0078


 ,

Y =




−0.7660 −0.1940 0.0797
−0.4768 0.7475 0.0112
0.3227 0.0263 0.5986


 ,W =




1.1706 0.0904 −0.0449
0.0904 1.1290 −0.0098
−0.0449 −0.0098 1.2704




which gives the following gains:

K =




−0.0308 −0.0290 −0.0011
0.0033 0.0135 −0.0005
0.0233 −0.0282 −0.0124


 .

For this system, we are able to find a feasible solution for the set of LMI for any h ∈ [0, 0.74].
This means that the maximum delay under which the system is stabilizable is 0.74.

5 Conclusion

This paper dealt with the class of continuous-time singular linear systems with time-delay in
the state vector. Results on stability and its robustness, and stabilizability and its robustness
are developed. The LMI framework is used to establish the different results on stability and
stabilizability. The conditions we developed are delay-dependent. The results we developed
can easily be solved using any LMI toolbox like the one of Matlab or the one of Scilab.
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