Edge Realizability of Connected Simple Graphs

G. Caporossi, P. Hansen, D. Vukičević

G-2008-62
September 2008

Les textes publiés dans la série des rapports de recherche HEC n'engagent que la responsabilité de leurs auteurs. La publication de ces rapports de recherche bénéficie d'une subvention du Fonds québécois de la recherche sur la nature et les technologies.

Edge Realizability of Connected Simple Graphs

Gilles Caporossi
Pierre Hansen
GERAD and HEC Montréal
3000, chemin de la Côte-Sainte-Catherine
Montréal (Québec) Canada, H3T 2A7
\{gilles.caporossi, pierre.hansen\}@gerad.ca
Damir Vukičević
Department of Mathematics
University of Split
Nikole Tesle 12
HR-21000 Split, Croatia
vukicevi@pmfst.hr

September 2008

Les Cahiers du GERAD
G-2008-62

Copyright © 2008 GERAD

Abstract

Necessary and sufficient conditions are provided for existence of a simple graph G, and for a simple and connected graph G^{\prime} with given numbers $m_{i j}$ of edges with end-degrees i, j for $i \leq j \in\{1,2, \ldots, \Delta\}$ where Δ denotes the maximum degree of G or G^{\prime}.

\section*{Résumé}

On présente des conditions nécessaires et suffisantes pour l'existence d'un graphe simple G et d'un graphe simple et connexe G^{\prime} avec des nombres donnés $m_{i j}$ d'arêtes dont les degrés des sommets sont i et j pour $i \leq j \in 1,2, \ldots, \Delta$ où Δ désigne le degré maximum de G ou de G^{\prime}.

1 Introduction

Realizability problems in graph theory consist in finding necessary and/or sufficient conditions for graphs with prescribed values of some invariants to exist, and to provide algorithms to obtain such graphs. Since, the pioneering work of S. L. Hakimi $[1,2]$ they are mostly focused on conditions related to the degrees of the graph under study. More recently conditions involving the pairs of degrees of edges have been studied in mathematical chemistry. On the one hand, such conditions have been used by Caporossi et al. [3] to determine trees with minimum Randić index [4] using mixed integer programming. This approach was extended by several authors [5, 6, 7]. On the other hand, such conditions have also been investigated by Vukičević and Graovac [8, 9, 10] and Vukičević and Trinajstić [11, 12] to analyze discriminative properties of molecular descriptors such as the Zagreb index [13], modified Zagreb index [14] and Randic index. Several classes of graphs have been considered: chemical trees, i.e. trees with maximal degree 4 [15], unicyclic chemical graphs [9], and general chemical graphs [12].

Given a class Γ of graphs G, the edge realizability problem can be defined as follows: find necessary and sufficient conditions on the numbers $m_{i j}$ of edges with vertex degrees i and j for a graph G in that class Γ to exist.

In this note, we consider the edge realizability problem for the classes of simple graphs and of connected simple graphs for which the maximum degree Δ is given. Results obtained generalize those of $[9,12,15]$ for chemical graphs.

2 Edge Realizability of Simple Graphs

Let us introduce some notation. Let $G=(V(G), E(G))$ denote an arbitrary graph with vertex set $V(G)$ and edge set $E(G)$. Its order $n(G)=|V(G)|$ and size $m(G)=|E(G)|$. Moreover, let $n_{i}(G)$ denote the number of vertices of degree i in G and $m_{i j}(G)$ the number of edges with end-vertex degrees i and j in G (multiple edges contribute by their multiplicity to both of their end-degrees and loops contribute by 2 to the degree of their unique end-vertex).

We next characterize the vectors of numbers $m_{i j}$ for which exists a simple graph G, i.e. a graph without loops or multiple edges.

Theorem 1 Let Δ be an arbitrary integer and $M=\left[m_{i j}\right]$ a symmetric matrix of non-negative integers of order Δ. Then, there is a simple graph G with exactly $m_{i j}$ edges connecting vertices of degrees i and j if and only if the following conditions hold:

1) $n_{i}=\frac{\sum_{j=1}^{\Delta} m_{i j}+m_{i i}}{i}$ is a non-negative integer for $i=1, \ldots, \Delta$;
2) $m_{i i} \leq\binom{ n_{i}}{2}$, for all $i=1, \ldots, \Delta$;
3) $m_{i j} \leq n_{i} \cdot n_{j}$, for all $i \neq j \in\{1, \ldots, \Delta\}$.

Proof. Necessity: let G be a graph that corresponds to matrix M. The number of vertices of degree i in graph G is equal to $\frac{\sum_{j=1}^{\Delta} m_{i j}+m_{i i}}{i}$, hence it is a non-negative integer. Since G is a simple graph, there are at most $\binom{n_{i}}{2}^{i}$ edges that connect vertices of degree i, therefore $m_{i i} \leq\binom{ n_{i}}{2}$, for all i. Similarly, $m_{i j} \leq n_{i} \cdot n_{j}$ for all $i \neq j$.

Sufficiency: first let us prove that there is a graph G_{1} (not necessarily simple or connected) such that $m_{i j}=m_{i j}(G)$ for all i and j. Let Γ_{1} be the family of graphs G_{1}^{\prime} that satisfy the following conditions:

1) $N\left(G_{1}^{\prime}\right)=\underset{i \in\{1, \ldots, \Delta\}}{\bigcup} X_{i},\left|X_{i}\right|=n_{i}$ where the sets X_{i} are pairwise disjoint;
2) for each $v_{i} \in X_{i}$, the degree $d\left(v_{i}\right) \leq i$.

Note that Γ_{1} is a non-empty set as it contains an empty graph. Let $G_{1}^{\prime \prime}$ be a graph with the maximal number of edges in Γ_{1}. If $d\left(v_{i}\right)=i$ for each $v_{i} \in X_{i}$ and $i \in\{1, \ldots, \Delta\}$, then it is sufficient to take $G_{1}=G_{1}^{\prime \prime}$. Assume the contrary. From, the hand-shaking Lemma, it follows that there are two cases:

CASE A1: There are vertices $v_{i} \in X_{i}$ and $v_{j} \in X_{j}$ such that $d\left(v_{i}\right)<i$ and $d\left(v_{j}\right)<j$. Then, the graph $G^{\prime \prime}+v_{i} v_{j}$ is also in Γ_{1}, which is in contradiction with maximality of $G_{1}^{\prime \prime}$.

CASE A2: There is a vertex $v_{i} \in X_{i}$ such that $d\left(v_{i}\right)<i-2$. Then, the graph $G^{\prime \prime}+v_{i} v_{i}$ (with a loop at vertex v_{i}) is also in Γ_{1}, which contradicts again the maximality of $G_{1}^{\prime \prime}$.

Let Γ_{2} be the set of graphs G_{2}^{\prime} such that exactly $m_{i j}$ edges connect vertices of degrees i and j in G_{2}^{\prime}. Note that Γ_{2} is non-empty, because at least $G_{1} \in \Gamma_{2}$. Let us prove that there is a loopless graph G_{2} in Γ_{2}. Let $G_{2}^{\prime \prime}$ be a graph in Γ_{2} with the smallest number of loops. If $G_{2}^{\prime \prime}$ has no loops, it is sufficient to take $G_{2}=G_{2}^{\prime \prime}$. Assume the contrary. Let v_{i} be a vertex of degree i with a loop. Since $1 \leq m_{i i} \leq\binom{ n_{1}}{2}$, it follows that $n_{i} \geq 2$, hence there is a vertex $w_{i} \neq v_{i}$ of degree i. Distinguish two cases:

CASE B1: w_{i} is incident to a loop $w_{i} w_{i}$. In this case graph $G_{2}^{\prime \prime}-v_{i} v_{i}-w_{i} w_{i}+2 \cdot v_{i} w_{i} \in \Gamma_{2}$ and has a smaller number of loops than $G_{2}^{\prime \prime}$, which contradicts the minimality of $G_{2}^{\prime \prime}$.

CASE B2: w_{i} is not incident with any loop. Then w_{i} has a neighbor $p \neq v_{i}$ and the graph $G_{2}^{\prime \prime}-v_{i} v_{i}-w_{i} p+v_{i} p+v_{i} w_{i} \in \Gamma_{2}$ and has a smaller number of loops than $G_{2}^{\prime \prime}$, which contradicts the minimality of $G_{2}^{\prime \prime}$.

Let Γ_{3} be the set of all loopless graphs G_{3}^{\prime} such that exactly $m_{i j}$ edges connect vertices of degrees i and j in G_{3}^{\prime}. Note that Γ_{3} is non-empty, because at least $G_{2} \in \Gamma_{3}$. Let us prove that there is a simple graph $G_{3} \in \Gamma_{3}$. Let $G_{3}^{\prime \prime}$ be a graph in Γ_{3} with the smallest number of repetition of edges where double edge are counted for one repetition, triple edge for two, quadruple for three and so forth. If $G_{3}^{\prime \prime}$ has no multiple edges, it is sufficient to take $G=G_{3}^{\prime \prime}$. Assume the contrary, i.e. that there is pair of vertices v_{i} and v_{j} that are connected by a multiple edge. Then, at least one vertex $w_{i}\left(w_{i}\right.$ is not necessarily different from $\left.v_{i}\right)$ of degree i is not connected to the vertex $w_{j}\left(w_{j}\right.$ is not necessarily different from v_{j}) of degree j. We distinguish three case:

CASE C1: $w_{i}=v_{i}$ and $w_{j} \neq v_{j}$.
If there is a vertex q connected with w_{j} by a multiple edge, then the graph $G_{3}^{\prime \prime}-v_{i} v_{j}-$ $w_{j} q+v_{i} w_{j}+v_{j} q \in \Gamma_{3}$ has at least one repetition of edge less then $G_{3}^{\prime \prime}$ (because $v_{i} w_{j}$ is not a multiple edge) which is a contradiction. Hence, suppose that all edges incident to w_{j} are single. It follows that w_{j} has more neighbors than v_{j}, because they are of the same degree and w_{j} has multiple edges. Let $w_{j} p \in E\left(G_{3}^{\prime \prime}\right)$ and $v_{j} p \notin E\left(G_{3}^{\prime \prime}\right)$. Note that graph $G_{3}^{\prime \prime}-v_{i} v_{j}-p w_{j}+v_{i} w_{j}+v_{j} p \in \Gamma_{3}$ has at least one repetition of edges less then $G_{3}^{\prime \prime}$ (because $v_{i} w_{j}$ and $v_{j} p$ are not multiple edges) which is a contradiction.

CASE C2: $\quad w_{i} \neq v_{i}$ and $w_{j}=v_{j}$.
By symmetry, a proof similar to that of CASE C1 holds.
CASE C3: $\quad w_{i} \neq v_{i}$ and $w_{j} \neq v_{j}$.
We may assume that $v_{i} w_{j}, w_{i} v_{j} \in E\left(G_{3}^{\prime \prime}\right)$, because otherwise we have the situation analyzed in previous cases. Distinguish two subcases:

SUBCASE C3.1 At least one of the vertices w_{i} and w_{j} is incident to a multiple edge. Without loss of generality (because of the symmetry) we may assume that w_{i} is connected with vertex p by a multiple edge. Than, graph $G_{3}^{\prime \prime \prime}=G_{3}^{\prime \prime}-v_{i} v_{j}-w_{i} p+w_{i} v_{j}+v_{i} p$ has at most as many repetitions of edges as $G_{3}^{\prime \prime}$, but vertices w_{i}, v_{j} and w_{j} in $G_{3}^{\prime \prime \prime}$ (with relabeling $w_{i} \leftrightarrow v_{i}$) satisfy the conditions of Case C1, which is a contradiction.

SUBCASE C3.2 Vertices w_{i} and w_{j} are incident only to single edges. Since v_{i} and w_{i} are of the same degree, but w_{i} is incident only to single edges, it follows that there is a vertex z_{i} such that $w_{i} z_{i} \in E\left(G_{3}^{\prime \prime}\right)$ and $v_{i} z_{i} \notin E\left(G_{3}^{\prime \prime}\right)$. Similarly, there is a vertex z_{j} such that $w_{j} z_{j} \in E\left(G_{3}^{\prime \prime}\right)$ and $v_{j} z_{j} \notin E\left(G_{3}^{\prime \prime}\right)$ (vertices z_{i} and z_{j} are not necessarily distinct). Graph $G_{3}^{\prime \prime}-v_{i} v_{j}-w_{i} z_{i}-w_{j} z_{j}+v_{i} z_{i}+v_{j} z_{j}+w_{i} w_{j} \in \Gamma_{3}$ has a smaller number of multiple edges than G_{3}, which is a contradiction.

3 Edge Realizability of Connected Simple Graphs

A supplementary family of constraints must be added to those of Theorem 1 in order to ensure existence of a connected graph G associated with matrix M.

Theorem 2 Let Δ be an arbitrary integer and $M=\left[m_{i j}\right]$ a symmetric matrix of non-negative integers of order Δ. Then, there is a simple connected graph G with exactly $m_{i j}$ edges connecting vertices of degrees i and j if and only if the following conditions hold:

1) $n_{i}=\frac{\sum_{j=1}^{\Delta} m_{i j}+m_{i i}}{i}$ is non-negative integer for each $i=1, \ldots, \Delta$
2) $m_{i i} \leq\binom{ n_{i}}{2}$, for all $i=1, \ldots, \Delta$
3) $m_{i j} \leq n_{i} \cdot n_{j}$, for all i and $j, i \neq j \in\{1, \ldots, \Delta\}$
4) $\sum_{1 \leq p<q \leq k} \sum_{\substack{i \in A_{p} \\ j \in A_{q}}} m_{i j}+\sum_{\substack{1 \leq p \leq k \leq k}} \sum_{\substack{i \in A_{p} \\ j \in B}} m_{i j}+\sum_{i, j \in B} m_{i j} \geq \sum_{i \in B} n_{i}+k-1$, where A_{1}, \ldots, A_{k}, B is any
partition of the set $S_{\Delta}=\left\{i \in\{1, \ldots, \Delta\}: n_{i} \geq 1\right\}$ such that B contains 1 if $1 \in S_{\Delta}$.
Proof. Necessity: let G_{0} be a graph that corresponds to matrix M. From the proof of Theorem 1, it follows that conditions 1)-3) hold and that n_{i} is the number of vertices of degree i. Let A_{1}, \ldots, A_{k}, B be any partition of S_{Δ} such that B contains 1 if $1 \in S_{\Delta}$. Let G_{0}^{\prime} be a (multi)-graph obtained by contraction of all vertices with index in A_{i} to the single vertex v_{i} for all $i=1, \ldots, k$. Let $G_{0}^{\prime \prime}$ be the (multi)-graph obtained from G_{0}^{\prime} by deletion of all loops.

Note that.

$$
\begin{aligned}
n\left(G_{0}^{\prime \prime}\right) & =\sum_{i \in B} n_{i}+k \\
m\left(G_{0}^{\prime \prime}\right) & =\sum_{1 \leq p<q \leq k} \sum_{i \in A_{p}} m_{i j}+\sum_{\substack{1 \leq p \leq k \\
j \in A_{q}}} \sum_{i \in A_{p}} m_{i j}+\sum_{i, j \in B} m_{i j} .
\end{aligned}
$$

Since, $G_{0}^{\prime \prime}$ is connected, it follows that $m\left(G_{0}^{\prime \prime}\right) \geq n\left(G_{0}^{\prime \prime}\right)-1$, hence 4) holds.
Sufficiency: Let Γ be the set of all simple graphs G^{\prime} such that exactly $m_{i j}$ edges connect vertices of degrees i and j in G^{\prime}. Theorem 1 implies that Γ is nonempty. Let us prove that there is a connected graph G in Γ. Let $G^{\prime \prime}$ be a graph with the smallest number of components in Γ. If $G^{\prime \prime}$ is connected, then it is sufficient to take $G=G^{\prime \prime}$. Assume the contrary. First, let us prove the following Claim:

Claim 1. Let C be a cycle in $G^{\prime \prime}$ passing through some vertices of degrees $i_{1}, i_{2}, \ldots, i_{t}$. Then all vertices of degrees $i_{1}, i_{2}, \ldots, i_{t}$ are in the same component.

Proof (of Claim 1): Denote the component containing cycle C by K. Suppose to the contrary that there is a vertex w_{j} of degree $j \in\left\{i_{1}, \ldots, i_{t}\right\}$, that is not in K. Denote by v_{j} the vertex of degree j that is in C and by p one of its neighbors in C. Let q be any neighbor of w_{j}. Since w_{j} is not in K, it follows that $v_{j} q, w_{j} p \notin E\left(G^{\prime \prime}\right)$, but then the graph $G^{\prime \prime}-v_{j} p-w_{j} q+v_{j} q+w_{j} p \in \Gamma$ and has a smaller number of components than $G^{\prime \prime}$ which is a contradiction.

Let us introduce the relation \simeq on S_{Δ} by

$$
\begin{aligned}
i \simeq & j \Leftrightarrow \text { there is a cycle } C^{\prime} \text { in } G^{\prime} \text { that contains at least } \\
& \text { one vertex of degree } i \text { and one vertex of degree } j .
\end{aligned}
$$

Now, let \sim be the relation on S_{Δ} defined by

$$
\begin{aligned}
i & \sim j \Leftrightarrow \text { there are numbers } i_{1}, \ldots, i_{r} \text { such that } \\
i & \simeq i_{1}, i_{1} \simeq i_{2}, \ldots, i_{r} \simeq j .
\end{aligned}
$$

From Claim 1, it easily follows that
Claim 2. If $i \sim j$, then all vertices of degrees i and j are in the same component in G^{\prime}.
Let

$$
\begin{aligned}
S_{\Delta}^{+} & =\left\{i \in S_{\Delta}: \text { there is a vertex of degree } i \text { contained in some cycle of } G^{\prime \prime}\right\} \\
B^{\prime} & =\left\{i \in S_{\Delta}: \text { no vertex of degree } i \text { is contained in any cycle in } G^{\prime \prime}\right\}
\end{aligned}
$$

It can easily be seen that \sim is an equivalence relation on S_{Δ}^{+}. Denote the classes of equivalence on that set by A_{1}, \ldots, A_{l} and by $A_{i}^{\prime}, \ldots, A_{l}^{\prime}$ the corresponding set of vertices. Note that:

1) $A_{1}^{\prime}, \ldots, A_{l}^{\prime}, B^{\prime}$ is a partition of the vertices of $G^{\prime \prime}$;
2) There is no cycle in G^{\prime} that contains vertices in more than one class of this partition;
3) Claim 2 implies that the subgraph $G^{\prime \prime}\left[A_{i}^{\prime}\right]$ of $G^{\prime \prime}$ induced by A_{i}^{\prime} is connected for all $i=1, \ldots, l$;
4) There is no cycle in $G^{\prime \prime}\left[B^{\prime}\right]$.

Let G_{1}^{\prime} be obtained by contraction of all vertices in A_{i}^{\prime} to a single vertex v_{i} and $G_{1}^{\prime \prime}$ be the (multi)-graph obtained from G_{1}^{\prime} by elimination of all loops. Since all $G^{\prime \prime}\left[A_{i}\right]$ are connected and $G^{\prime \prime}$ is not connected, it follows that $G_{1}^{\prime \prime}$ is also not connected. Note that

$$
\begin{aligned}
& n\left(G_{1}^{\prime \prime}\right)=\sum_{i \in B} n_{i}+k ; \\
& m\left(G_{1}^{\prime \prime}\right)=\sum_{1 \leq p<q \leq k} \sum_{\substack{i \in A_{p} \\
j \in A_{q}}} m_{i j}+\sum_{1 \leq p \leq k} \sum_{i \in A_{p}}^{j \in B}< \\
& m_{i j}
\end{aligned}+\sum_{i, j \in B} m_{i j} .
$$

Since $G_{1}^{\prime \prime}$ is not connected and

$$
\sum_{1 \leq p<q \leq k} \sum_{\substack{i \in A_{p} \\ j \in A_{q}}} m_{i j}+\sum_{\substack{1 \leq p \leq k}} \sum_{\substack{i \in A_{p} \\ j \in B}} m_{i j}+\sum_{i, j \in B} m_{i j} \geq \sum_{i \in B} n_{i}+k-1,
$$

it follows that $G_{1}^{\prime \prime}$ contains a cycle C^{\prime} or multiple edge(s). Distinguish three cases:
CASE 1: Vertices $b \in B$ and v_{i} are connected by a multiple edge. It follows that b has (in $G^{\prime \prime}$) two neighbors $v_{i, 1}$ and $v_{i, 2}$ in A_{i}^{\prime}. Since A_{i}^{\prime} is connected there is a path $v_{i, 1} w_{1} w_{2} \ldots w_{s} v_{i, 2}$ in $G^{\prime \prime}\left[A_{1}\right]$, but then there is a cycle $b v_{i, 1} w_{1} w_{2} \ldots w_{s} v_{i, 2} b$ in $G^{\prime \prime}$, which is a contradiction.

CASE 2: Vertices v_{i} and v_{j} are connected by a multiple edge. It follows that there are (not necessarily distinct) vertices $v_{i, 1}$ and $v_{i, 2}$ in A_{i}^{\prime}; and (not necessarily distinct, unless $v_{i, 1}=v_{i, 2}$) vertices $v_{j, 1}$ and $v_{j, 2}$ in A_{j}^{\prime} such that $v_{i, 1} v_{j, 1}, v_{i, 2} v_{j, 2} \in E\left(G^{\prime \prime}\right)$. Since A_{i}^{\prime} is connected there is a path $v_{i, 1} w_{1} w_{2} \ldots w_{s} v_{i, 2}$ in $G^{\prime \prime}\left[A_{1}^{\prime}\right]$ and since A_{j}^{\prime} is connected there is a path $v_{j, 1} u_{1} u_{2} \ldots u_{s^{\prime}} v_{j, 2}$ in $G^{\prime \prime}\left[A_{2}\right]$, but then there is a cycle

$$
v_{i, 1} w_{1} w_{2} \ldots w_{s} v_{i, 2} v_{j, 2} u_{s^{\prime}} \ldots u_{2} u_{2} v_{1} v_{j, 1} v_{i, 1}
$$

which is a contradiction.
CASE 3: $\quad G_{1}^{\prime \prime}$ contains a cycle $C^{\prime}=w_{1} w_{2} \ldots w_{s} w_{1}$. Note that vertices in C^{\prime} can be associated with ordered pairs of vertices in $G^{\prime \prime}\left(w_{11} w_{12}\right)\left(w_{21} w_{22}\right) \ldots\left(w_{s 1} w_{s 2}\right)$ in such way that:

1) If the original vertex w was in B then w is replaced by (w, w);
2) if the original vertex is some v_{j} then it is replaced by a pair of, not necessarily adjacent or distinct, vertices $\left(w^{\prime} w^{\prime \prime}\right)$ both from A_{j}^{\prime};
3) the second vertex of each pair is adjacent to the first vertex of the next pair.

Now, replace all pairs of vertices that are in A_{i}^{\prime} by the shortest path that connects them and all pairs of vertices from B by a single vertex. In this way a cycle is obtained. From the definition it can be seen that this cycle either contains a vertex from B or contains vertices from two different classes A_{i}^{\prime} and A_{j}^{\prime}. In both cases, a contradiction is obtained, and the theorem is proved.

While conditions (4) of Theorem 2 are numerous, particularly for large Δ, they may prove to be useful when Δ is moderate, which is the case for chemical graphs.

References

[1] S. L. Hakimi, On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph I, SIAM J. Appl. Math. 10 496-506 (1962).
[2] S. L. Hakimi, On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph II. Uniqueness, SIAM J. Appl. Math. 11 135-147 (1963).
[3] G. Caporossi, I. Gutman and P. Hansen, Variable neighborhood search for extremal graphs. 4. Chemical trees with extremal connectivity index, Computers \& Chemistry 23 (5) 469-477 (1999).
[4] M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 6609-6615 (1975).
[5] M. Fischermann, A. Hoffman, D. Rautenbach and L. Volkmann, A linear-programming approach to the generalized Randić index, Discrete Applied Mathematics 128 (2-3) 375385 (2003).
[6] L. Pavlović, Maximal value of the zeroth-order Randić index, Discrete Applied Mathematics 127 (3) 615-626 (2003).
[7] G. Caporossi, I. Gutman, P. Hansen and L. Pavlović, Graphs with maximum connectivity index, Computational Biology and Chemistry 27 (1) 85-90 (2003).
[8] D. Vukičević and A. Graovac, On molecular graphs with valencies 1,2 and 4 with prescribed number of bonds, Croatica Chemica Acta 77 313-319 (2004).
[9] D. Vukičević and A. Graovac, Which valence connectivities are realizing monocyclic molecules: Generating algorithm and its application to test discriminative properties of Zagreb and modified Zagreb index, Croatica Chemica Acta 77 481-490 (2004).
[10] D. Vukičević and A. Graovac, Valence connectivity versus Randić, Zagreb and modified Zagreb index: A linear algorithm to check discriminative properties of indices in acyclic molecular graphs, Croatica Chemica Acta 77 501-508 (2004).
[11] D. Vukičević and N. Trinajstić, Modified Zagreb index - Comparison with the Randić connectivity index for benzenoid systems, Croatica Chemica Acta 76 (2) 183-187 (2003).
[12] D. Vukicevic and N. Trinajstic, On the discriminatory power of the Zagreb indices for molecular graphs, MATCH-Commun. Math. Comput. Chem. 53 111-138 (2005).
[13] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total ρ-electronn energy of alternant hydrocarbons, Chemical Physics Letters 17 (4) 535-538 (1972).
[14] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2) 113-124 (2003).
[15] D. Veljan and D. Vukičević, On acyclic molecular graphs with prescribed numbers of edges that connect vertices with given degrees, Journal of Mathematical Chemistry 40 155-178 (2006).

