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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs.
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Abstract

Based upon a robust optimization technique, Variable Neighborhood Search (VNS),
we use simulation to find rules for identifying the correct Minkowski parameter r to use in
Multidimensional Scaling (MDS). Claims from the paper of Shepard (1974) are confirmed,
and others are nuanced. We confirm the value of r cannot be defined precisely, that the
proper r value cannot be found in dimension 2 or when the data is too noised, but it is
possible to find good estimates in the other cases.

Key Words: Multidimensional Scaling, Minkowski parameter, Monte Carlo Simulation,
Optimization.

Résumé

En s’appuyant sur une technique d’optimisation robuste, la Recherche à Voisinages
Variables, nous utilisons la simulation pour identifier le paramètre de Minkowski r ap-
proprié à utiliser en Multidimensional Scaling (MDS). Certaines affirmations de l’article
classique de Shepard (1974) sont confirmées, et d’autres sont nuancées. Nous confirmons
que la valeur de r ne peut être identifiée avec précision, que la valeur de r ne peut pas
être trouvée en dimension 2 ou quand les données sont trop bruitées, mais il est possible
de trouver de bonnes estimations dans les autres cas.
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1 Introduction

Multidimensional scaling (MDS) consists in determining coordinates to stimuli in a low di-
mension space from proximity/dissimilarity information. It was proposed about fifty years
ago by Shepard (1957, 1962,a). Few years later, Kruskal proposed a measure to evaluate
the quality of a model (Kruskal, 1964) and a first algorithm to solve the problem (Kruskal,
1964a). MDS, its extensions and some related researches are described in (Cox & Cox, 2001)
or (Borg & Groenen, 2005). To shortly describe the problem, suppose n stimuli and note
δij the dissimilarities between stimuli i and j. A dissimilarity indicates a notion of distance
between stimuli (for example in marketing, a degree of difference between goods); the larger it
is, the more different are the corresponding goods. The purpose of MDS is to find coordinates
xik of these stimuli in a D dimensions space in such a way that distance dij between the
representation of stimuli i and j best reflects the original dissimilarity information δij .

From this low dimensional representation of the data, analysis could be made.

The MDS parameters

As stressed by Sherman (1972) and Shepard (1974), the choice of the appropriate parameters
is an important step toward a good MDS analysis.

• The first parameter to define is the error function, a value indicating the quality of
the solution, the smaller the better. The raw stress and normalized stress (Kruskal,
1964) are most commonly used. The raw stress could be viewed as the sum of squared
difference between the inter-stimuli distances dij and the corresponding dissimilarities
δij as described by Eq. (1)

raw stress = S∗ =
∑

i<j

(dij − δij)
2. (1)

If we note T ∗ =
∑

i<j d2

ij the scaling factor, the normalized stress is described by Eq. (2)

stress = S =

√

S∗

T ∗
=

√

∑

i<j(dij − δij)2
∑

i<j d2

ij

. (2)

Kruskal’s normalized stress has the property to provide a smoother function, which
makes the number of local optima smaller ; however, the use of the normalized stress
does not completely avoid this problem.

• The next parameter is the dimension of the space in which the stimuli are to be rep-
resented. The dimension should correspond to the nature of the stimuli under study.
Choosing a smaller dimension would cause some errors as all the pertinent information
cannot be represented (Lee, 2001). On the other hand, choosing a higher dimension
increases the importance of noise in the representation. A classical way to identify the
correct dimension is by looking at the stress/dimension curve and find a break in the
curve (known as the scree test for identifying the number of relevant factors in principal
component analysis or the correct number of clusters in clustering).

Finding the correct dimension by the scree test is sometimes difficult as the stress/dimen-
sion curve may be smooth, in which case the breaking point is difficult to identify. To
overcome this problem, Lee (2001) proposes a BIC based test to validate the choice of
the dimension in MDS.
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• Another parameter is the choice of the distance measure to use. The distance compu-
tation is usually achieved using the Minkowski formula (3).

dij = (

D
∑

k=1

|xik − xjk|
r)1/r (3)

Where dij is the distance between stimuli i and j, xik is the kth coordinate of stimuli
i, D the dimension of the space and r the Minkowski parameter. If r = 2, the formula
represents the Euclidian distance while it corresponds to the city-block (or Manhattan)
distance if r = 1. As stressed by Arabie (1991), the Euclidian distance is probably
not always the most appropriate. On the other hand, the Euclidian distance is more
robust than other distance measures in term of the optimization in MDS. Indeed, as
the Euclidian distance is not sensitive to the rotation, any initial solution that could be
used prior to a gradient descent could be expected to be closer to a global minima in
this case.

The optimization issue

The number of papers on that topic indicates that optimization problem underlying MDS
is far from trivial. Except for the unidimensional scaling case (Simantiraki, 1996; Brsuco &
Stahl, 2005), to our knowledge, there exists no efficient exact algorithm for MDS.

One of the major difficulties in MDS is the combinatorial issue which is particularly im-
portant in unidimensional scaling and was widely studied (Pliner, 1996; Simantiraki, 1996;
Hubert et al., 1997; Lau et al., 1998; Brusco & Stahl, 2000; Brsuco & Stahl, 2005; Hubert et
al., 2002; Brusco, 2002, 2006), but also in multidimensional scaling where it causes a large
number of local optima. The problem of the local optima is known since the beginning of
studies on MDS (Kruskal, 1964) and it has particularly important consequences in the case
of non-Euclidian distances. Important researches were achieved to improve the optimization
in MDS, more specifically using the city-block distance. Some authors proposed the use of
majorization technique (deLeeuw, 1988; Groenen et al., 1995) to help finding a good solution.
However, the local optima issue was not completely avoided and tunneling was suggested
(Groenen & Heiser, 1996) to improve the solution. Other researches proposes the use a com-
binatorial approach (Hubert & Arabie, 1986; Hubert et al., 1992), nonlinear programming
(Lau et al., 1998), distance smoothing (Groenen et al., 1999) or simulated annealing (Brusco,
2001; Murillo et al., 2005; Vera et al., 2007) to handle the problem. The algorithmical issue
is closely related to the reliability of the analysis and has an important impact on the choice
of the parameters of the model.

In the present paper, we propose the use of the Variable Neighborhood Search (VNS)
(Mladenović & Hansen, 1997; Hansen & Mladenović, 1997; Hansen & Mladenović, 2001), a
metaheuristic developed to solve combinatorial optimization problems, but that is also well
suited for continuous optimization problems. From the beginning of its use, VNS has proved
to be an efficient metaheuristic and usually provides good results.

The VNS algorithm and the monte carlo simulation procedure are described in the sec-
ond and third section. The fourth section describes the results of the study and the fifth
section explains a suggested procedure toward the correct parameters choice. Some real data
applications are then described and the last section concludes.
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2 The optimization method, VNS

Probably the most intuitive way of improving a solution after a local optimum is found is
multistart, which consists in applying a large number of successive local searches (for ex-
ample a gradient descent in the case of MDS) from various initial random configurations.
Unfortunately, such an approach is likely to fail if the number of local optima becomes very
large.

One important feature of VNS is to keep information acquired from previous searches and
from the best known solution. The idea underlying this method is that local optima often
share a large amount of characteristics and it would be a loss of time to explore solutions that
are very far away from good known solutions (as it is done with multistart). For example, in
the case of MDS, it would be surprising that two stimuli with important dissimilarity would
appear close to each other in a good solution.

The VNS algorithm could be described as follows: first apply a local search to a random
initial solution. Keep in memory the obtained solution as best solution. Then, apply a small
perturbation (shaking) to best solution before doing a local search again. The solution ob-
tained could either be better than best solution or not. If so, keep the obtained solution as
best solution in memory. If not, increase the magnitude of the perturbation and repeat the
process. In order to avoid searches that are too far away from best solution, when the magni-
tude of the perturbation becomes too large, it is again reduced to its smallest size. Each time
best solution is improved, the magnitude of the perturbation is reduced to its smallest size to
better explore the vicinity of this new best solution.

The stopping criterion of the algorithm could either be the total CPU time (which is most
often used), the CPU time elapsed from the last improvement, a given number of iterations
or a combination of those.

Apart from the maximum magnitude for a perturbation, only a local search method and a
perturbation scheme are required to apply VNS to a problem, which makes it rather easy to
implement. In the case of MDS, the local search was a simple gradient search. As applying
small perturbations to each of the stimuli would not have enough impact, the basic pertur-
bation scheme used consists in completely moving a stimuli at random. This approach takes
the combinatorial underlying structure of MDS into account. The description of the VNS
implementation used here is described in (Caporossi & Taboubi, 2005).

The results obtained suggest that this optimization technique is rather robust for any
Minkowski distance and for different dimensions. It is thus well adapted for a numerical
study on ways to determine the best Minkowski parameter to use.

3 Monte Carlo analysis

To study the impact of the Minkowski parameter upon the result, a Monte Carlo simulation
was conducted.

In a similar way to Lee (2001), 20 stimuli were generated in a hypercube with dimension
2, 3 or 4. For each dimension, 5 initial configurations were generated using different random
seeds. The dissimilarities between stimuli were then computed with Minkowski parameter
l = 1, 1.5, 2, 2.5 and 3, the letter l is used here to denote the Minkowski parameter used for
the generation in order to avoid confusion with the the parameter used when attempting to
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recover the configuration (r). A random uniform noise with magnitude e: ±0% (noiseless
data), ±5% and ±10%, was then added to each original dissimilarity. The VNS algorithm
was used to find configurations minimizing the raw stress for each of these 225 problems
with Minkowski parameter r = 1.0 . . . 5.0 by increments of 0.1; which consists in solving
9225 problems by VNS (each run was limited to 120 seconds maximum CPU time on a
SUN with Dual Core AMD 2200 MHz processor and 4 Go memory running Linux operating
system).

4 Results

The curves indicating the raw stress value as a function of the Minkowski parameter are
similar for the different problems, which tend to indicate that the conclusions we can make
from these simulations are not due to random effects. Except some rare cases for extremal r

values in higher dimensions, the curves are very smooth and regular, which indicates a rather
reliable performance of the optimization. Figure 1 represents one of the 225 curves created
to study the problem. Here, the dimension was 2, the Minkowski parameter used for the
generation of the problem was l = 2 and 10% noise was added.

Two remarks could be made after a quick look at the curve from Figure 1:

• even if the data was generated with Minkowski parameter 2, the minimum stress is
not achieved for r = 2. Furthermore, r = 2 seems to correspond to a local maxima.
This experiment confirms a remark by Shepard (1974) stating that “while finding that
the lowest stress is attainable for r = 2 may be evidence that the underlying metric is
Euclidian, the finding that the lowest stress is attainable for a value of r that is much
smaller or larger may be artifactual” (this phenomena will be referred to as the Euclidian
artefact).

Figure 1: Minimal stress for (±10%) noised data generated with r = 2 in the plane according
to the Minkowski parameter used for the MDS algorithm.
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Figure 2: Curves representing the raw stress as a function of the parameter r. Dots are
associated to e = ±10% (above), dashed lines to e = ±5% (middle) and solid lines to e = 0%
(below). Each figure corresponds to a value of the Minkowski parameter for the generation l

(rows) and a dimensionality D (columns).

• If we note r and r∗ two Minkowski parameters, r and r∗ correspond to dual norms if

1

r
+

1

r∗
= 1 (4)

is respected. Shepard (1974) stated that the minimal stress value attained for a given
r is close to that obtained for r∗ if r and r∗ correspond to dual norms. This statement
was confirmed if the dimension D = 2.
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For moderately noised data, except when the dimension is 2, the value r for which the raw
stress S∗ is minimized is close to l. However, if l = 2, due to the euclidian artifact, we find
two distinct values r and r∗ minimizing S∗. Note that in any case, the two local minima for
r correspond to dual norms, even if one of them is clearly better (this property could be used
to better identify the best value for r).

When analysing more deeply the curves obtained for various dimensions, Minkowski pa-
rameter for the generation and noise level, the first of the above mentioned always holds,
except in the case data is noiseless and was generated with l = 2. However, the second was
only observed in dimension D = 2.

When noise increases, the euclidian artifact increases its effect and the curve changes
from a “U” shape (for noiseless data) to the “W” shape curve. To see what happens for
very important noise, we generated random numbers instead of dissimilarities in a 10 stimuli
dataset. The stress curve obtained on Figure 3 has a reversed “V” shape with maximum at
r = 2, which could be expected.

As no Minkowski parameter is adapted to such data, it is not surprising to notice that the
Euclidian artifact plays a dominant role. This remark does not mean that noised data could
not analyzed with MDS, but rather that the impact of the Minkowski parameter is then small
compared to the noise and the choice of the r parameter will not have an important impact
on the MDS analysis. As a consequence, using r = 1 is certainly a reasonable choice.

5 Suggested procedure to identify the value r to use

The current study was not intended to identify the proper dimensionality of the data, but
to concentrate on the Minkowski parameter. Test was therefore achieved for the same di-
mensionality as the generation. However, as this parameter has an impact on the potential
results, it must be considered when the exact dimension is not known.

Figure 3: Minimal stress for random dissimilarities as a function of the Minkowski parameter.
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From some isolated tests, we found some cases of data generated in dimension 4 with l = 2
for which the stress curve on dimension 2 suggested l = 1 (or that the data was very noisy).
Even for these cases, however, the simple scree test for the dimension indicates the correct
value regardless to the value r used. A good way to proceed, in case both the dimension D

and the Minkowski parameter r are unknown, is to identify the dimension first.

If the dimension is 2, it will be difficult to identify wether 1 < r < 2 or r > 2 as the stress
will be close for r and r∗ if 1

r + 1

r∗ = 1. If the noise is very important, or if the best Minkowski
parameter is 1, the curve will look like a reversed “V”. In the case of very noisy data, the effect
of the Minkowski parameter will be overwhelmed by the Euclidian artefact, and the difference
between distances (according to r) is smaller than the noise. The choice of the Minkowski
parameter will then have small impact upon the MDS analysis. If the noise is moderate and
the Minkowski parameter is different than 1, the curve will have a “W” shape, the two local
minima corresponding to r1 and r2. If the noise is small enough, the best solution indicates
the best Minkowski parameter. If the stress for r1 and r2 are close, is may either be because
the best r to choose is 2 or because of the noise. If there is a difference between the stress for
r1 and r2, choose the one with best stress.

6 Applications to real data

To evaluate the procedure and help the researcher better understand the data, the proposed
methodology was applied to two real datasets: the “Morse code data” (Rothkopf, 1957) and
the “Nations” data (Wish, 1971).

6.1 The Morse code data

The original dataset (Rothkopf, 1957) is a confusion matrix. Letters were quickly transmitted
to a morse operator. The matrix indicates the number of times each letter was recorded
by the operator given the letter that was sent. This information is not symmetric. The
transformation used here was the same as used by Hubert et al. (1997) and Brusco (2001),
i.e., from the asymmetric confusion matrix C = {cij}, compute the dissimilarity matrix
∆ = {δij = 2 − (cij + cji)}.

The problem was first solved for D = 1 . . . 6 and for r = 1.0 to r = 6.0 by increments of
0.1. A quick look at the curve from Figure 4 indicates that the dimension for this data is
most likely 2 or 3.

Considering dimension is 2, we draw the curve on Figure 5. This figure could typically
be associated to r = 1 if the dimension is (close to) appropriate and the noise is moderated,
which is a reasonable hypothesis in this case.

6.2 The nations similarity data

Wish (1971), asked 18 student to rate the similarity between 12 nations on a 1-9 scale (1=very
different, 9=very similar). Average ratings were subtracted from 10 in order to get dissimi-
larity values. Due to the small number of stimuli, using a dimension higher than 2 would not
be reasonable. The stress curve made with this data is represented on Figure 6.

Again, the most appropriate Minkowski parameter seems to be 1.
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Figure 4: Minimum raw stress as a function of the dimension for various Minkowski parame-
ters (r).

Figure 5: Minimal stress for the Morse code data as a function of the Minkowski parameter.

7 Conclusions

From a practical point of view, determining the value l from the final raw stress obtained is
not always possible. However, there are several cases where it is possible: if l = 1.0, the curve
has a reversed “V” shape with a maximum for r = 2. In the other cases, as soon as the data
has some noise, the curve has a “W” shape with a local minima at 1 < r1 < 2 and r2 > 2.
Our result tend to show that the relation 1

r1
+ 1

r2
≈ 1 holds.
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Figure 6: Minimal stress for the “nations” data as a function of the Minkowski parameter.

When the dimension D = 2, it is difficult to identify the original l value due to the relation
(4) by which two configurations with different value r have approximatively the same stress
value. When the dimension increases, the two values r1 and r2, which still approximatively
respect the relation (4), corresponds to different stress values, which indicates which of r1

and r2 is close to the original l value. Unfortunately, when noise becomes important, it is
difficult to identify l from r1 and r2. However, this is not surprising as different values l could
correspond to equivalent dissimilarities after noise is added.

A complete analysis with a large number of real datasets would certainly be interesting
but already, looking at few real data, gives the hint that choosing r = 2 is probably not the
best choice in many circumstances.
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