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Abstract

We consider filter design of a linear system with parameter uncertainty. In contrast
to the robust Kalman filter which focuses on a worst case analysis, we propose a design
methodology based on iteratively solving a tradeoff problem between nominal performance
and robustness to the uncertainty. Our proposed filter can be computed online efficiently,
is steady-state stable, and is less conservative than the robust filter.

Résumé

Nous étudions la conception de filtres pour systèmes linéaires à paramètres incertains.
Alors que le filtre de Kalman dit robuste est fondé sur l’analyse du pire cas, nous proposons
ici une alternative fondée sur la solution répétée de problèmes de filtrage où une mesure
combinée d’erreur d’estimation nominale et de robustesse à l’égard des incertitudes de
paramètres est minimisée. Le filtre proposé peut être calculé en ligne efficacement, est
stable et est moins conservateur que le filtre robuste.

Acknowledgments: The authors would like to thank Constantine Caramanis for inter-
esting discussions and comments. The authors are especially thankful to the anonymous
reviewers whose comments led to substantial improvements of the paper.
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1 Introduction

The Kalman filter addresses the estimation problem for linear systems, and is widely used in
many fields including control, finance, communication etc (e.g.,[1, 2]). One central assumption
of the Kalman filter is that the underlying state-space model is exactly known. In practice,
this assumption is often violated, i.e., the parameters we use as the system dynamics (referred
as nominal parameters hereafter) are only guesses of the unknown true parameters. It is
reported (e.g.,[3, 4, 5]) that in this case, the performance of the Kalman filter can deteriorate
significantly. In [6], Sayed proposed a filtering framework based on a worst-case analysis
(hereafter referred to as the robust filter), i.e., instead of iteratively minimizing the regularized
residual norm as the standard Kalman filter does, the robust filter minimizes the worst-possible
regularized residual norm over the set of admissible uncertainty.

Empirical studies show that the Kalman filter and the robust filter perform well in different
setups: the performance (measured by the steady-state error variance) of the robust filter is
significantly better than the Kalman filter when the uncertainty is large; but under small
uncertainty, its performance is not satisfactory, indicating over-conservativeness comparing
to the standard Kalman filter. Furthermore, the robust filter usually has a slower transient
response. Therefore, a filter that exhibits a similar performance to the better filter under all
cases is desirable.

In this paper, we present a new filter design approach to achieve this goal by interpolating
the standard Kalman filter and the robust filter. To be more specific, in each iteration, the
proposed filter finds a Pareto efficient filtered estimation by minimizing the convex combina-
tion of the nominal regularized residue (the criterion of the Kalman filter) and the worst-case
regularized residue (the criterion of the robust filter). This approach leads to an optimization
problem that can be solved recursively similarly to the Kalman filter and hence can be applied
on-line. The proposed filter is stable and achieves bounded error-variance. Simulation results
show that the proposed filter exhibits a similar performance to the better one between the
Kalman filter and the robust filter. That is, the performance of proposed filter is similar to
the Kalman filter under small uncertainty, and is comparable to the robust filter under large
uncertainty. Therefore, the proposed filter is suitable for a wider range of problem setups.

We need to point out that the proposed filter achieves good tradeoff because it is the only
interpolating method that achieves Pareto efficiency between the nominal performance given
by the nominal residue and the robustness given by the worst residue. There are several other
“robust” filters designs based on H2/H∞ robust control (e.g., [7, 8, 9, 10, 11, 12]), set-inclusive
robust optimization (e.g., [13, 14]), and guaranteed error variance minimization (e.g., [12, 15,
16]). The main difference is that these methods performs de-regularization, and hence need
to check certain existence condition in each iteration. If the existence condition fails at some
step, the robustness of the filter is not valid anymore. Furthermore, de-regularization leads to
a computationally expensive algorithm, and hence is often not suitable in on-line application.
See [6] for a more detailed comparison among different robust filter design methodologies.

The paper is organized as follows. We formulate the filtering design as an optimization
problem in Section 2, and show how to solve it in Section 3, which leads to the recursive formula
of the proposed filter in Section 4. In Section 5 and Section 6 we investigate the theoretical
and empirical behavior of the proposed filter respectively. Some concluding remarks are given
in Section 7.
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Notations: We use capital letters and boldface letters to denote matrices and column
vectors respectively. Without further explanations, ‖·‖ stands for Euclidean norm for vectors,
and largest singular value for matrices. The notation col{a,b} stands for a column vector
with entries a and b, and diag{A,B} denotes a block diagonal matrix with entries A and B.
Given a column vector z and a positive definite matrix W , ‖z‖2

W stands for z⊤Wz.

2 Filter formulation

We consider the following system:

xi+1 =(Fi + Mi∆iEf,i)xi + (Gi + Mi∆iEg,i)ui,

yi =Hixi + vi, i = 0, 1, · · · .
(2.1)

Here, Fi , Gi, Mi, Ef,i and Eg,i are known matrices and ∆i are unknown matrix with ‖∆i‖ ≤ 1.
The variance of the initial state x0 is Π0, and the driving noises ui and vi are white, zero
mean and uncorrelated, with variance Qi and Ri respectively. This formulation is standard
in robust filter design [6, 12]. We denote the estimation of xi given observation {y0, · · · ,yj}
by x̂i|j , and denote its error variance by Pi|j. Furthermore, x̂i and Pi denote x̂i|i−1 and Pi|i−1

respectively. We assume Pi|i to be invertible, which can be relaxed because the final recursion

form is independent of P−1
i|i .

Both the Kalman filter and the Robust filter iteratively find the optimal/robust smoothing
estimation and propagate them respectively (e.g., [1, 2, 6]), i.e.,

Kalman Filter:

(x̂i|i+1, ûi|i+1) := arg min
xi,ui

{

‖xi − x̂i|i‖
2
P−1

i|i

+ ‖ui‖
2
Q−1

i

+ ‖yi+1 − Hi+1xi+1‖
2
R−1

i+1

∣

∣∆i = 0
}

,

x̂i+1|i+1 := Fix̂i|i+1 + Giûi|i+1;

Robust Filter:

(x̂i|i+1, ûi|i+1) := arg min
xi,ui

max
‖∆i‖≤1

{

‖xi − x̂i|i‖
2
P−1

i|i

+ ‖ui‖
2
Q−1

i

+ ‖yi+1 − Hi+1xi+1‖
2
R−1

i+1

}

,

x̂i+1|i+1 := Fix̂i|i+1 + Giûi|i+1.

Notice here, the cost function for the Kalman filter is the error variance under the nominal
parameters, whereas the cost function for the robust filter is the worst case error variance.
Hence the former criterion stands for the nominal performance of the smoothed estimation,
and the latter represents how robust the smoothed estimation is. Ideally, a good estimation
should perform well (in the sense of Pareto efficiency) for both criteria. This is equivalent to
a minimizer of their convex combination, which leads to the proposed filter:



Les Cahiers du GERAD G–2008–53 3

Proposed Filter: Fix α ∈ (0, 1)

(x̂i|i+1, ûi|i+1) := arg min
xi,ui

{

α
[

‖xi − x̂i|i‖
2
P−1

i|i

+ ‖ui‖
2
Q−1

i

+ ‖yi+1 − Hi+1xi+1‖
2
R−1

i+1

∣

∣∆i = 0
]

+ (1 − α) max
‖∆i‖≤1

[

‖xi − x̂i|i‖
2
P−1

i|i

+ ‖ui‖
2
Q−1

i

+ ‖yi+1 − Hi+1xi+1‖
2
R−1

i+1

]

}

,

x̂i+1|i+1 := Fix̂i|i+1 + Giûi|i+1.

(2.2)

Notice that, since both criteria are convex functions, not only any minimizer of the convex
combination is Pareto efficient, but any Pareto efficient solution must minimize the convex
combination for some α. Hence, this formulation computes all the solutions that achieve
good tradeoff between the nominal performance and the robustness. This is different from
other interpolation such as shrinking the uncertainty set, where the Pareto efficiency is not
guaranteed.

3 Solving the Minimization Problem

To minimize Problem (2.2), we denote

z , col{xi − x̂i|i, ui}; b , yi+1 − Hi+1Fix̂i|i;

A , Hi+1[Fi, Gi]; T , diag{P−1
i|i , Q−1

i };

W , R−1
i+1; D , Hi+1Mi; Ea , [Ef,i, Eg,i];

t , −Ef,ix̂i|i; φ(z) , ‖Eaz− t‖.

We can rewritten Problem (2.2) as

arg min
z

: C(z) , z⊤Tz + α(Az − b)⊤W (Az − b)

+ (1 − α) max
‖y‖≤φ(z)

‖Az − b + Dy‖2
W ,

(3.1)

Problem (3.1) is a bilevel optimization problem which is generally NP-hard. However, fol-
lowing a similar argument as [17], we show this special problem can be efficiently solved by
converting into a unimodal scalar optimization problem. Before giving the main result of this
section, we need to define the following functions of λ ∈

[

‖D⊤WD‖,+∞
)

:
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W (λ) , W + (1 − α)WD(λI − D⊤WD)†D⊤W,

zo(λ) , arg min
z

{

z⊤Tz + (Az − b)⊤W (λ)(Az − b)

+ (1 − α)λφ2(z)
}

,

G(λ) , min
z

{

z⊤Tz + (Az − b)⊤W (λ)(Az − b)

+ (1 − α)λφ2(z)
}

= zo⊤(λ)Tzo(λ) +
(

Azo(λ) − b
)⊤

W (λ)
(

Azo(λ) − b
)

+ (1 − α)λφ2
(

zo(λ)
)

.

Here, (·)† stands for the pseudo inverse of a matrix. Note that T > 0, φ(·) is convex, and
λ ≥ ‖D⊤WD‖ implies W (λ) ≥ 0, hence the definitions of zo(λ) and G(λ) are valid, because
the part in the curled bracket is strictly convex on z. Therefore, for any given λ we can
evaluate zo(λ) and G(λ). The next theorem shows that the optimal z for Problem (3.1) can
be evaluated by minimizing G(λ) using line search and substituting the minimizer into zo(·).

Theorem 1

1. Let λo , arg minλ≥‖D⊤WD‖ G(λ), we have

arg min
z

C(z) = zo(λo); min
z

C(z) = G(λo).

2. On λ ≥ ‖D⊤WD‖, G(λ) has only one local minimum, which is also its global minimum.

Proof. Define R(z,y) , (Az − b + Hy)⊤W (Az − b + Hy) and Ŵ (λ) , W + WD(λI −

D⊤WD)†D⊤W , for λ ∈
[

‖D⊤WD‖, +∞
)

. Hence W (λ) = αW + (1 − α)Ŵ (λ). Lemma 1
describes the property of R(z,y); its proof can be found in [17].

Lemma 1

(a) Function max‖y‖≤φ(z) R(z,y) is convex on z.

(b) For all z,

max
‖y‖≤φ(z)

R(z,y) =

min
λ≥‖D⊤WD‖

(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z).

(c) λo(z) , arg minλ≥‖D⊤WD‖(Az−b)⊤Ŵ (λ)(Az−b) + λφ2(z) is well defined and contin-
uous.
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Therefore,

min
z

C(z) = min
z

{

z⊤Tz + α(Az − b)⊤W (Az − b)

+ (1 − α) max
‖y‖≤φ(z)

R(z,y)
}

= min
z

{

z⊤Tz + α(Az − b)⊤W (Az− b) + (1 − α)

× min
λ≥‖D⊤WD‖

[

(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z)
]

}

= min
λ≥‖D⊤WD‖

min
z

{

z⊤Tz + (Az − b)⊤W (λ)(Az − b)

+ (1 − α)λφ2(z)
}

= min
λ≥‖D⊤WD‖

G(λ).

We now show that G(·) is unimodal. Denote H(z, λ) , z⊤Tz + (Az − b)⊤W (λ)(Az − b) +
(1 − α)λφ2(z). Observe that C(z) = minλ≥‖D⊤WD‖ H(z, λ) and

λo(z) = arg min
λ≥‖D⊤WD‖

(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z)

= arg min
λ≥‖D⊤WD‖

{

z⊤Tz + α(Az − b)⊤W (Az − b)

+ (1 − α)
[

(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z)
]

}

= arg min
λ≥‖D⊤WD‖

H(z, λ).

Hence G(λ) = minz H(z, λ). Note that C(z) is strictly convex and goes to infinity whenever
‖z‖ ↑ ∞, which implies C(z) is unimodal and has a unique global minimum. Also note, H(z, λ)
has the following property: fix one variable, then it is a unimodal function of the other variable
and achieves unique minimum on its domain. This, combined with the continuity of λo(z),
establishes the unimodality of G(·) by applying Lemma C.2 in [17].

Notice that, φ(z) = ‖Eaz − t‖ yields a closed form for zo(·):

zo(λ) =
(

T + A⊤W (λ)A + (1 − α)λE⊤
a Ea

)−1

×
(

A⊤W (λ)b + (1 − α)λE⊤
a t
)

.
(3.2)

4 Recursion formula of the filter

Substituting Equation (3.2) into Problem (2.2) and with some algebra, we obtain the recur-
sion formula of the proposed filter. We present the prediction form which propagates {x̂i, Pi},
whereas the measurement-Update form which propagates {x̂i|i, Pi|i} can be found in the Ap-
pendix. The recursion formula of the proposed filter is a modified version of the Robust filter,
where ∗ are the modifications. In addition, G(λ) and hence λo are also different.
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Algorithm 1 Prediction form

1. Initialize: x̂0 := 0, P0 := Π0, R̂0 := R0.

2. Given R̂i,Hi, Pi, calculate:

Pi|i := (P−1
i + H⊤

i R̂−1
i Hi)

−1

= Pi − PiH
⊤
i (R̂i + HiPiH

⊤
i )−1HiPi.

3. Recursion: Construct and minimize G(λ) over (‖M⊤
i H⊤

i+1R
−1
i+1Hi+1Mi‖,+∞). Let the

optimal value be λo
i . Computing the following values:

λ̂i :=(1 − α)λo
i ∗

Ri+1 :=Ri+1 − λo−1Hi+1MiM
⊤
i H⊤

i+1

R̂−1
i+1 :=αR−1

i+1 + (1 − α)R
−1
i+1 ∗

Q̂−1
i :=Q−1

i + λ̂iE
⊤
g,i

[

I + λ̂iEf,iPi|iE
⊤
f,i

]−1
Eg,i

P̂i|i :=(P−1
i|i + λ̂iE

⊤
f,iEf,i)

−1

=Pi|i − Pi|iE
⊤
f,i(λ̂

−1
i I + Ef,iPi|iE

⊤
f,i)

−1Ef,iPi|i

Ĝi :=Gi − λ̂iFiP̂i|iE
⊤
f,iEg,i

F̂i :=(Fi − λ̂iĜiQ̂iE
⊤
g,iEf,i)(I − λ̂iP̂i|iE

⊤
f,iEf,i)

H
⊤
i :=

[

H⊤
i R̂

−⊤/2
i ,

√

λ̂i

]

Re,i :=I + H iPiH
⊤
i

Ki :=FiPiH
⊤
i

Pi+1 :=FiPiF
⊤
i − KiR

−1
e,i K

⊤
i + ĜiQ̂iĜ

⊤
i

ei :=yi − Hix̂i

x̂i+1 :=F̂ix̂i + F̂iPi|iH
⊤
i R̂−1

i ei

=F̂ix̂i + F̂iPiH
⊤
i R−1

e,i ei.

5 Steady-state Analysis

In this section we studies steady-state characteristics of the proposed filter, namely closed-
loop stability and bounded error-variance. Similarly to [6], we restrict our discussion to
uncertainty models where all parameters are stationary, except ∆i, and drop the subscript
i. Further assume the uncertainty only appears in F matrix. Hence, we have Q̂ = Q and
Ĝ = G. In addition, we approximate λo by setting λo := (1 + β)‖M⊤H⊤R−1HM‖ for some
β > 0. The next theorem shows that the proposed filter converges to a stable steady-state
filter.

Theorem 2 Assume that {F,H} is detectable and {F,GQ1/2} is stabilizable. Then, for any
initial condition Π0 > 0, the Riccati variable Pi converges to the unique solution of

P = FPF⊤ − FPH
⊤
(I + HPH

⊤
)−1HPF⊤ + GQG⊤. (5.1)
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Furthermore, the solution P is semi-definite positive, and the steady state closed loop matrix
Fp , F̂ [I − PH⊤R−1

e H] is stable.

Proof. The closed loop formula for x̂ is

x̂i+1 = F̂ix̂i + F̂iPiH
⊤R−1

e,i [yi − Hx̂i]

= F̂i[I − PiH
⊤R−1

e,i H]x̂i + F̂iPiH
⊤R−1

e,i yi.

Notice that

F
[

I − PiH
⊤
R

−1
e,i H

]

= F
[

Pi − PiH
⊤
(I + HPiH

⊤
)−1HPi

]

P−1
i

= F (P−1
i + H

⊤
H)−1P−1

i .

Now consider the closed loop gain

Fp,i , F̂i[I − PiH
⊤R−1

e,i H]

=F
[

I − λ̂(P−1
i + H

⊤
H)−1E⊤

f Ef

][

I − PiH
⊤R−1

e,i H
]

=F (P−1
i + H

⊤
H)−1

[

P−1
i + H

⊤
H − λ̂E⊤

f Ef

]

×
[

I − PiH
⊤R−1

e,i H
]

=F (P−1
i + H

⊤
H)−1(P−1

i + H⊤R̂−1H)

×
[

Pi − PiH
⊤R−1

e,i HPi

]

P−1
i

=F (P−1
i + H

⊤
H)−1(P−1

i + H⊤R̂−1H)

×
[

Pi − PiH
⊤(R̂i + HPiH

⊤)−1HPi

]

P−1
i

=F (P−1
i + H

⊤
H)−1P−1

i = F
[

I − PiH
⊤
R

−1
e,i H

]

.

The positive definiteness of R̂ guarantees that H is well defined. Hence, detectability of {F, H}
and the stablizability of {F, GQ1/2} guarantee that Pi converges to the unique positive semi-

definite solution P of Equation (5.1), which stabilizes the matrix F [I−PH
⊤
(I+HPH

⊤
)−1H].

The stability follows for this matrix equals to the steady state closed loop gain Fp.

Further assume that the system is quadratically stable, i.e, there exists a matrix V > 0 such
that

V − [F + M∆Ef ]⊤V [F + M∆Ef ] > 0, ∀‖∆‖ ≤ 1.

which is equivalent to a stable F and a bounded norm ‖Ef (zI − F )−1M‖∞ < 1. Denote

F ,

[

F − FpPH⊤R̂−1H F − Fp − FpPH⊤R̂−1H

FpPH⊤R̂−1H Fp + FpPH⊤R̂−1H

]

,

G ,

[

G −FpPH⊤R̂−1H

0 FpPH⊤R̂−1H

]

.



8 G–2008–53 Les Cahiers du GERAD

The following theorem shows that the error-variance is uniformly bounded, which is equivalent
to saying that the extended system is stable and has a H∞ norm less than 1.

Theorem 3 Let x̃i be the estimation error, for any P > 0 such that

P −

{

F +

[

M
0

]

∆[Ef Ef ]

}

P

{

F +

[

M
0

]

∆[Ef Ef ]

}⊤

− G

[

Q 0
0 R

]

G⊤ ≥ 0, ∀‖∆‖ ≤ 1;

the error variance satisfies limi→∞ Ex̃ix̃
⊤
i ≤ P11, where P11 is the (1, 1) block entries of P.

Furthermore, such P is guaranteed to exist.

Proof. Define estimation error x̃i , xi − x̂i, and

δFi ,

[

M∆iEf M∆iEf

0 0

]

.

Hence the extended state equation holds:

[

x̃i+1

x̂i+1

]

= (F + δFi)

[

x̃i

x̂i

]

+ G

[

ui

vi

]

. (5.2)

Introduce a similarity transformation:

T ,

[

I I
0 I

]

, T −1 =

[

I −I
0 I

]

.

We have,

T (F + δFi)T
−1 =

[

F 0

FpPH⊤R̂−1H Fp

]

+

[

M∆iEf 0
0 0

]

.

Hence the first part (i.e., the nominal matrix, denote as F̃) is stable since F and Fp are stable.

Furthermore, the following equality

Ef (zI − F )−1M = [Ef 0](zI − F̃)−1

[

M
0

]

,

shows that the extended system has a same H∞-norm as the original system. Hence the
extended system is quadratically stable. Thus, there exists a positive definite matrix V such
that

V − (F + δFi)V(F + δFi)
⊤ > 0.

By scaling V large enough, we can find a positive P such that

P ≥ (F + δFi)P(F + δFi)
⊤ + G

[

Q 0
0 R

]

G⊤. (5.3)

Let

Mi , E

{

[

x̃i

x̂i

] [

x̃i

x̂i

]⊤
}

,
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then the following recursion formula holds

Mi+1 = (F + δFi)Mi(F + δFi)
⊤ + G

[

Q 0
0 R

]

G⊤. (5.4)

Subtracting Equation (5.4) from Equation (5.3) we get

P −Mi+1 = (F + δFi)(P −Mi)(F + δFi)
⊤ + Qi,

for some Qi ≥ 0. The quadratic stability of F + δFi implies that P −M∞ ≥ 0.

6 Simulation Study

In this section, we investigate the empirical performance of the proposed filter in three param-
eter setups that differ in the relative magnitude of the uncertainty. The following numerical
example is frequently used in robust filtering design (e.g.,[6],[12]):

xi+1 =

[

0.9802 0.0196 + 0.099∆i

0 0.9802

]

xi + ui,

yi = [1 − 1]xi + vi,

where Q =

[

1.9608 0.0195
0.0195 1.9608

]

R = 1, x0 ∼ N(0, I).

We note that the uncertainty only affects the F1,2. and the magnitude of the nominal param-
eter and the uncertainty are of the same order. The tradeoff parameter α is set to 0.8. The
error variance is averaged from 500 trajectories.

In Figure 1(a), the uncertainty ∆ is generated according to a uniform distribution in
[−1, 1], and is fixed for the whole trajectory. In Figure 1(b), the uncertainty is re-generated
in each step. In both cases, the proposed filter exhibits a similar steady-state performance to
the robust filter, and a faster transient response (i.e., smaller error in the transient stages).
We also observe that, for the non-stationary case, the robust filter preforms worse probably
due to the fact that time varying uncertainties cancel out.
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Figure 1: Error variance curves: (a) fixed uncertainty; (b) time-varying uncertainty.
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Figure 2: Error variance curves for large uncertainty: (a) fixed uncertainty; (b) time-varying
uncertainty.
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Figure 3: Error variance curves for large nominal value: (a) fixed uncertainty; (b) time-varying
uncertainty.

In Figure 2, we depict the case with large uncertainty by setting F1,2 = 0.0196 + 0.99∆i.
In such situation, the performance of the Kalman filter degrades significantly. In contrast,
the steady-state error of the proposed filter is only 1dB worse than the robust filter in the
fixed uncertainty case, and is comparable to the robust filter in the time-varying case. This
shows that the proposed filter achieves a comparable robustness as the robust filter.

In Figure 3, we investigate the small uncertainty case by enlarging nominal parameters,
i.e., F1,2 = 0.3912 + 0.099∆i. The robust filter achieves a steady-state error variance around
23dB, while both the Kalman filter and the proposed filter achieve a steady-state error around
16dB. This shows that the robust filter could be overly conservative when the uncertainty is
comparatively small, whereas the proposed filter does not suffer from such conservativeness.

We further simulate the steady-state error-variance for different α under different uncer-
tainty ratio. Here, α = 0 and α = 1 are the robust filter and the Kalman filter, respectively;
γ = 1 is the original example. We increase the uncertainty when γ > 1, and increase the
nominal parameter when γ < 1. Figure 4 shows that when γ is small, (i.e., uncertainty is rel-



Les Cahiers du GERAD G–2008–53 11

10
−2

10
−1

10
0

10
1

10
2

10db

20db

30db

40db

50db

60db

ratio γ

st
e

a
d

y−
st

a
te

 e
rr

o
r

α=0

α=0.2

α=0.4

α=0.6

α=0.8

α=0.99

α=1.0

Figure 4: Effect of α on steady-state error.

atively small), larger α achieves better performance. That is, for small uncertainty, focusing
on robustness can degrade the performance. On the other hand, for large uncertainty, the
steady-state error for the Kalman filter is large. In contrast, even for α = 0.99 which means
the robust part has a small effect, the proposed filter achieves a much better performance.
The overall most-balanced filter in this example is achieved by taking α = 0.8, which is also
our suggestion for the tradeoff parameter. The exact value of α is not sensitive, for example,
choosing α = 0.6 instead works well too.

To summarize, the simulation study shows that both the Kalman filter and the robust filter
are sensitive to the relative magnitude of the uncertainty. In contrast, in all three cases, the
proposed filter exhibits a performance comparable to the better one, and therefore is suitable
for a wider range of problems.

7 Concluding Remarks

In this paper, we presented a new algorithm for state estimation of a linear system with
uncertainty in the parameters. This filter iteratively finds a smoothed estimation that is
Pareto efficient between the nominal performance and the worst performance. The resulting
recursive form has a computational cost comparable to the standard Kalman filter, hence
can be easily implemented on-line. Under certain technical conditions, the proposed filter
converges to a stable steady-state estimator and achieves bounded error-variance. Simulation
studies show that the proposed filter overcomes both the sensitivity of the Kalman filter and
the overly conservativeness of the robust filter, and hence achieves satisfactory performance
under a wider range of parameters.

The main motivation of the proposed approach is obtaining more flexibility in filter design
while retaining the computational efficiency. As the simulation study showed, the performance
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of both the Kalman filter and the robust filter depend on the parameter settings. That is,
each of the filters can perform rather poorly under unsuitable parameters. Whether a problem
setting is suitable for these filters may not be known beforehand, except a general guideline
that small uncertainty favors the standard Kalman filter and large uncertainty favors the
robust filter. Moreover, the problem parameters can be time varying. The proposed filter
therefore facilitates flexibility since the quality of its performance does not vary dramatically
if the magnitude of the uncertainty is not specified perfectly.

Appendix

A Derivation of the Prediction Form:

We derive the prediction form based on solving Problem (2.2). By Theorem 1 and Equa-
tion (3.2), we have

col(x̂i|i+1 − x̂i|i, ûi|i+1) = zo(λo)

=
(

T + A⊤W (λo)A + (1 − α)λoE⊤
a Ea

)−1(

A⊤W (λo)b + (1 − α)λoE⊤
a t
)

,
(A.1)

where λo is the minimizer of function G(λ) over
[

‖D⊤WD‖, +∞
)

. Since we are using a line

search to find out λo, we exclude the boundary point ‖D⊤WD‖. Hence, λoI − D⊤WD is
invertible. Denote

Ri+1 , Ŵ (λo)−1

=
{

W + WD(λoI − D⊤WD)−1D⊤W
}−1

=W−1 − (λo)−1DD⊤ = Ri+1 − (λo)−1Hi+1MiM
⊤
i H⊤

i+1.

(A.2)

The second equality holds due to the matrix inversion lemma, and the last equality holds by
substituting the definition of D and W . Next, define

R̂i+1 , W (λo)−1 =
[

αW + (1 − α)Ŵ (λo)
]−1

=
[

αR−1
i+1 + (1 − α)R

−1
i+1

]−1
. (A.3)

Notice this definition makes sense since Ŵ (λ) is positive for λ > ‖D⊤WD‖ and W is also
positive. With the following two definition

λ̂i , (1 − α)λo; T̂ ,

(

P−1
i|i + λ̂iE

⊤
f,iEf,i λ̂iE

⊤
f,iEg,i

λ̂iE
⊤
g,iEf,i Q−1

i + λ̂iE
⊤
g,iEg,i

)

;

we rewrite the first term of Equation (A.1):

T + A⊤W (λo)A + (1 − α)λoE⊤
a Ea

=

(

P−1
i|i 0

0 Q−1
i

)

+ λ̂i[Ef,i, Eg,i]
⊤[Ef,i, Eg,i] + A⊤W (λo)A

=T̂ + A⊤W (λo)A = T̂ + A⊤R̂−1
i+1A.

(A.4)

Notice (1, 1) block of T̂ is strictly positive, by block matrix inversion we have

T̂−1 =

(

P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i −P̂i|iλ̂iE

⊤
f,iEg,iQ̂i

−Q̂iE
⊤
g,iEf,iλ̂iP̂i|i Q̂i

)

, (A.5)
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where P̂i|i ,

(

P−1
i|i + λ̂iE

⊤
f,iEf,i

)−1
is the inversion of the (1, 1) block of the matrix T̂ and

Q̂i ,

(

Q−1
i + λ̂iE

⊤
g,iEg,i− λ̂iE

⊤
g,iEf,iP̂i|iE

⊤
f,iEg,iλ̂i

)−1
is the inversion of the Schur complement.

We next simplify (T̂ + A⊤W (λo)A)−1 by first prove a useful equation:

[Fi, Gi]T̂
−1[Fi, Gi]

⊤

=[Fi, Gi]

(

P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i −P̂i|iλ̂iE

⊤
f,iEg,iQ̂i

−Q̂iE
⊤
g,iEf,iλ̂iP̂i|i Q̂i

)

[Fi, Gi]
⊤

=Fi(P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i)F

⊤
i − Fi(P̂i|iλ̂iE

⊤
f,iEg,iQ̂i)G

⊤
i

− Gi(Q̂iE
⊤
g,iEf,iλ̂iP̂i|i)F

⊤
i + Gi(Q̂i)G

⊤
i

=FiP̂i|iF
⊤
i + FiP̂i|iλ̂iE

⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|iF

⊤
i − GiQ̂iE

⊤
g,iEf,iλ̂iP̂i|iF

⊤
i

− FiP̂i|iλ̂iE
⊤
f,iEg,iQ̂iG

⊤
i + GiQ̂iG

⊤
i

=FiP̂i|iF
⊤
i − (Gi − FiP̂i|iλ̂iE

⊤
f,iEg,i)Q̂iE

⊤
g,iEf,iλ̂iP̂i|iF

⊤
i + (Gi − FiP̂i|iλ̂iE

⊤
f,iEg,i)Q̂iG

⊤
i H⊤

i+1

=Hi+1FiP̂i|iF
⊤
i + (Gi − λ̂iFiP̂i|iEf,iEg,i)Q̂i(Gi − λ̂iFiP̂i|iEf,iEg,i)

⊤

=FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i = Pi+1,

(A.6)

where
Ĝi , Gi − λ̂iFiP̂i|iEf,iEg,i; Pi+1 , FiP̂i|iF

⊤
i + ĜiQ̂iĜ

⊤
i . (A.7)

Hence we can simplify AT̂−1A⊤ as

AT̂−1A⊤ = Hi+1[Fi, Gi]T̂
−1[Fi, Gi]

⊤H⊤
i+1

=Hi+1(FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i )H⊤

i+1 = Hi+1Pi+1H
⊤
i+1.

(A.8)

Define
Re,i+1 , R̂i+1 + Hi+1Pi+1H

⊤
i+1 = R̂i+1 + AT̂−1A⊤. (A.9)

Hence

(

T + A⊤W (λo)A + (1 − α)λoE⊤
a Ea

)−1

=(T̂ + A⊤W (λo)A)−1 = (T̂ + A⊤R̂−1
i+1A)−1

=T̂−1 − T̂−1A⊤(R̂i+1 + AT̂−1A⊤)−1AT̂−1

=T̂−1 − T̂−1A⊤R−1
e,i+1AT̂−1

=T̂−1 − T̂−1[Fi, Gi]
⊤H⊤

i+1R
−1
e,i+1Hi+1[Fi, Gi]T̂

−1

=T̂−1 − T̂−1

(

F⊤
i H⊤

i+1R
−1
e,i+1Hi+1Fi F⊤

i H⊤
i+1R

−1
e,i+1Hi+1Gi

G⊤
i H⊤

i+1R
−1
e,i+1Hi+1Fi G⊤

i H⊤
i+1R

−1
e,i+1Hi+1Gi

)

T̂−1.

(A.10)

The equations hold from (A.4), (A.3), (A.9), matrix inversion lemma and definition of A
respectively.
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Now consider the second term of Equation (A.1), by definition of λ̂i, R̂i+1 and substituting
A, b, Ea and t, we have:

A⊤W (λo)b + (1 − α)λoE⊤
a t = A⊤R̂−1

i+1b + λ̂iE
⊤
a t

=[Fi, Gi]
⊤H⊤

i+1R̂
−1(yi+1 − Hi+1Fix̂i|i) + λ̂i[Ef,i, Eg,i]

⊤(−Ef,ix̂i|i)

=

(

F⊤
i H⊤

i+1R̂
−1
i+1

G⊤
i H⊤

i+1R̂
−1
i+1

)

yi+1 +

(

−F⊤
i H⊤

i+1R̂
−1
i+1Hi+1Fi − λ̂iE

⊤
f,iEf,i

−G⊤
i H⊤

i+1R̂
−1
i+1Hi+1Fi − λ̂iE

⊤
g,iEf,i

)

x̂i|i.

(A.11)

Substitute Equation (A.4), Equation (A.16) into Equation (A.1) yields

(

x̂i|i+1 − x̂i|i

ûi|i+1

)

=(T̂ + A⊤R̂−1
i+1A)−1

{

(

F⊤
i H⊤

i+1R̂
−1
i+1

G⊤
i H⊤

i+1R̂
−1
i+1

)

yi+1 +

(

−F⊤
i H⊤

i+1R̂
−1
i+1Hi+1Fi − λ̂iE

⊤
f,iEf,i

−G⊤
i H⊤

i+1R̂
−1
i+1Hi+1Fi − λ̂iE

⊤
g,iEf,i

)

x̂i|i

}

,

⇓
(

x̂i|i+1

ûi|i+1

)

=(T̂ + A⊤R̂−1
i+1A)−1

{(

F⊤
i H⊤

i+1R̂
−1
i+1

G⊤
i H⊤

i+1R̂
−1
i+1

)

yi+1

+

[(

−F⊤
i H⊤

i+1R̂
−1
i+1Hi+1Fi − λ̂iE

⊤
f,iEf,i

−G⊤
i H⊤

i+1R̂
−1
i+1Hi+1Fi − λ̂iE

⊤
g,iEf,i

)

+ (T̂ + A⊤R̂−1
i+1A)

(

1
0

)

]

x̂i|i

}

,

(A.12)

notice

(T̂ + A⊤R̂−1
i+1A)

(

1
0

)

=

{(

P−1
i|i

+ λ̂iE
⊤
f,iEf,i λ̂iE

⊤
f,iEg,i

λ̂iE
⊤
g,iEf,i Q−1

i + λ̂iE
⊤
g,iEg,i

)

+

[

F⊤
i

G⊤
i

]

H⊤
i+1R̂

−1
i+1Hi+1[Fi, Gi]

}

(

1
0

)

=

(

P−1
i|i + λ̂iE

⊤
f,iEf,i + F⊤

i H⊤
i+1R̂

−1
i+1Hi+1Fi

λ̂iE
⊤
g,iEf,i + G⊤

i H⊤
i+1R̂

−1
i+1Hi+1Fi

)

.

Substitute it back into Equation (A.12) we have

(

x̂i|i+1

ûi|i+1

)

= (T̂ + A⊤R̂−1
i+1A)−1

{

(

F⊤
i H⊤

i+1R̂
−1
i+1

G⊤
i H⊤

i+1R̂
−1
i+1

)

yi+1 +

(

P−1
i|i

0

)

x̂i|i

}

. (A.13)
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Substitute this into Problem (2.2) we have

x̂i+1|i+1 = Fix̂i|i+1 + Giûi|i+1

=[Fi, Gi]

(

x̂i|i+1

ûi|i+1

)

= [Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1

{

(

F⊤
i H⊤

i+1R̂
−1
i+1

G⊤
i H⊤

i+1R̂
−1
i+1

)

yi+1 +

(

P−1
i|i

0

)

x̂i|i

}

=[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1

(

F⊤
i H⊤

i+1R̂
−1
i+1

G⊤
i H⊤

i+1R̂
−1
i+1

)

yi+1 + [Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1

(

P−1
i|i

0

)

x̂i|i

(A.14)

We compute the two term separately, the coefficient of yi+1 can be written as

[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1

(

F⊤
i H⊤

i+1R̂
−1
i+1

G⊤
i H⊤

i+1R̂
−1
i+1

)

=[Fi, Gi]
[

T̂−1 − T̂−1[Fi, Gi]
⊤H⊤

i+1R
−1
e,i+1Hi+1[Fi, Gi]T̂

−1
]

(

F⊤
i

G⊤
i

)

H⊤
i+1R̂

−1
i+1

=
{

[Fi, Gi]T̂
−1[Fi, Gi]

⊤ − [Fi, Gi]T̂
−1[Fi, Gi]

⊤H⊤
i+1R

−1
e,i+1Hi+1[Fi, Gi]T̂

−1[Fi, Gi]
⊤
}

H⊤
i+1R̂

−1
i+1

=(Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1)H

⊤
i+1R̂

−1
i+1.

(A.15)

The first equality holds from Equation (A.10), and the last equality holds from Equation (A.6).

The coefficient of x̂i|i can be written as:

[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1

(

P−1
i|i

0

)

=[Fi, Gi]
[

T̂−1 − T̂−1[Fi, Gi]
⊤H⊤

i+1R
−1
e,i+1Hi+1[Fi, Gi]T̂

−1
]

(

P−1
i|i

0

)

=
[

I − [Fi, Gi]T̂
−1[Fi, Gi]

⊤H⊤
i+1R

−1
e,i+1Hi+1

]

[Fi, Gi]T̂
−1

(

P−1
i|i

0

)

=
[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

[Fi, Gi]T̂
−1
i

(

P−1
i|i

0

)

.

(A.16)

Notice by Equation (A.5), we have

[Fi, Gi]T̂
−1

(

P−1
i|i

0

)

=[Fi, Gi]

(

P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i −P̂i|iλ̂iE

⊤
f,iEg,iQ̂i

−Q̂iE
⊤
g,iEf,iλ̂iP̂i|i Q̂i

)(

P−1
i|i

0

)

=
(

FiP̂i|i + FiP̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i − GiQ̂iE

⊤
g,iEf,iλ̂iP̂i|i

)

P−1
i|i

=
(

Fi − ĜiQ̂iE
⊤
g,iEf,iλ̂i

)

P̂i|iP
−1
i|i = F̃iP̂i|iP

−1
i|i ,

(A.17)
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where
F̃i , Fi − λ̂iĜiQ̂iE

⊤
g,iEf,i, (A.18)

and the second last equality holds from Equation (A.7).

Recall definition of P̂i|i, we have

P̂i|i =
(

P−1
i|i + λ̂iE

⊤
f,iEf,i

)−1

⇒ P−1
i|i = P̂−1

i|i − λ̂iE
⊤
f,iEf,i

⇒ P̂i|iP
−1
i|i

= P̂i|i(P̂
−1
i|i

− λ̂iE
⊤
f,iEf,i) = I − λ̂iP̂i|iE

⊤
f,iEf,i

⇒ F̂i , (Fi − λ̂iĜiQ̂iE
⊤
g,iEf,i)(I − λ̂iP̂i|iE

⊤
f,iEf,i) = F̃iP̂i|iP

−1
i|i

.

(A.19)

Substitute Equation (A.17) and Equation (A.19) into Equation (A.16), we have

[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1

(

P−1
i|i

0

)

=
[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

F̂i. (A.20)

Now substitute Equation (A.15) and Equation (A.20) into Equation (A.14), and denote

x̂i+1 , F̂ix̂i|i; ei+1 , yi+1 − Hi+1x̂i+1; Pi+1|i+1 , Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1;

(A.21)
we get

x̂i+1|i+1 = (Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1)H

⊤
i+1R̂

−1
i+1yi+1 +

[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

F̂ix̂i|i

=(Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1)H

⊤
i+1R̂

−1
i+1

(

ei+1 + Hi+1F̂ix̂i|i

)

+
[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

F̂ix̂i|i

=Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1 +

[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

] [

I + Pi+1H
⊤
i+1R̂

−1
i+1Hi+1

]

F̂ix̂i|i

=Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1 +

[

I − Pi+1H
⊤
i+1(R̂i+1 + Hi+1Pi+1H

⊤
i+1)

−1Hi+1

] [

I + Pi+1H
⊤
i+1R̂

−1
i+1Hi+1

]

F̂ix̂i|i

=Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1 + F̂ix̂i|i = Pi+1|i+1H

⊤
i+1R̂

−1
i+1ei+1 + x̂i+1.

(A.22)

The third equality follows form Equation (A.9), and the fourth equality holds from matrix
inversion lemma.

Combine all the definitions and Equation (A.22), we get the following measurement-update
form.

Algorithm 2 Measurement-Update form

1. Initialize:

P0|0 :=(Π−1
0 + H⊤

0 R−1
0 H0)

−1

x̂0|0 :=P0|0H
⊤
0 R−1

0 y0.
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2. Recursion:
Construct and minimize G(λ) over (‖M⊤

i H⊤
i+1R

−1
i+1Hi+1Mi‖,+∞). Let the optimal

value be λo
i . Compute the following values:

λ̂i :=(1 − α)λo
i

Ri+1 :=Ri+1 − λo−1Hi+1MiM
⊤
i H⊤

i+1

R̂−1
i+1 :=αR−1

i+1 + (1 − α)R
−1
i+1

Q̂−1
i :=Q−1

i + λ̂iE
⊤
g,i

[

I + λ̂iEf,iPi|iE
⊤
f,i

]−1
Eg,i

P̂i|i :=(P−1
i|i + λ̂iE

⊤
f,iEf,i)

−1 = Pi|i − Pi|iE
⊤
f,i(λ̂

−1
i I + Ef,iPi|iE

⊤
f,i)

−1Ef,iPi|i

Ĝi :=Gi − λ̂iFiP̂i|iE
⊤
f,iEg,i

F̂i :=(Fi − λ̂iĜiQ̂iE
⊤
g,iEf,i)(I − λ̂iP̂i|iE

⊤
f,iEf,i)

Pi+1 :=FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i

Re,i+1 :=R̂i+1 + Hi+1Pi+1H
⊤
i+1

Pi+1|i+1 :=Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1

x̂i+1 :=F̂ix̂i|i

ei+1 :=yi+1 − Hi+1x̂i+1

x̂i+1|i+1 :=x̂i+1 + Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1.

To derive the prediction form from the measurement-update form, we need the following
two lemma.

Lemma 2
Pi+1 = FiPiF

⊤
i − KiR

−1
e,i K

⊤
i + ĜiQ̂iĜ

⊤
i , (A.23)

where

Ki ,FiPiH
⊤
i , Re,i , I + H iPiH

⊤
i , H i ,





R̂
−1/2
i Hi
√

λ̂iEf,i



 .

Proof. First note

P−1
i|i =(Pi − PiH

⊤
i R−1

e,i HiPi)
−1 =

(

Pi − PiH
⊤
i (R̂i + HiPiH

⊤
i )−1HiPi

)−1

=
(

(P−1
i + H⊤

i R̂−1
i Hi)

−1
)−1

= P−1
i + H⊤

i R̂−1
i Hi.

(A.24)

Hence we have

Pi+1 = FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i = Fi

(

P−1
i|i + λ̂iE

⊤
f,iEf,i

)−1
F⊤

i + ĜiQ̂iĜ
⊤
i

=Fi

(

P−1
i + H⊤

i R̂−1
i Hi + λ̂iE

⊤
f,iEf,i

)−1
F⊤

i + ĜiQ̂iĜ
⊤
i = Fi

(

P−1
i + H

⊤
i H i

)−1
F⊤

i + ĜiQ̂iĜi

=FiPiF
⊤
i − KiR

−1
e,i K

⊤
i + ĜiQ̂iĜ

⊤
i .
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Lemma 3
Pi|iH

⊤
i R̂−1

i = PiH
⊤
i R−1

e,i .

Proof. From Equation (A.24) we have

P−1
i|i (PiH

⊤
i R−1

e,i ) = (P−1
i + H⊤

i R̂−1
i Hi)(PiH

⊤
i R−1

e,i ) = H⊤
i (I + R̂−1

i HiPiH
⊤
i )R−1

e,i

=H⊤
i R̂−1

i (R̂i + HiPiH
⊤
i )R−1

e,i = H⊤
i R̂−1

i .

By left multiplying Pi|i on both sides, the lemma follows.

Substituting these two Lemma into the measurement-update form, we get the recursion for-
mula of the prediction form.
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