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3000, chemin de la Côte-Sainte-Catherine
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Abstract

Top-tier customers—that is, those 20% of customers that typically bring in 80% of all
profits—are extremely valuable to companies. In the many instances in which organiza-
tions attribute top-tier status to customers based on their consumption behaviour within
a specific period, such as a year, it becomes very important to determine, during this
period, how likely those gold customers are to retain their top-tier status going into the
next period. This allows better planning at the corporate level, but can also allow for
corrective measures or special retention efforts to be deployed. However, while models
exist to predict customer churn or customer lifetime value either at the beginning of a pe-
riod or on a continuous basis according to the evolution of inter-purchase time, no model
allows for a continuous re-estimation of customer status or value according to calendar
time, based on historical data and year-to-date information. To address this problem, we
develop a model of intra-periodic forecasting of customer behaviour that uses nonhomoge-
neous Poisson processes with random effects. We then empirically assess the performance
of this model using data from the loyalty program at a major commercial airline.

Key Words: Repeat buying; probability models; forecasting; loyalty marketing.

Résumé

Les clients de haut-niveau, c’est-à-dire les 20% de clients qui amènent généralement
80% des profits, sont extrêmement utiles aux entreprises. Dans les nombreux cas où les
organisations attribuent des statuts de haut-niveau à leurs clients sur la base de leurs
habitudes de consommation annuelle, il devient très important de déterminer, au cours
de l’année, la probabilité qu’un client conserve un tel niveau pour l’année suivante. Cela
permet non seulement une meilleure planification au niveau de l’entreprise, mais permet
aussi d’identifier des mesures de maintien plus appropriées.

Dans cet article, nous proposons ensuite un modèle de prévision du comportement de
la clientèle à l’aide de processus de Poisson non-homogènes avec effets aléatoires. Ensuite,
nous évaluons empiriquement l’adéquation de ce modèle en utilisant les données d’un pro-
gramme de fidélité d’une grande compagnie d’aviation commerciale.
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1 Introduction

It is rather well accepted in the academic and business literature that around 20% of any firm’s
customers bring in some 80% of corporate revenues. Past research has indeed confirmed this
Pareto-like distribution of customer lifetime value across various segments. For instance, in
their research conducted in the airline industry, Rust, Lemon, and Zeithaml (2004) show
that only 11.6% of customers at a leading U.S. airline have a lifetime value of $500 or more
and that this segment makes up approximately 50% of that airline’s total customer equity.
Popular marketing gurus contend that these highly lucrative customers should not be targeted
with marketing activities as they are typically “maxed-out,” using every service they could
ever need, and potentially already giving their provider a near-100% share-of-wallet. These
customers should rather be given as high a level of service as possible, while marketing efforts
should rather be targeted at the middle 60% of customers which bring in a share of profit
that could be increased (e.g., Reichheld and Teal 1996; Reichheld 1993; Reichheld and Sasser
1990).

This being said, any segment cohort, when followed through multiple periods, will show
decline as customers move up or down lifetime value segments, or altogether defect (Droz-
denko and Drake 2002). Considering the importance of so-called “Gold Customers” for every
organization, predicting the activity levels of these customers, and figuring out whether they
will remain top-tier customers over the next period should hold considerable appeal. Indeed,
such prediction would allow better planning and allocation of resources across segments and
customer tiers, and drive the overall strategy as to whether it should focus on retaining top-
tier customers or acquiring new ones. In this context, several general approaches have been
developed to model customer behaviour, most of which stemming from research pertaining to
the evaluation and forecasting of customer lifetime value (e.g., Fader, Hardie, and Lee 2005a;
2005b; Borle, Singh, and Jain 2008; Venkatesan, Kumar, and Bohling 2007; Simester, Sun,
and Tsitsiklis 2006; Rust, Lemon, and Zeithmal 2004). Under this paradigm, the focus lies on
evaluating the total number of transactions or revenues per customer by the end of a specific
period in order to steer investments towards certain specific customers as a way to manage
customer equity. Although not specifically developed with the top-tier customer in mind,
these models could still be used to determine, at the beginning of a new period, whether each
customer is most likely to remain a “Gold customer,” or to move down or even defect.

While these models perform generally well and could provide significant benefits in the
evaluation and forecasting of top-tier customer “downward-migration,” their contribution to
other down-to-earth and pragmatic managerial concerns and marketing preoccupations is
rather limited. For example, an advertising manager might be interested in knowing which
top-tier customers are most at risk of loosing top-tier status, allowing better allocation of
resources to better reach these customers. Given that access and responsiveness are key
determinants of perceived service quality (Parasuraman, Zeithaml, and Berry 1985; 1991),
a customer service director may also want to know when a surge in telephone orders from
top-tier customers is likely to occur in order to better plan for the availability of customer
service personnel. A product manager might be interested in finding out at which period
demand is likely to be higher or lower in order to manage pricing differentially across sub-
periods to capture as much of the value as possible. A customer relationship manager in a
loyalty program at an airline may want to know in October what is the likelihood of a Gold
Customer to have accrued enough air miles to remain a Gold Customer going into the next
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year in order to help plan end-of-year special offers. Or, a key account executive may want
to know whether a client is to remain a “Gold Customer” this year despite a low number
of transactions over the first three quarters, and whether he or she should trigger special
recovery efforts. In this last case, considering that account managers’ compensation is—in
some 92% of surveyed U.S. corporations—based on reaching annual sales quotas (Ryals and
Rogers 2005), being able to assess, say, in August whether target sales for a given key account
are likely to be met by the end of December should hold considerable importance. This is
especially true in making decisions regarding retention-oriented activities—that is, service—or
acquisition-oriented activities—e.g., cross-selling, up-selling, solicitation, etc.—even in those
top-tier segments the academic literature argues we should really only try to serve well and
not waste our marketing resources targeting.

Under the hood, existing models consider the flow of transactions to be homogeneous
within the period. For instance, a forecast of 156 transactions per year for a given customer is
implicitly considered to be 13 transactions a month, or 3 transactions a week, and thus does
not take into account the fact that these transactions can be distributed otherwise within the
year. However, in many product categories, sales are affected by cyclical events like seasons
or holiday periods. Alternatively, these existing models could be used to forecast the level
of transaction in a specific period—for instance, the month of March, or week 28—for each
customer. In this case, data about a specific customer’s actions in the months of March of the
2, 3, 4, or more years before would be used to predict this customer’s actions over the next
month of March. Because it relies on past data for comparable periods, this approach yields
two major drawbacks: (1) Due to the usually limited amount of historic data (e.g., companies
preserve customer data for a limited period of time, oftentimes for 3 years or less), it greatly
extends prediction intervals, oftentimes past a reasonable and managerially useful threshold;
and (2) it considers these periods to be isolated from one another—that is, it fails to take
into account the effects of preceding (or future) periods. For example, the recency of a given
transaction can affect repurchase in the next period either positively (e.g., Fader, Hardie, and
Lee 2005a) or negatively (e.g., it is less likely that someone who booked a holiday cruise this
week will book one again next week (Venkatesan, Kumar, and Bohling 2007)).

To overcome these problems and address these managerial preoccupations, we develop a
model allowing finite-horizon prediction of recurrent events using flexible nonhomogeneous
Poisson processes with random effects. We first review the various models that were intro-
duced so far in the marketing literature and comment on their drawbacks with regards to
addressing the problems stated above (§2). In §3, we outline the assumptions relative to the
use of mixed nonhomogeneous Poisson models for predicting recurrent events before provid-
ing details on the development and estimation of our model, in §4. This is followed by an
empirical analysis of model performance using data from a major airline company (§5). We
finally conclude with a discussion of our results, limitations, and avenues for future research.

2 Forecasting Customer Activity

The extant literature provides several models to predict individual and aggregate transactions
or unit sales within a certain future period, as well as the timing of these transactions. Early
contemporary models focused on the evaluation of the potential value of a customer as the
product of the probability that a customer purchases times the profit margin of that purchase
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(Verhoef and Donkers 2001; Lewis 2005). The limited applicability of this approach in non-
contractual settings, where the expected purchase pattern of the customer is more or less
stable, soon prompted the development of alternative models.

More recent models allowed for a more or less precise prediction of expected consumption
(e.g., number of transactions to be made) according to past purchases. Rust et al. (2004)
computed customer lifetime value as a function of frequency of category purchases, average
quantity of purchase, and brand switching patterns combined with the firm’s contribution
margin. However, an important limitation of this approach was that the resulting model was
inherently static. Moreover, this research, along with similar work by Gupta and Lehmann
(2003), assessed the average value of a customer at some level of aggregation (or customer
segmentation). That is, these models did not provide individual customer-level insights, a
key objective in our research. Although alternative models take into account heterogeneity
between various customers (e.g., Fader, Hardie, and Lee 2005b), and also offer better predic-
tion for defection, or zero-purchase behaviour (e.g., Batislam, Denizel, and Filiztekin 2007),
they usually predict either time-to-next-purchase and/or time between purchases to derive a
global assessment of behaviour for each customer (Borle, Singh, and Jain 2008; Venkatesan,
Kumar, and Bohling 2007), which brings in further problems.

In relation with our objectives, the problem with these models, and especially with the
NBD–Pareto model and its variants (Fader, Hardie, and Lee 2005b), is that it assumes that
customers buy at a steady rate for a period of time and then become inactive—that is,
they do not take into account seasonality, cyclicality, or otherwise increases or decreases in
consumption behaviour and thus focus on customer status as either active or inactive. This is
hardly the case in many product categories, and as Figure 1 shows, certainly not the case with
flying patterns of top-tier customers in the airline industry. In addition, these models tend to
focus on predicting end-of-period outcome without explicitly taking into account behaviour-
to-date in the period of interest. In fact, only Borle, Singh, and Jain’s (2008) model observes
complete customer lifetimes, updating expected customer lifetime value and probability of
defecting (i.e., the hazard rate) after each purchase, given that the customer has survived
until a particular purchase occasion. However, in this latter case, only inter-purchase time
updates customer lifetime value predictions, not calendar time.

Other deterministic models have also been introduced to predict various customer states,
such as active/inactive (in the case of churn models), and typically rely on logistic regression,
hazard models, or Markov chains (Bhattacharya 1998; Bolton 1998; Pfeifer and Carraway
2000; Van den Poel and Larivière 2004; Buckinx and Van den Poel 2005; Simester, Sun, and
Tsitsiklis 2006; Schweidel, Fader, and Bradlow 2008). Here again, however, these approaches
are all inherently static and do not shed light on intra-periodic questioning with regards to
the direction a specific top-tier customer is actually headed toward.

3 Prediction of Recurrent Events with Mixed Poisson Models

3.1 Mixed Nonhomogeneous Poisson Processes

The objective of our work is therefore to accurately predict whether a currently top-tier
customer will have cumulated enough transactions by the end of the current period to qualify
again for top-tier status over the next period. That is, there is a finite population of unit
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customers with top-tier status at the beginning of the year (i = 1, . . . , k), and we wish
to predict the number of transactions to be made by these individual consumers and if so
desired, from there, the aggregate number of such transactions across the population, or
across a given segment. Specifically, we consider what we term finite-horizon prediction, the
objective of which is to predict the total number of events (i.e., transactions), for an individual
or the whole population over a specified time period (0, T ) on the basis of events that have
already occurred up to given times ti ≤ T for the units in the population. In practice, this
interval (0, T ) would typically refer to a calendar or fiscal year time period, and the various
ti’s would usually take the same value for all units given that calendar year begins at the
same time for everybody.

The context of this research is frequent flyer status within a specific airline loyalty program,
where top-tier, “Gold” status is obtained after having flown 20 different flights in a calendar
year. Let t represent the number of days elapsed since the beginning of the calendar year, and
let Ni(u, v) denote the number of flights taken in the age interval u < t ≤ v. The objective is
then to predict Ni(0, T ) where T = 365 on non leap years—that is, the total number of flights
flown by customer i between the beginning and the end of the calendar year. Of course, as an
added benefit, it may eventually be useful to predict all flights flown by all customers during
the whole year by predicting

N+ (0, T ) =

k
∑

i=1

Ni (0, T ) . (1)

Of course, Ni(0, T ) will ultimately be known for each i once the calendar year is over.
However, in several situations such as the various instances described in introduction, it
might be useful to predict this value on the basis of previous experience with this customer
but also on the basis of flights already taken during that calendar year. For convenience, we
consider continuous time processes where two events cannot occur simultaneously. From this
point on, we also write N(t) for N(0, t). Different types of recurrent events processes are
discussed in the literature on point processes (Grandell 1997). These are all characterized by
an event intensity function

λ(t|H(t)) = lim
∆t→0

P [N(t, t + ∆t) = 1|H(t)]

∆t
(2)

where H(t) denotes the history of the process up to time t. Poisson processes are Markovian
because (2) depends only on t. The intensity, or rate, function is then simply denoted by λ(t),
and

N(t) ∼ PP (λ(t))

means that N(t) is a nonhomogeneous Poisson process (NHPP) with rate function λ(t).

Figure 1 provides a plot of the number of flights flown each day for the first 3 years of
data that we have, for those with top-tier frequent flyer membership after the first year. This
graph clearly shows the seasonal (that is, nonhomogeneous) character of the flying habits of
top-tier frequent flyers. It also shows, as is expected from the marketing literature pertaining
to loyalty programs, a number of flights flown daily that diminishes with time as members
from this top-tier cohort leave the program and/or the company, or change flying habits.

It is well known that in a Poisson process, the total number of events over any interval
has a Poisson distribution, and that the number of events N(s1, t1) and N(s2, t2) in two
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Figure 1: Total number of purchases per day over 3 years

nonoverlapping time intervals (s1, t1) and (s2, t2) are independent. These two properties make
Poisson processes easy to use with prediction problems involving recurrent events. These have
been applied to a wide range of business settings, both in marketing (e.g., Wang et al. 2007)
and non-marketing contexts (e.g., Teunter and Klein Haneveld 2008). However, in populations
with heterogeneous units, it is generally necessary to extend the models by including unit-
specific random effects. Such models are termed random-effects, or mixed, Poisson processes
(e.g., Lawless 1987; Grandell 1997).

We model the rate function for a single process with parametric forms λ(t;α, β) = αf(t;β),
where α is a scalar and β is a vector of low dimension. This parameterization is convenient
because f(t;β) and α measure different aspects of a NHPP; the function f(t;β) describes the
shape of the rate function, and α represents the overall event frequency. In the finite-horizon
problems, it is convenient to choose α so that E[N(0, T )] = α, in which case

∫ T

0 f(t;β)dt = 1.
That is, f(t;β) has the form of a probability density function over (0, T ).

To consider scenarios in which heterogeneity is observed among the processes for different
units, we incorporate unobservable iid random effects in our model. The model considered in
this article is

Ni(t)|αi ∼ PP (αif(t;β)), (3)

αi ∼ gamma(a, b),

where i = 1, . . . , k. The parameterization for the gamma distribution is such that E[αi] = a/b
and Var[αi] = a/b2. A suitable function f(t;β) for the problem at hand will be proposed in
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next section. Fredette and Lawless (2007) proposed a similar prediction model, but with a
different function f(t;β), to forecast automobile warranty claims.

3.2 Prediction

We seek to construct prediction intervals for a future random variable Y , given observed data
X = x. Such intervals are of the form (L(x), U(x)), and we attempt to find intervals where
P [L(X) ≤ Y ≤ U(X)] equals some specified fixed value 1 − γ, in which case (L(x), U(x)) is
called a 1 − γ prediction interval (e.g., Barndorff-Nielsen and Cox 1996) and 1 − γ is called
its coverage probability.

In the context discussed in this article, we wish to use the information regarding the k
processes that is available at a certain given time (that is, the number of customers who had
already flown by a given day of the year) to make predictive statements about the remaining
number of events to be observed. As it is the focus of our article, only the prediction of a
single count Ni(ti, T ) is discussed here, but extensions to predict the sum of all counts (1) are
discussed in Appendix A.

For each process, the information available to make our prediction consists of the total
number of events, Ni(ti), and the set of occurrence times, τi(ti) = {τi1, . . . , τiNi(ti)}. Condi-
tional on this information, each Ni(ti, T ) has a negative binomial distribution with param-
eters a + Ni(ti) and (b + F (ti;β))/(b + F (T ;β)), where F (t;β) =

∫ t

0 f(u;β)du (a proof is
given in Fredette and Lawless 2007). This predictive distribution is hereinafter denoted as
NB(a + Ni(ti), (b + F (ti;β))/(b + F (T ;β))), with probability function given by

P [Ni(ti, T ) = n|Ni(ti); a, b, β]

=
Γ(a + Ni(ti) + n)

Γ(a + Ni(ti))n!

(

F (T ;β) − F (ti;β)

b + F (T ;β)

)n( b + F (ti;β)

b + F (T ;β)

)a+Ni(ti)

, (4)

and an expectation given by

= (a + Ni(ti))

(

F (T ;β) − F (ti;β)

b + F (ti;β)

)

.

Note that the occurrence times do not appear in this distribution; only knowledge of Ni(ti)
is needed to determine this conditional distribution. However, the occurrence times will enter
into the estimation of model parameters β.

3.3 Plug-in Prediction Intervals

Let N(t) = (N1(t1), . . . , Nk(t1)) and τ(t) = {τij; i = 1, . . . , k; j = 1, . . . , Ni(ti)}. A prediction
interval for Ni(ti, T ) is an interval [L(N(t), τ(t)), U(N(t), τ(t))] such that

P [L(N(t), τ(t)) ≤ Ni(ti, T ) ≤ U(N(t), τ(t)); a, b, β] = 1 − γ.

Such an interval is called an exact 1− γ prediction interval for Ni(ti, T ). In most settings
(including the one considered in this paper), one cannot find exact prediction intervals when
the parameters a, b, and β are unknown. This is analogous to the non-existence of exact
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confidence intervals for parameters in most statistical models. The alternative is to find an
interval with an approximate coverage probability of 1 − γ. This can be accomplished in one
way by finding an interval [L,U ] such that

P [L ≤ Ni(ti, T ) ≤ U, â, b̂, β̂] = 1 − γ, (5)

where only Ni(ti, T ) is treated as a random variable, and where â, b̂, and β̂ are the maximum
likelihood estimates (MLE’s) obtained from the likelihood function based on the observed
data, which is (Lawless 1987):

L(a, b, β|N(t), τ(t)) =

k
∏

i=1

[(

∏Ni(ti)

j=1
f(τij;β

)(

ba

(b + F (ti;β))a+Ni(ti)

)(

Γ(a + Ni(ti))

Γ(a)

)]

The interval (5) is called a “plug-in” 1 − γ prediction interval. Essentially, this method
assumes that the true parameter values are in fact (â, b̂, β̂) and thus ignores completely the
uncertainty in (â, b̂, β̂) relative to (a, b, β). When the observed data set is very large, so that
(â, b̂, β̂) can be assumed close to (a, b, β), then the coverage probability of this interval will be
close to 1-γ. 1

Plug-in prediction intervals with an approximate coverage probability of 1−γ can easily be
obtained by calculating the γ/2 and the 1− γ/2 quantiles based on the predictive probability
function P [Ni(ti, T ) = n|Ni(ti); â, b̂, β̂] given by (4). This “plug-in” predictive distribution
function can also be used to make other interesting predictive statements:

• At time ti, the probability that a customer will retain his “top-tier” status at the end
of the year (i.e., in the context of our research, that this customer will have flown 20
flights) is estimated by:

∞
∑

n=20−Ni(ti)

P [Ni(ti, T ) = n|Ni(ti); â, b̂, β̂].

• At time ti, a point prediction for the remaining number of events (i.e., flights to be
taken) is given by:

= (â + Ni(ti))

(

F (T ; β̂) − F (ti; β̂)

b̂ + F (ti; β̂)

)

=
(

F (T ; β̂) − F (ti; β̂)
)

[

â

b̂
(1 − wi(ti)) +

Ni(ti)

F (ti; β̂)
wi(ti)

]

,

where wi(ti) = F (ti;β̂)

(b̂+F (ti;β̂))
.

We can see that four different factors derived from our prediction model (3), based on
nonhomogeneous Poisson processes with random effects, are influencing the predictions being
made:

1 For smaller datsets, this method can be improved upon by calibrating the plug-in intervals obtained. See
Lawless and Fredette (2005) for complete details.
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1. The factor F (T ; β̂) − F (ti; β̂) =
∫ T

t
f(u; β̂)du takes into account the estimated time

nonhomogeneity over the interval [ti, T ].

2. The ratio â

b̂
is an estimation, based on the whole sample, of the event frequency.

3. The ratio Ni(ti)

F (ti;β̂)
is an estimation, based on customer i, of the event frequency.

4. An increasing function wi(ti). As ti increases, the weight of the whole sample on the
estimation of event frequency decreases while the weight of customer i’s actual behaviour
so far increases.

4 Predicting the number of flights taken by frequent flyers

Frequent flyers programs involve the systematic collection of detailed information regarding
members’ flying activities, thus allowing prediction of individual activity level based on the
data already observed. The database at hand was obtained from the loyalty program of a
major American commercial airline. It includes information on individual top-tier frequent
flyers for a period of 3 years starting January 1st, 2004 and provides, for each frequent flyer,
a unique identifier along with the various dates that flights have been flown. To qualify for
top-tier “Gold” membership, each frequent flyer had to fly at least 20 times over first calendar
year—that is, between January 1st, 2004 and December 31st, 2004 inclusively.

The quantities we wish to predict are Ni(366, 731) for each frequent flyer i—that is, the
number of flights taken by each frequent flyer between the first and last day of the second
calendar year of data. The dataset contains such data for 5,000 frequent flyers. In the second
year, each of them had actually flown between 0 and 158 flights. Table 1 gives the distribution
of total number of flights flown in year 2 for those who had qualified for top-tier membership
at the end of year 1.

Table 1: Distribution of the number of flights taken over year 2 by frequent flyers who had
qualified for top-tier status by the end of year 1

Number of flights flown Year 2
0 94

1∼10 721
11∼19 1112
20+ 3073

Early in a given year, the managers estimate, for the new year in progress, the eventual
number of flights to be flown by each frequent flyers according to past years’ data. Once
data begin to accrue for each frequent flyer however, the methods in Section 3 can be used to
predict the number of flights to be flown by each member, or the total flights to be flown for
a group of, or all, frequent flyers.

We now propose to use model (3) to predict the total number of flights flown by a given top-
tier frequent flyer over a calendar year. The choice of a suitable parametric form for f(t;β)
in (3) is crucial, because our predictions necessarily involve extrapolation into the future.
Ideally, the shape of this function would be the same every year to reflect the periodicity of
flying habits of frequent flyers. In addition, we would like to allow for a potential reduction
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of the amplitude of this function to reflect the fact that the number of flights flown usually
diminishes over time.

We thus consider the function

f(t;β) = p(t − 366;β1, β2) × exp{C(dt;β3, . . . , βK+3)},

where:

• dt is the day number of the year. For example, d1 = d366+1 = d366+365+1 = 1 (the first
year was a leap year). This will allow the function to retain the same shape year after
year.

• At the beginning of the second year, we incorporate a decreasing proportion p(.;β1, β2)
to reflect the fact that some customers are likely to leave the program over time. Because
of the obvious relationship between this phenomenon and a survival problem, we opted
for a survival function p(t− 366, β1, β2) = S(t;β1, β2) such that S(0;β1, β2) = 1 and de-
creases thereafter. We used the Weibull survival function S(t;β1, β2) = exp{(−tβ1)

β2}
which is probably, along with the log-normal survival function, the most popular distri-
bution for survival problems. We shall note that the value of this function has a useful
interpretation. For example, when we fitted our prediction model using the information
available at the middle of the 2nd year, we obtained that the value of the estimated
survival function at the end of that second year was 80%. It means that we predict that
the frequency of flights flown at the end of the 2nd year will be 20% smaller than what
it was at the end of the 1st year.

• C(t;β) is a cubic spline. Cubic splines are continuous piecewise cubic polynomials used
in curve fitting. They have been found to have nice properties with good ability to fit
sharply curving shapes (Harrel 2001). In order to use a cubic spline, we first have to
determine an appropriate number of knots. Between each of these knots, the continuous
function C(t;β) is a cubic polynomial. Based on the data available after the first year, we
found out that it was sufficient here to use K = 4 knots. In order to have approximately
the same number of recurrent events between each knots, the knots are the 20%, 40%,
60%, and 80% quantiles of all the occurrence times observed that 1st year (i.e., 70, 140,
220, and 300 days). The explicit form of this piecewise cubic polynomial is given by:

C(t;β3, . . . , β9) =β3t + β4t
2 + β5t

3 + β6(t − 70)3++

β7(t − 140)3+ + β8(t − 220)3+ + β9(t − 300)3+

where (.)+ is the positive part of what is inside the parenthesis.

Although spline functions are not very commonly used in marketing, they have been used in
modelling efforts in the past, for instance to help estimate irregular pricing effects (Kalyanam
and Shively 1998) or to model reciprocation of punitive actions in channel relationships (Ku-
mar et al. 1998). As Figure 2 shows, the use of splines in this case does allow for our model to
follow rather well the camel-like distribution of flying behaviour among the top-tier frequent
flyers over the first year of data, used to estimate our model.
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Figure 2: Adequacy of the nonhomogeneous process

5 Empirical Test of the Model

To assess the predictive quality of our model, we first explore its performance on predicting
the number of flights to be flown by 5,000 members of a same cohort of top-tier frequent
flyers within this loyalty program. For demonstration purposes, let us consider a scenario in
which, as she prepares her marketing activities for the fall season, a customer relationship
manager of this loyalty program is concerned about deploying extra effort to retain those
Gold customers that are in danger of not qualifying for Gold status the next year. In order
to target the right customers with a costly special offer, this manager wishes to target those
with a moderate chance of actually qualifying for top-tier membership, between 50% and 90%
as assessed using data available on August 1st of 2004. For each of these “gold” customers,
our model returns the likelihood that these customers will remain top-tier members in 2006—
that is, the likelihood that they will fly 20 flights or more during 2005. Those frequent flyers
having already flown these 20 flights are assigned a probability of 100%. Table 2 shows these
probabilities for 11 segments according to how likely they are to remain “gold” customers.

In addition, when summating the probabilities of all 3,438 customers who had not yet
secured top-tier membership by August 1st of 2005, we get a prediction of 1,594 that do retain
their “gold” status for 2006. In actuality 1,511 of them really do retain gold membership,
that is, a 5% error.
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Table 2: Model Fit According to Likelihood of Retaining Top-Tier Frequent Flyer Status

Probability intervals Number of customers Actual proportion of
in interval customers who retained

(Aug. 1st, 2005) top-tier membership by
Dec. 31st, 2005

[0-10%[ 1 149 3%
[10-20%[ 250 16%
[20-30%] 179 30%
[30-40%[ 129 33%
[40-50%[ 134 49%
[50-60%[ 160 50%
[60-70%[ 150 56%
[70-80%[ 147 69%
[80-90%[ 205 72%
[90-100%[ 935 92%
[100%] 1 562 100%

(already qualified by
August 1st, 2004)

To further assess the predictive performance of our model, we use the data available from
January 1st, 2004 and August 1st, 2005 to extrapolate the rate function of our nonhomogeneous
Poisson process between August 1st, 2005 and December 31th, 2005. As Figure 3 shows,
our model allows rather precise prediction past the August 1st, 2005 date. This analysis
demonstrates the high degree of validity of using nonhomogeneous mixed Poisson models for
the purposes of forecasting a customer’s future purchasing, conditional on his past buying
behaviour and his activity to date.

Finally, as a last example of the usefulness of this approach to various instances, imagine
our customer retention manager were interested in predicting likelihood of remaining top-tier
customers at the beginning of each month. Let us consider the example of two Gold customers
who both flew 25 flights over the first year. They both have an 83.5% likelihood of remaining
Gold customers at the beginning of the year. Ultimately, Customer A will fly 23 qualifying
flights this year thus conserving his top-tier status, whereas Customer B will fly only 18,
meaning he will loose his top-tier status at the end of the year.

Figures 4 and 5 provide the 12 monthly 95% prediction intervals for Customers A and B.
The dotted lines on both graphs indicate the total numbers of flights actually flown by the
end of the year while the increasing solid curve represents the total number of flights taken
at that point in time. As can be seen, and as an additional demonstration of the predictive
ability of our model, the forecasted intervals always contain the actual, final number of lights
taken for each of those two customers. Of course, the prediction interval also becomes smaller
with time, as data accrue regarding both customers’ actual behaviour.

On the basis of their respective flying activities, our model allows to estimate the proba-
bility that each of these two customers will take at least 20 flights at any point in time. For
instance, a monthly review would provide the probabilities of taking at least 20 flights before
the end of the year for each member (see Table 3).
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Figure 3: Accuracy of the forecasting

As can be seen in Table 3, while the probability of Customer A retaining his top-tier status
by the end of the year remains high—above 60%—throughout the year, Customer B can be
identified as a potentially his top-tier status as early as March or April. Considering that only
2 flights actually made the difference in the end, the airline company could have used such
approaches as reminding Customer B of the value of his Gold membership to incentivize this
customer into flying more in order to retain top-tier benefits into the next year. Adopting
such “corrective” actions early on during the year would have likely left enough time for
Customer B to better plan his flying activities for the remainder of the year.

6 Summary and Discussion

Retaining top-tier customers holds considerable importance for companies because of the net
effect these customers have on any organization’s bottom-line. This is why a large amount
of marketing literature has focused on customer satisfaction with service quality and deter-
minants of loyalty, among many others, as service quality is believed to be the key driver
of top-tier customer retention. One key assumption in the customer lifetime value asso-
ciated with top-tier customers is that they are not costly to market to since they do not
need marketing—they are already acquired by the firm. However, in real life, even top-tier
customers can leave the company for reasons other than service or product failures. For rela-
tionship managers, understanding which customers are likely to leave, and identifying which
of these the organization still has a chance to retain as top-tier customers can be extremely
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Figure 4: 95% prediction intervals for customer A

Table 3: Probabilities of taking 20 flights or more during this year, assessed at the beginning
of each month based on historical data to date

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Customer A
(23 flights

actually taken

at the end of

the year)

.835 .899 .767 .608 .797 .834 .795 .842 .900 .907 1.000 1.000

Customer B
(18 flights

actually taken

at the end of

the year)

.835 .657 .442 .170 .441 .606 .535 .575 .636 .783 .413 .031

important. Indeed, managers will want to time their retention efforts, and target them pre-
cisely towards these customers they are likely to loose but may still retain provided the right
actions are taken.

In this study, we have used nonhomogeneous Poisson processes with random effects to
model top-tier customers’ behaviour towards the firm by explicitly accounting for their ex-
pected consumption pattern over time. We estimated a model based on data from an airline’s
frequent flyer program where the behaviour is observed and stored for each customer. We
then showed how well the model fit the reality after an initial data gathering period in the
early phase of the year.

All prediction models are best applied in the specific situations where their critical as-
sumptions are satisfied. Our approach is especially well suited in situations where a firm
has a well-defined threshold (advertised or not) past which customers qualify for top-tier sta-
tus and where this threshold must be met within a specific calendar time (although a slight
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Figure 5: 95% prediction intervals for customer B

modification could be made to our model to allow this threshold to be met within a specific
period (e.g., number of days), regardless of the calendar date). The use of spline functions also
make our approach especially well suited for situations with irregular purchase behaviour, like
seasonal or cyclical products or services. Aside from frequent traveler programs in airlines,
hotels, and rental car companies, examples of such situations could be membership-based
retailers (e.g., Costco, Sam’s Club), credit cards, car repair shops, B2B services, and any type
of business that actively collects information on its customers. In these circumstances, the
potential drawback could of course be the availability of those appropriate measures. How-
ever, the proposed model needing as little as transaction dates per customers, it should be
widely implementable in a large number of businesses.

Appendix A: Prediction of the total number of recurrent events

amongst all the customers

For the prediction problem at hand, we can see from (4) that the predictive distribution
of
∑k

i=1 Ni(ti, T ) given N(t) is a convolution (a sum) of kNB (a + Ni (ti) , (b + F (ti;β)) /
(b + F (T ;β))) distributions with a probability function given by

P

[

k
∑

i=1

Ni(ti, T ) = n|N(t); a, b, β

]

=
∑

{zi:
P

k

i=1
zi=n}

P [Ni(ti, T ) = zi|Ni(ti); a, b, β]

=
∑

{zi:
P

k

i=1
zi=n}

Γ(a + Ni(ti) + zi)

Γ(a + Ni(ti))zi!

(

F (T ;β) − F (ti;β)

b + F (T ;β)

)zi
(

b + F (ti;β)

b + F (T ;β)

)a+Ni(ti)

.



Les Cahiers du GERAD G–2008–52 15

A “plug-in” prediction interval is then obtained by finding the appropriate quantiles of this
predictive distribution evaluated at â, b̂, and β̂.

When n or k is large, it is more convenient to use simulations to approximate this predictive
distribution. It is shown in Fredette and Lawless (2007) that a good approximation is given
by

P

[

k
∑

i=1

Ni(ti, T ) = n|N(t); â, b̂, β̂

]

≈
M
∑

j=1

exp{−u∗
j}(u

∗
j )

n

n!

Where u∗
j is obtained by simulating a convolution of k gamma random variables with parame-

ters â+Ni(ti) and b̂+F (ti;β̂)

F (T ;β̂)−F (ti;β̂)
. In most applications, it is usually sufficient to use M = 500

or M = 1, 000.
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