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École Polytechnique de Montréal
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Abstract

We propose a class of projected Krylov methods for the solution of unsymmetric aug-
mented systems of equations such as those arising from the finite-element formulation of
Navier-Stokes multi-fluid flow problems. The iterative methods only rely on matrix-vector
products with the (1, 1) block of the augmented matrix—not with its transpose—and on
a one-time symmetric indefinite factorization of a projection matrix. No computation
of Schur complements or generalized inverses is necessary, nor is the computation of a
nullspace or of a range-space basis. Numerical results coming from fluid dynamics exam-
ples illustrate the present approach and compare it to a direct application of a Krylov
method to the augmented system, and to a direct factorization of the system – assuming
that the latter is feasible.

Key Words: Unsymmetric systems, saddle-point systems, augmented systems, Krylov
method, symmetric indefinite factorization.

Résumé

Nous proposons une classe de méthodes de Krylov projetées pour la résolution de
systèmes linéaires augmentés non-symétriques tels que ceux qui surviennent dans la for-
mulation par éléments finis de problèmes d’écoulement multi-fluides de Navier-Stokes. Ces
méthodes itératives sont uniquement basées sur des produits matrice-vecteur avec le bloc
(1, 1) de la matrice augmentée – et non avec la transposée – ainsi que sur la factorisa-
tion symétrique indéfinie d’une matrice de projection. Il n’est pas nécessaire de calculer
de complément de Schur, d’inverse généralisé, ni de base du noyau ou de l’image d’une
application linéaire. Des résultats numériques provenant de problèmes de dynamique des
fluides illustrent notre approche et la compare à une application directe d’une méthode
de Krylov au système augmenté ainsi qu’à une factorisation directe lorsque celle-ci est
possible.

Acknowledgments: The author wishes to thank Steven Dufour and Alain Fidahoussen
for discussions that sparked the development of the present research, for generating the
test problems and for testing preliminary versions of the projected bi-cgstab method in a
finite-element code. Research partially supported by NSERC Discovery Grant 299010-04.
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1 Introduction

We consider the iterative solution of systems of the form[
A BT

B 0

] [
u
p

]
=

[
b
d

]
, (1.1)

where A ∈ Rn×n is square but not necessarily symmetric, B ∈ Rm×n, b ∈ Rn and d ∈ Rm. In
a fluid flow context, systems such as (1.1) arise, for instance, as subproblems in Navier-Stokes
iterations and must be solved to compute a correction (u, p) in the velocity and pressure fields.
The large size of such problems often preclude a direct factorization of the coefficient matrix
of (1.1). Iterative methods applied directly to (1.1) usually perform poorly as they are unable
to take the rich structure of the system into account.

In single-fluid flows, and under usual assumptions, A is symmetric and positive definite
and the structure of the augmented matrix in (1.1) is well known [33]. Direct or iterative
methods taking advantage of symmetry may be used to solve the linear system for whenever
A is symmetric and positive definite over the nullspace of B, (1.1) represents the first-order
optimality conditions for the equality-constrained quadratic program

minimize
u∈Rn

−bTu + 1
2uTAu subject to Bu = d, (1.2)

where the variables p play the role of Lagrange multipliers. In this paper, we are interested
in applications where the density of the coefficient matrix is mostly due to A as m is often
substantially smaller than n and B is thus a “flat” matrix. This occurs, for instance, when
considering the flow of two or more immiscible fluids through a cavity. Assuming B has full
row rank, it is therefore often feasible to compute a factorization of the projection matrix[

G BT

B 0

]
, (1.3)

where G is a sparse symmetric approximation to A that is positive definite over the nullspace
of B, the simplest choice being G = I. A particularly efficient iterative method for (1.2) is then
the projected preconditioned conjugate gradient algorithm [13, 31, 44] often used in nonlinear
optimization contexts. Note that when G = I, the matrix (1.3) represents the orthogonal
projector onto the nullspace of B. The projected preconditioned conjugate gradient method
typically requires the factorization of a single projection matrix with G = I and one matrix-
vector product with A per iteration.

In this paper we examine similar iterations in the case where A is unsymmetric. The inter-
pretation in terms of an optimization problem such as (1.2) is then lost. We are particularly
interested in the case where A may not be assembled explicitly but rather, matrix-vector
products with A may be obtained by calling a function. We will however assume that B is
available explicitly. In the following, we examine families of efficient Krylov-type methods
that can accomodate such a situation.

A Krylov-type iterative method applied to (1.1) usually requires matrix-vector products
involving the augmented coefficient matrix of (1.1) and possibly also its transpose. Note
that the augmented matrix is indefinite. In case A is symmetric but not positive definite,
applicable Krylov methods include the minimum residual method minres and symmlq [45].
When A is not symmetric, applicable methods include the conjugate gradient on the normal
equations cgne or cgnr [22, 25], the generalized minimum residual method gmres and its
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restarted variant gmres(m) [51], the bi-conjugate gradient bi-cg [25], the quasi-minimum
residual method qmr [27] and its transpose-free variant tfqmr [29], the conjugate gradient
squared method cgs [50], and the stabilized bi-conjugate gradient method bi-cgstab [54].
All methods require a number of matrix-vector products with the coefficient matrix at each
iteration. The methods bi-cg and qmr also require a number of products with its transpose.

In fluid-flow contexts, obtaining AT or products with AT may entice discretizing a trans-
pose differential operator or performing an additional sweep through the mesh. Since we may
not want to incur this additional cost, especially repetitively as in Navier-Stokes iterations, we
eliminate the bi-cg and qmr methods. We also eliminate minres and symmlq since we are
interested in the case where A is not symmetric. We further eliminate gmres and gmres(m)
because of their appetite for memory and the difficulty of determining an appropriate restart
value. The methods cgne, cgnr are applied to a system whose condition number is the
square of that of A and thus often suffer from severe numerical cancellation effects, although
some refinements were proposed in [6]. Finally, cgs often exhibits erratic convergence patterns
and also suffers from cancellation effects. This leaves tfqmr and bi-cgstab as candidates
to tackle (1.1). Of course, we must keep in mind that in general, all Krylov methods exhibit
satisfactory convergence provided they are appropriately preconditioned. However, we will
show that the methods proposed in this paper perform well even when no preconditioner is
used. We refer the reader to [5] for a description of most of the above methods along with
numerous pointers to further references.

In the present context, a projected Krylov method results from formulating problem (1.1) as
a reduced system—one where the iteration occurs in the nullspace of B—without recourse to
computing a nullspace basis. This reduction is given in §1.4. An appropriately preconditioned
Krylov method is next applied to the reduced system and, by means of a change of variable,
we obtain a variant of the Krylov method in which only products with A (and possibly AT ,
depending on the method) are necessary as well as a single factorization of (1.3) for some
user-chosen preconditioner G.

In this paper, we describe the projection of the bi-cgstab and tfqmr families of methods
for unsymmetric linear systems and apply our results to (1.1). The methods we consider
are akin to so-called projection methods [11], which are sometimes regarded as being too
expensive and only effective on systems in which A is diagonally dominant [52]. We hope
that the remainder of this paper will correct that reputation by showing that efficient projec-
tions combined with the appropriate Krylov iteration make for a very competitive numerical
method.

The rest of this paper is organized as follows. Previous work on the topic at hand is
reviewed in §1.1. We briefly recall some background on Krylov methods in §1.2 and give our
working assumptions in §1.3. A general method for projecting a Krylov method is presented
in §1.4 and applied to two major Krylov methods. The first, tfqmr is covered in §2 and §3.
The second, bi-cgstab is covered in §4 and §5. We discuss preconditioning issues in §6 and
implementation and numerical results in §7. Some conclusions and future research directions
appear in §8.

1.1 Related Work

An approach suggested to be numerically advantageous in [30] to solve (1.1) in the symmetric
case is to regularize the (1, 1) block to obtain the mathematically equivalent system[

A + ρBT B BT

B 0

] [
u
p

]
=

[
b + ρBTd

d

]
, (1.4)
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where ρ > 0 is a regularization parameter chosen sufficiently large that A + ρBT B is nonsin-
gular. The system (1.4) gives the first-order optimality conditions of the quadratic program

minimize
u∈Rn

−(b + ρBTd)Tu + 1
2uT(A + ρBT B)u subject to Bu = d. (1.5)

The authors of [30] observe that the conditioning of the (1, 1) block of the coefficient matrix of
(1.4) decreases as ρ departs from zero, but increases again as ρ becomes large. However, the
condition number of the whole matrix increases monotonically with ρ. Overall, appropriate
values for ρ are difficult to estimate and the authors suggest the approximation ρ = ‖A‖/‖B‖2.

After pivoting about the (1, 1) block of the coefficient matrix of (1.4), we are left with

B(A + ρBT B)−1BTp = B(A + ρBT B)−1b− d, (1.6)

and u may be recovered from

(A + ρBT B)u = b−BTp. (1.7)

Note that the coefficient matrix of (1.6) is the (negative) Schur complement of A + ρBT B in
the coefficient matrix of (1.4). The coefficient matrix of (1.6) is likely dense and contains the
inverse of another potentially dense matrix. In order to avoid forming this matrix explicitly,
iterative methods are favored to obtain p. Upon noting that (1.6) is a positive definite system,
it is interpreted as the optimality conditions of the unconstrained quadratic program

minimize
p∈Rm

(d−B(A + ρBT B)−1b)Tp + 1
2pT (B(A + ρBT B)−1BT )p, (1.8)

which is solved by means of a steepest-descent method—an approach known as Uzawa’s
method [3]. It is typically applied for a (large) fixed value of ρ > 0 in which case the
algorithm simplifies. The computation of the steepest-descent direction involves solutions of
systems with (A + ρBT B) as coefficient matrix, which can be very ill conditioned for large
values of ρ. Iterative methods thus must be appropriately preconditioned. Uzawa’s method
generalizes to the case where A is unsymmetric [24] but essentially suffers from the same
shortcomings.

A related approach consists in formulating the augmented-Lagrangian problem associated
to (1.2) [24], resulting in the unconstrained quadratic program

minimize
u∈Rn

−(b + BT (ρkd− pk))T u + 1
2uT (A + ρkBBT )u, (1.9)

where pk is the current pressure—i.e., Lagrange multiplier—estimate and ρk > 0 is the current
penalty parameter [7]. Note the difference between (1.5), which is constrained, and (1.9),
which is unconstrained and differs in the linear term of the objective. Again, the matrix BBT

is likely to be (nearly) dense and to contribute adversely to the conditioning of the problem.
The augmented-Lagrangian algorithm starts with an initial penalty parameter ρ0 > 0 and
initial estimates u0 ∈ Rn and p0 ∈ Rm. At iteration k, uk+1 is obtained as a stationary point
of (1.9), i.e.,

(A + ρkB
T B)u = b−BT (pk − ρkd)

and the estimate pk is updated using

pk+1 = pk + ρk(Buk+1 − d).
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The parameter ρk is then increased and the process repeats.

Saddle-point systems such as (1.1) have generated a substantial amount of publications in
the last decade, particularly in relation to preconditioning techniques, and we can only name
a few here. Whenever A is nonsingular, some direct and iterative techniques are based on the
splitting [

I 0
BT A−1 I

] [
A 0
0 −S

] [
I A−1B
0 I

]
of (1.1), where S = −BT A−1B is the Schur complement of A [8]. A drawback of some
iterative methods is their requirement for a symmetric positive definite preconditioner. To
remedy this situation, [28] devise a specialized QMR iteration which accomodates arbitrary
symmetric preconditioners. In [37] a successive over-relaxation scheme is developed. A primal
regularization approach is taken in [30], where A is replaced by A + BWBT for some square
matrix W which is typically a multiple of the identity. In the non-symmetric case, but under
the assumption that the symmetric part of A is positive definite, [36] consider symmetric
indefinite preconditioners for iterative methods applied to (1.1). Related preconditioning
techniques also appear in [23]. In the symmetric case, [46], use the projection operator used
in the present paper as an idefinite preconditioner. The definite reference regarding properties,
applications and numerical methods for saddle-point systems is [8].

In the symmetric case, Bramley [11] proposes the projection method in terms of the or-
thogonal projection onto the nullspace of B written as P = I − BT (BT )† where (BT )† is
the Moore-Penrose pseudo-inverse of BT . When d = 0 in (1.1), then (Pu, p) solves (1.1)
if and only if PAPu = Pb and p = (BT )†(b − APu) + v for some v such that BT v = 0.
Note that whenever B has full row rank, P = I − BT (BBT )−1B. The resulting algo-
rithm requires a Cholesky factorization of BBT which is impractical in many cases given
that the latter matrix may be dense. The author notes that the singular values satisfy
σmin(A) ≤ σmin(PAP ) ≤ σmax(PAP ) ≤ σmax(A) so that the matrix PAP cannot have worse
conditioning that A itself. Related numerical results also appear in [10].

The authors of [4] solve (1.1) when A is symmetric and positive definite and B is totally
unimodular1 by explicitly computing a nullspace basis Z and forming the reduced system.
This strong structure allows to predict the sparsity pattern of ZT AZ. The reduced system is
then solved using a Cholesky factorization or a conjugate gradient iteration.

The idea of working in the nullspace of B is not new and can be traced back to at least 1968
[12]. The methods proposed here are related to the projection method but avoid its pitfalls
by working with augmented systems. They fit in a general framework allowing to derive
projected Krylov algorithms by inserting a projection step at a few places in a classic Krylov
algorithm. The same goes for the implementation—the methods proposed here can be easily
implemented by adding a few lines to an existing implementation of a Krylov method. The
projected variants of the algorithms have a number of advantages over the direct application of
a Krylov method to the augmented system, over a factorization of the full augmented system
and over reduced approaches such as Uzawa’s method and Bramley’s projection method.
Among them, we mention that only a very sparse projection matrix need be factorized, and
matrix-vector products with the (1, 1) block only are required. As a consequence, the memory
requirements are modest and this approach lends itself to efficient implementation since in
many applications, the matrix A need not be formed. For instance, it may be kept in memory
in finite-element format and matrix-vector products can be assembled whenever necessary.

1A matrix is totally unimodular if it has full row rank and its entries are 0 and ±1.
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More recently, [38] considered the solution of fully non-symmetric saddle point problems,
i.e., whose coefficient matrix has the form[

A BT
2

B1 0

]
,

where A is potentially non-symmetric. They propose a method based on a generalized Schur
complement which reduces the problem to another smaller-scale non-symmetric saddle point
problem and apply a method that they also name the projected bi-cgstab method to the
latter. The method is however costly as it requires computation of matrix-vector product with
a Schur-complement-like matrix involving a generalized inverse, the calculation and storage of
(BBT )−1 and the computation of both nullspace and a range-space bases. Incidentally, they
only consider orthogonal projectors, using a multigrid scheme as preconditioning technique
which turns out to be quite efficient in the fictitious domains applications that they set out to
tackle. In this sense, the approach of [38] bears some resemblance to the projection method
of [11].

We finally note that numerical algorithms for (1.1) can take advantage of the fact that
in some applications, d = 0, especially when A is symmetric and positive definite. This is
particularly important because the inverse of the coefficient matrix of (1.1), when it exists,
may have very ill-conditioned blocks. However, those blocks become irrelevant because d = 0.
We refer the reader to [8, §3.5] and references therein. We do not assume that d = 0 in this
paper.

In the sequel, we present projected Krylov algorithms based on possibly oblique projec-
tors, which serve the purpose of preconditioning the iteration. More importantly, the pro-
jected Krylov methods presented below require no computation of nullspace bases, no Schur
complement and generate iterates lying in the nullspace of B naturally.

1.2 Background

For a given n × n nonsingular system Mx = b of linear equations and xk, an approximation
to the solution x∗ = M−1b, we denote by rk = b −Mxk the residual associated to xk. A
Krylov method is an iterative procedure that, at iteration k, approximates the solution x∗ by
xk lying in the affine space

x0 +Kk(r0,M),

where x0 ∈ Rn is the initial guess and Kk(r0,M) is the k-th Krylov subspace generated by M
and r0, defined by

Kk(r0,M) = span{r0,Mr0,M
2r0, . . . ,M

k−1r0}.

Whenever M is symmetric and positive definite, xk may be defined by minimizing ‖x−x∗‖M
over x0 +Kk(r0,M), or, equivalently, by minimizing −bTx + 1

2xT Mx over the same subspace.
The prime example of this class of methods is the conjugate gradient algorithm. When M is
nonsymmetric, there is no such interpretation in terms of quadratic programming and Krylov
methods seek to minimize some norm of the residual ‖rk‖ = ‖b−Mxk‖ over x0 +Kk(r0,M)—
as in the gmres method [51]—to minimize a surrogate residual—as in the qmr or tfqmr
methods [29, 27]—or to attain a so-called Galerkin property rk ⊥ Kk(r̄0,M

T ) for some r̄0 ∈ Rn

such that rT
0 r̄0 6= 0—as in the bi-conjugate gradient algorithm [26], nicknamed bi-cg. In all

cases, the residual may be expressed as

rk = pk(M)r0,
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where pk(z) is a residual polynomial—a polynomial of degree k satisfying p(0) = 1. The above
methods provably terminate in at most n iterations in exact arithmetic.

By construction, the bi-conjugate gradient involves related linear systems with MT as
coefficient matrix, and the corresponding residuals satisfy

r̄k = pk(MT )r̄0,

with the same residual polynomial pk(z). As this last identity suggests, bi-cg requires matrix-
vector products with MT , which is a serious drawback for the applications we have in mind.
In particular, bi-cg requires products of the form rT

kr̄k. However, since

rT
kr̄k = (pk(M)r0)T (pk(MT )r̄0) = (pk(M)2r0)T r̄0,

products with MT can all be eliminated from the algorithm, and the result is an iteration in
which

rk = pk(M)2r0, (1.10)

nicknamed the conjugate gradient squared, or cgs, iteration [50]. A feature shared by all
Krylov methods is that their convergence behavior is largely governed by the spectral features
of the residual polynomial. Hence, a major disadvantage of cgs is that the condition number
of the residual polynomial appears squared. In practice, this often translates into slow and
erratic convergence patterns.

In [54], an attempt is made to smooth over this erratic convergence by replacing (1.10) by

rk = qk(M)pk(M)r0, (1.11)

where the residual polynomial qk(z) is expressed as

qk(z) =
k∏

i=1

(1− ωiz).

For each index i, the parameter ωi is selected so as to minimize ri as a function of ωi. The
result is the stabilized bi-cg method, nicknamed bi-cgstab.

The cgs method is seldom used because of its rather unpredictable convergence proper-
ties. However, bi-cgstab is probably the most widely used method of its class—the class
of Krylov methods based on a Galerkin condition. There is unfortunately no convergence
theory for bi-cgstab. It nevertheless often outperforms gmres in practice, especially when
the dimension of the Krylov space becomes large and gmres requires substantial storage, and
has the advantages of having bounded storage requirements and rather low cost per iteration.
We will use bi-cgstab as one of our methods of choice in the next sections, when we construct
projected Krylov methods. We recall the bi-cgstab algorithm and taylor it to the solution
of (1.1) in §4.

The transpose free variant of the quasi-minimum residual method, tfqmr [29] originates
in fact not from the quasi-residual method qmr [27] but from cgs. Instead of minimizing the
norm of the residual rk, quasi-minimum residual methods minimize instead a full-rank linear
transformation of rk. In tfqmr, the residual is expressed in matrix form as

rk = Wk+1Ω−1
k+1(fk+1 −Hkz),
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where the columns of Wk+1 ∈ Rn×(k+1) are vectors of the form pi(A)2r0 and pi(A)pi−1(A)r0,
Ωk+1 = diag(ω1, . . . , ωk+1) is a diagonal scaling matrix, fk+1 = Ωk+1e1 where e1 is the first
vector of the canonical basis, and Hk is an upper Hessenberg matrix. The scalars ωi are
positive weights and the method seeks a z so as to

minimize
z∈Rk

‖fk+1 −Hkz‖2, (1.12)

in the Euclidian norm. The objective of the least-squares problem (1.12) is called the quasi
residual, hence the name quasi minimization. A solution zk to (1.12) then yields a next iterate
xk. An appropriate choice of the weights ωi yields a useful lower bound on ‖rk‖ as a function
of the norm of the quasi residual and thus yields a natural stopping criterion. We recall and
build upon the tfqmr algorithm in §2.

For a more complete discussion of Krylov methods, we refer the reader to the sources cited
above and to the more general texts [5, 40, 48, 53].

1.3 Notation, Basic Results and Assumptions

In this section, we recall basic properties of systems of the form (1.1) and summarize our
working assumptions for the remainder of the paper.

For a given matrix M ∈ Rq×r, let N (M) ⊆ Rr and R(M) ⊆ Rq denote the nullspace and
the range space of M respectively. If L ⊆ Rr is a subspace of Rr, we use the notation

R(M | L) = {u ∈ Rq | u = Mv for some v ∈ L} .

In other words, R(M | L) is the range space of the restriction of the operator M to the
subspace L. If the columns of the matrix N form a basis for L, then R(M | L) = R(NT MN).

We will consider several matrices of the form

KM ≡
[
M BT

B 0

]
for some matrix M ∈ Rn×n. In particular, KA is the coefficient matrix of (1.1), KI has the
identity matrix in the (1, 1) block and we will refer to KG for preconditioning systems where
G satisfies appropriate properties.

Our basic working assumptions are stated in Assumption 1.1.

Assumption 1.1 The matrices A ∈ Rn×n and B ∈ Rn×m appearing in the coefficient matrix
KA are such that

1. B has full row rank,
2. N (A) ∩N (B) = {0},
3. R(A | N (B)) ∩R(BT ) = {0}.

For the system (1.1) to be consistent, its coefficient matrix K should be nonsingular. The
following result states that our basic assumption covers all possibilities.

Theorem 1.1 The coefficient matrix of (1.1) is nonsingular if and only if Assumption 1.1 is
satisfied.

Proof. The proof is a special case of [38, Theorem 3.1].
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Note that conditions 2 and 3 of Assumption 1.1 have meaningful implications for the
numerical method that we have in mind. Condition 2 implies that the restriction of A to
the nullspace of B is nonsingular. Therefore, it makes sense to work in N (B) and identify
the component u of the solution to (1.1) in that subspace. This justifies the approach to be
suggested in §1.4. In particular, A itself could be singular, but its restriction to N (B) must
not. Condition 3 implies that there exist no nonzero v ∈ N (B) such that Av = BT p for some
p ∈ Rm. Finally, the full row-rank assumption on B is classical in this context.

We say that a matrix M is positive definite over a subspace L if wT Mw > 0 for all
nonzero w ∈ L. The following corollary will be useful in the sequel of the paper in terms of
preconditioners.

Corollary 1.1 If the matrix M ∈ Rn×n is positive definite over the nullspace of B and if B
has full row rank, then KM is nonsingular.

Proof. The first part of Assumption 1.1 is satisfied by assumption. The second part is
satisfied since M is nonsingular over N (B). To verify the third part, suppose z = Mw with
Bw = 0. If it is also possible to write z = BT y, then wT Mw = wT BT y = 0 so that w = 0
and z = 0.

1.4 A Nullspace Approach

Let us now consider the augmented system (1.1). Let Z ∈ Rq×n be a matrix whose rows form
a basis for the nullspace of B. Any vector of Rn, and in particular any solution u∗ to (1.1)
may be written

u∗ = Zu∗Z + BTu∗B, (1.13)

so that the first block of equations of (1.1) turns into

AZu∗Z + ABTu∗B + BTp = b. (1.14)

Assuming that B has full row rank, premultiplying (1.13) by B and using the second block
of equations of (1.1) yields

BBTu∗B = d, (1.15)

which uniquely determines u∗B. By substituting into (1.14) and premultiplying with ZT , we
have the following relation,

ZTAZu∗Z = ZT (b−ABTu∗B), (1.16)

in the unknown u∗Z. Note that in (1.16), the coefficient matrix ZTAZ may be unsymmetric.
Such a system might be solved iteratively by an appropriately preconditioned Krylov method.
For computational reasons, we wish however to avoid the burden of computing a nullspace
matrix Z, particularly as in Navier-Stokes problems, this would have to be done at each outer
iteration.

In the following, we investigate modifications of the preconditioned tfqmr and bi-cgstab
methods using projection matrices of the form (1.3) and solving (1.16) without recourse to
computing Z. The procedure is identical for both methods and can be applied to obtain
a projected variant of any Krylov method. First, we write out the preconditioned Krylov
algorithm for (1.16) with a preconditioner of the form M = ZT GZ where G is symmetric and
such that M is positive definite. Next, we apply changes of variables by means of Z and ZT .
Preconditioning systems are replaced with the calculation of projection, which are carried out
by solving systems with (1.3).
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Our projected algorithm will involve solving linear systems with coefficient matrix KQ for
Q = I and Q = G. We will write ĝ = PQ(g) when there exists a vector ĥ such that[

Q BT

B 0

] [
ĝ

ĥ

]
=

[
g
0

]
. (1.17)

With Q = I, PI is the orthogonal projector onto the nullspace of B, whereas PG is an
oblique projection operator onto the nullspace of B, defined by the matrix G. Note that those
projectors are equivalently described by the matrices

Z(ZT Z)−1ZT and Z(ZT GZ)−1ZT ,

respectively. For the above expressions to represent projectors, they must be symmetric,
which explains why G must be a symmetric approximation to A.

Note that although it is feasible to compute a sparse basis Z in practice, projected methods
require the solution of linear systems with coefficient matrix Z(ZT Z)−1ZT or Z(ZT GZ)−1ZT .
In general, the latter matrices can be considerably denser than (1.3) and must be factorized
because accurate projections are crucial in a practical implementation, as we discuss in §6.

2 The Preconditioned TFQMR Algorithm

In this section, we review the preconditioned tfqmr algorithm. We consider a generic linear
system

Ax = b, (2.1)
where A ∈ Rn×n and b ∈ Rn. It is well known that in many cases, it is far more efficient
numerically to precondition this linear system before solving it. A two-sided preconditioner
is a pair {R1, R2} of nonsingular matrices which is used to transform (2.1) into the equivalent
system

R−T
1 AR−1

2 x = R−T
1 b, (2.2)

where we used the notation R−T
1 = (R−1

1 )T . The tfqmr method [29] applied to (2.2) is
summarized in Algorithm 2.1. To distinguish the iterates generated by this algorithm from
those of subsequent versions of it, we denote them with a bar.

It will be useful to derive a practical version of Algorithm 2.1 in terms of a preconditioner
composed of R1 and R2. Indeed, we will subsequently use the same type of manipulations to
derive a projected variant of this method.

In Algorithm 2.1, define the new variables x̄ = R2x, d̄ = R2d, ȳ = R2y, w̄ = R−T
1 w, v̄ =

R−T
1 v, and r̄ = R−T

1 r, and pick the vector r̃0 as a vector of the form R−T
2 r̂0. A few elementary

algebraic manipulations show that Algorithm 2.1 may be rephrased as Algorithm 2.2.

In Algorithm 2.2, it is important to remark that the notation M−1 does not by any means
suggest that one should compute the inverse of M , merely that one must solve a linear system
of equations with M as coefficient matrix. Note also that at each iteration, we must compute
the preconditioned vectors M−1vk and M−1wk where M = RT

1 R2 is the preconditioner.
It appears however that the whole algorithm cannot be formulated entirely in terms of M
because of the computation of τ0 and θj . A similar observation had already been made for the
bi-cgstab method in [54]—to which we come back in §4—and we resolve it here in a similar
way. We approximate τ0 = ‖R−T

1 r0‖ by ‖r0‖, which amounts to computing the residual norm
in the non-preconditioned space. Similarly, θj is computed as ‖wj+1‖/τj−1. These are, of
course, approximations, but they have proved satisfactory in the context of bi-cgstab. As
we will see in §7, they yield good numerical performance in the context of tfqmr as well.
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Algorithm 2.1 Preconditioned TFQMR (version 1)

Step 0. Choose x̄0 ∈ Rn. Let k = 0 and

1. w̄1 = ȳ1 = r̄0 = R−T
1 (b−AR−1

2 x̄0),

2. v̄0 = R−T
1 AR−1

2 ȳ1, d̄0 = 0, τ̄0 = ‖r̄0‖, θ̄0 = 0, and η̄0 = 0,

3. Choose r̃0 ∈ Rn such that ρ̄0 ≡ r̃T
0 r̄0 6= 0.

Step 1. Compute ᾱk−1 =
ρ̄k−1

r̃T
0 v̄k−1

,, and set ȳ2k = ȳ2k−1 − ᾱk−1v̄k−1,

Step 2. For j = 2k − 1 and j = 2k, set

1. w̄j+1 = w̄j − ᾱk−1R
−T
1 AR−1

2 ȳj ,

2. θ̄j = ‖w̄j+1‖/τ̄j−1, c̄j = 1/
√

1 + θ̄2
j , τ̄j = τ̄j−1θ̄j c̄j , η̄j = c̄2

j ᾱk−1,

3. d̄j = ȳj +
θ̄2
j−1η̄j−1

ᾱk−1
d̄j−1,

4. x̄j = x̄j−1 + η̄j d̄j .

Step 3. Set

1. ρ̄k = r̃T
0 w̄2k+1, and β̄k = ρ̄k/ρ̄k−1,

2. ȳ2k+1 = w̄2k+1 + β̄kȳ2k,

3. v̄k = R−T
1 AR−1

2 ȳ2k+1 + β̄k

(
R−T

1 AR−1
2 ȳ2k + β̄kv̄k−1

)
,

4. k ← k + 1. Return to Step 1.

3 The Projected TFQMR Algorithm

We now wish to apply Algorithm 2.2 to (1.16) with the approximations given at the end of
§2. It appears natural in this case to choose a preconditioner of the form M = ZT GZ where
G ∈ Rn×n is a symmetric appoximation to A such that M is positive definite. For instance,
we might select G = I, the identity matrix of appropriate dimension.

We now rewrite Algorithm 2.2 with M = ZT GZ and denote all vectors with a superscript
Z: rZ, yZ, wZ, and so forth. To recover the notation of (1.1), we use the notation u instead of
x and define the vectors

rZ
k = ZTrk, vZ

k = ZTvk, wZ
k = ZTwk, and ZyZ

k = yk, ZdZ
k = dk, uk = ZuZ

k + BTu∗B. (3.1)

Upon selecting an initial uZ
0 ∈ Rp where p is the dimension of the nullspace of B, the initial

residual is given by

rZ
0 = ZT (b−ABTu∗B)− ZT AZuZ

0 = ZT
(
b−A(ZuZ

0 + BTu∗B)
)

= ZT (b−Au0).

For consistency with (1.1), we thus simply state that instead of uZ
0, we pick an initial u0 ∈ Rn,

compute the initial residual r0 = b−Au0 and transform residuals using rZ
0 = ZTr0.

Stage 4 of Step 2 in Algorithm 2.2 becomes

uZ
j = uZ

j−1 + ηjd
Z
j .
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Algorithm 2.2 Preconditioned TFQMR (version 2)

Step 0. Choose x0 ∈ Rn. Let k = 0 and

1. r0 = b−Ax0, y1 = M−1r0, w1 = r0,

2. v0 = Ay1, d0 = 0, τ0 = ‖R−T
1 r0‖, θ0 = 0, and η0 = 0,

3. choose r̂0 ∈ Rn such that ρ0 ≡ r̂T
0 r0 6= 0.

Step 1. Compute αk−1 =
ρk−1

r̂T
0 M−1vk−1

, and set y2k = y2k−1 − αk−1M
−1vk−1,

Step 2. For j = 2k − 1 and j = 2k, set

1. wj+1 = wj − αk−1Ayj ,

2. θj = ‖R−T
1 wj+1‖/τj−1, cj = 1/

√
1 + θ2

j , τj = τj−1θjcj , ηj = c2
jαk−1,

3. dj = yj +
θ2
j−1ηj−1

αk−1
dj−1,

4. xj = xj−1 + ηjdj .

Step 3. Set

1. ρk = r̂T
0 M−1w2k+1, and βk = ρk/ρk−1,

2. y2k+1 = M−1w2k+1 + βky2k,

3. vk = Ay2k+1 + βk (Ay2k + βkvk−1),

4. k ← k + 1. Return to Step 1.

From (3.1), we premultiply both sides of the latter equality by Z and add BTu∗B to both sides
to obtain

uj = uj−1 + ηjdj .

The remaining transformations are similar. After the above change of notation and reworking
of Algorithm 2.2, we obtain Algorithm 3.1.

A few comments on Algorithm 3.1 are in order. Firstly, note that Algorithm 3.1 is not
directly applicable since Z occurs explicitly at two places, namely the computation of τ0 and
of θj . However, since the choice of Z is arbitrary, we may assume that Z was chosen to
have orthonormal columns so that ZT Z = I and ZZT is the orthogonal projection onto the
nullspace of B. As a consequence, we have

τ0 = ‖ZT r0‖ =
(
rT
0 ZZT r0

)1
2 =

(
rT
0 PI(r0)

)1
2 = ‖PI(r0)‖, (3.2)

and similarly,
θj = ‖PI(wj+1)‖/τj−1. (3.3)

Note that this is akin to our approximating τ0 and θj in unpreconditioned space in the previous
section.

Secondly, the particular choice for the fixed vector r̂0 allows to write

ρ0 = r̂T
0r

Z
0 = r̂T

0Z
T r0 = r̃T

0ZZT r0 = r̃T
0PI(r0).
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Algorithm 3.1 Projected Preconditioned TFQMR

Step 0. Choose u0 ∈ Rn. Let k = 0 and

1. r0 = b−Au0, y1 = PG(r0), w1 = r0,

2. v0 = Ay1, d0 = 0, τ0 = ‖ZT r0‖, θ0 = 0, and η0 = 0,

3. choose r̂0 = ZT r̃0 for some r̃0 6= 0 so that ρ0 ≡ r̃T
0PI(r0).

Step 1. Compute v̂k−1 = PG(vk−1), αk−1 =
ρk−1

r̃T
0 v̂k−1

, and set y2k = y2k−1 − αk−1v̂k−1,

Step 2. For j = 2k − 1 and j = 2k, set

1. wj+1 = wj − αk−1Ayj , and compute ŵj+1 = PG(wj+1),

2. θj = ‖ZT wj+1‖/τj−1, cj = 1/
√

1 + θ2
j , τj = τj−1θjcj , ηj = c2

jαk−1,

3. dj = yj +
θ2
j−1ηj−1

αk−1
dj−1,

4. uj = uj−1 + ηjdj .

Step 3. Set

1. ρk = r̃T
0ŵ2k+1, and βk = ρk/ρk−1,

2. y2k+1 = ŵ2k+1 + βky2k,

3. vk = Ay2k+1 + βk (Ay2k + βkvk−1),

4. k ← k + 1.

A practical choice for the vector r̃0 might be to simply set r̃0 = r0 for then we obtain
ρ0 = ‖PI(r0)‖2. If the latter were to vanish, then r0 = b − Au0 ∈ N (B)⊥ = R(BT ) and u0

would be a solution. Another possibility would be to select r̄0 = (ZT GZ)−1ZT r̃0, for in this
case, ρ0 = r̃T

0PG(r0). With r̃0 = r0, we are then requiring that r0 not be orthogonal to N (B)
in the preconditioned sense. Without loss of generality, we may thus assume that ρ0 6= 0.

Finally, because we defined the vectors w such that wZ = ZT w, we have, in Step 3,

ρk = r̂T
0(Z

T GZ)−1ZT w2k+1 = r̃T
0Z(ZT GZ)−1ZT w2k+1 = r̃T

0PG(w2k+1).

The above suggests that both KI and KG must be factorized whenever G 6= I, depending
on the choice of r̃0. After the factorizations, the additional cost of Algorithm 3.1 is then
one factorization of the projection matrix KG, one backsolve during initialization and three
backsolves at each iteration. As KG is symmetric and indefinite, a Bunch-Parlett-type factor-
ization is appropriate and we use the multifrontal methods implemented in ma27 and ma57,
part of the Harwell Subroutine Library [39]. Note that the freedom of choosing G may be also
used so the factors of KG are as sparse as possible. In particular, when G = I, the factors
of KI are potentially much sparser than the factors of the coefficient matrix of (1.1). In fact,
their sparsity is entirely determined by that of B.

Of course, the present approach will only be advantageous if solving several systems of the
form (1.17) is substantially easier than solving (1.1), which is often the case.
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4 The Preconditioned Bi-CGSTAB Algorithm

The preconditioned bi-cgstab method for (2.1) solves the equivalent system (2.2) by means
of Algorithm 4.1 where the preconditioner is defined as M = RT

1R2 [54].

Algorithm 4.1 Preconditioned Bi-CGSTAB

Step 0. Choose x0 ∈ Rn. Compute r0 = b − Ax0 and choose r̄0 ∈ Rn such that
r̄T
0r0 6= 0. Let d0 = r0.

Step 1. For k = 0, 1, 2, . . . ,

1. Solve Md̄k = dk,

2. αk =
r̄T
0rk

r̄T
0Ad̄k

,

3. sk = rk − αkAd̄k,

4. Solve Ms̄k = sk,

5. ωk =
(R−T

1 sk)T (R−T
1 As̄k)

‖R−T
1 As̄k‖22

,

6. xk+1 = xk + αkd̄k + ωks̄k,

7. rk+1 = sk − ωkAs̄k,

8. βk =
αk

ωk

r̄T
0rk+1

r̄T
0rk

,

9. dk+1 = rk+1 + βk(dk − ωkAd̄k).

As in Algorithm 2.2, the computation of ωk in Algorithm 4.1 cannot be stated in terms
of the preconditioner M only but requires information about how M is split. Since this is
inconvenient, [54] suggests to use instead

ωk =
sT
kAs̄k

‖As̄k‖22
, (4.1)

and notes that in computational experiments, the latter formula behaves very similarly to the
one involving R1 as a split preconditioner. Once again, this inconvenience with bi-cgstab
also occurs in the projected version of the algorithm, given in the next section.

5 The Projected Bi-CGSTAB Algorithm

We apply Algorithm 4.1 with the modification (4.1) to the system (1.16) with a preconditioner
of the form M = ZT GZ where G is such that M is positive definite. Let the vectors of the
resulting formulation of Algrithm 4.1 be denoted uZ

k, rZ
k, dZ

k, d̄Z
k, and so forth. Upon defining

vectors uk, rk, dk, d̄k, sk and s̄k such that

rZ
k = ZTrk, dZ

k = ZTdk, sZ
k = ZTsk, and Zd̄Z

k = d̄k, Zs̄Z
k = s̄k, uk = ZuZ

k + BTu∗B, (5.1)
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Algorithm 5.1 Projected Preconditioned Bi-CGSTAB

Step 0. Choose u0 ∈ Rn. Compute r0 = b − Au0 and choose r̄0 ∈ Rn such that
(Zr̄0)T r0 6= 0. Let d0 = r0.

Step 1. For k = 0, 1, 2, . . . ,

1. Compute d̄k = PG(dk),

2. αk =
(Zr̄0)T rk

(Zr̄0)T Ad̄k
,

3. sk = rk − αkAd̄k,

4. Compute s̄k = PG(sk),

5. ωk =
(ZZTsk)T As̄k

‖ZT As̄k‖22
,

6. uk+1 = uk + αkd̄k + ωks̄k,

7. rk+1 = sk − ωkAs̄k,

8. βk =
αk

ωk

(Zr̄0)T rk+1

(Zr̄0)T rk
,

9. dk+1 = rk+1 + βk(dk − ωkAd̄k).

and deferring momentarily the choice of the fixed vector r̄0, we obtain Algorithm 5.1.

As in Algorithm 3.1, the computation of ωk in Algorithm 5.1 still involves Z explicitly.
Again, it may be simplified since without loss of generality, we may assume that the columns
of Z are chosen to form an orthonormal basis for the nullspace of B, so that ZT Z = I and
ZZT = PI is the orthogonal projection onto the nullspace of B. In this case,

‖ZT As̄k‖22 = s̄T
k AT ZZT As̄k = (As̄k)T PI(As̄k) = ‖PI(As̄k)‖22,

so that the formula for ωk simplifies to

ωk =
PI(sk)T As̄k

‖PI(As̄k)‖22
. (5.2)

When G = I, the computation of ωk comes at the cost of one extra pair of forward and back
solves. However, for more general preconditioners G, it appears that the computation of ωk

comes at the extra cost of factorizing KI in addition to KG. This drawback, shared with
Algorithm 3.1, it at variance with the projected conjugate gradient algrithm [31]. We will see
however that Algorithm 5.1 is very successful in practice and the above drawback is quickly
overshadowed by its performance, even more so than in the case of Algorithm 3.1.

The only element of Algorithm 5.1 that has not been explained so far is the choice for the
fixed vector r̄0. Note that the latter only appears in products of the form (Zr̄0)T v for various
values of the vector v. Two particular choices are of interest in the projected algorithm. The
first one is

r̄0 = ZT r̃0 (5.3)
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for some r̃0 ∈ Rn, for then

(Zr̄0)T v = (ZZT r̃0)T v = PI(r̃0)T v.

The initial requirement on r̄0 thus becomes PI(r̃0)T r0 6= 0. Upon selecting r̃0 = r0, this
requirement becomes equivalent to r0 not being orthogonal to the nullspace of B, a situation
which would indicate that u0 is already a solution.

The second choice is
r̄0 = (ZT GZ)−1ZT r̃0 (5.4)

for some r̃0 ∈ Rn. In this case,

(Zr̄0)T v =
(
Z(ZT GZ)−1ZT r̃0

)T
v = PG(r̃0)T v.

The requirement (Zr̄0)T r0 6= 0 becomes PG(r̃0)T r0 6= 0 and the choice r̃0 = r0 imposes a lack
of orthogonality to the nullspace of B in the preconditioned sense. The above discussion thus
eliminates all occurences of Z in Algorithm 5.1.

We now examine under what conditions the projected variant of bi-cgstab may break
down. A breakdown could occur if the denominator of αk vanishes, the denominator of ωk or
ωk itself vanishes. Finally, it could occur if r̄T

0rk = 0 in the denominator of βk. The second
possibility will not occur, since As̄k ∈ R(A | N (B)) and by Assumption 1.1, this vector cannot
be orthogonal to N (B) and therefore, its projection cannot vanish. Thus the denominator of
ωk in (5.2) cannot vanish. We have little control over the terms containing r̄0. If those cause
a breakdown, a usual solution is to restart the iterations from the current point with a new
value for r̄0. Finally, ωk will vanish if s̄T

kAs̄k = 0, but, as above, this cannot be due to As̄k

vanishing.

6 Preconditioning, Pressure Calculation and Cancellation

Algorithms 3.1 and 5.1 identify a solution u to (1.1) but do not identify the pressure component
p of a solution. Once u has been found, we see from (1.1) that p is a solution to

BTp = b−Au,

or, in other words, is uniquely determined by the equation

BBTp = B(b−Au), (6.1)

which can be interpreted as the first-order optimality conditions of the linear least-squares
problem

p = argmin
λ∈Rm

1
2‖B

Tλ + b−Au‖22, (6.2)

in Euclidian norm. One might go about solving (6.2) iteratively but in our context, it is useful
to notice that (6.1) may be equivalenty expressed in terms of the augmented system[

I BT

B 0

] [
w
p

]
=

[
b−Au

0

]
(6.3)

for some auxilliary vector w. Therefore, if either Algorithm 3.1 or 5.1 is applied, the latter
calculation of p costs one extra matrix-vector product, one extra forward solve and one extra
backsolve since the augmented matrix has already been factorized.
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Any preconditioner G that is positive definite on N (B) induces a semi-norm ‖g‖G defined
by

‖g‖2G = wTg,

where w solves the system [
G BT

B 0

] [
w
y

]
=

[
g
0

]
,

i.e., w = PG(g). In other words, ‖g‖G = ‖PG(g)‖. This induced semi-norm measures deviation
from R(BT ) and vanishes if and only if g ∈ R(BT ). Effectively, it acts as a norm on N (B).
For any g ∈ Rn and any p ∈ Rm, it satisfies ‖g‖G = ‖g + BT p‖G.

If Algorithm 3.1 is applied with a preconditioner G, the calculation of the final value of p
need not be at the cost of a factorization of PI . Indeed, instead of (6.3), we use[

G BT

B 0

] [
w
p

]
=

[
b−Au

0

]
, (6.4)

which yields p as the solution to the “weighted” linear least-squares problem

p = argmin
λ∈Rm

1
2‖B

Tλ + b−Au‖2G−1 , (6.5)

in the G−1 seminorm, the dual seminorm to ‖ · ‖G. Indeed, (6.4) yields

w + G−1BTp = G−1(b−Au), and Bw = 0,

and therefore
BG−1BTp = BG−1(b−Au),

which are the first-order optimality conditions of (6.5).

Similarly, the value u∗B satisfying (1.15) can be computed using[
I BT

B 0

] [
w
−u∗B

]
=

[
0
d

]
since the latter system yields w = BTu∗B and Bw = d.

As observed in [31] in the case of the projected conjugate gradient algorithm, severe nu-
merical cancellation may occur during the projection computations. Indeed, as convergence
occurs, g will align itself more and more with R(BT ), i.e., become orthogonal to N (B) and
therefore, in (1.17), ĝ will converge to zero. However, g itself will often remain substantial
and therefore ĥ will stay bounded away from zero. Suppose for simplicity that Q = G = I.
Then (1.17) yields

ĝ = g −BT ĥ,

which suggests why numerical cancellation is likely to occur. The backward error analysis in
[9] shows that

‖ĝ − ĝx‖
‖ĝx‖

≤ ηεm(σmax(B) + κ(B))
‖ĥx‖
‖ĝx‖

,

where η is the product of a low-degree polynomial in n + m with the growth factor from a
Bunch-Parlett factorization of KI , εM is the machine epsilon, σmax(B) is the largest singular
value of B, κ(B) is the condition number of B, and quantities with a subscript x denote
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the exact value, as would result from exact arithmetic, while non-subscripted quantities are
computed values. Therefore, whenever κ(B) is large or ‖ĥx‖ ≈ ‖g‖, i.e., ‖ĝx‖ � ‖ĥx‖, the
relative error in the computed projection could potentially be large.

Different strategies are possible to improve numerical stability. On the one hand, one may
attempt to improve the quality of the projection with iterative refinement. One the other
hand, the inaccurate ĝ could in turn be projected as suggested in [14, 31]. However, the
former may not converge if κ(K(G)) is too large and costs extra matrix-vector products, and
the both cost extra backsolves. As it turns out, there is a cheaper remedy to the cancellation
issue suggested in [31], which consists in a residual update strategy possibly followed by one
or more steps of iterative refinement. The main idea is that in (1.17), in exact arithmetic,
ĝx is unaffected if g is replaced by g − BT λ for some λ ∈ Rm. It thus suffices to pick a λ
such that ‖ĝ‖ is closer to ‖g‖. A convenient approximation is obtained by solving the linear
least-squares problem

minimize
λ∈Rm

1
2‖g −BT λ‖2G−1 . (6.6)

since the solution to (6.6) is precisely λ = ĥ. Unfortunately, this value is obtained after the
fact and in order to use it, one would have to project a second time, with g replaced by
g −BT ĥ. This inefficiency can be remedied cheaply by using slightly outdated information.

We now examine how the above discussion applied to Algorithms 3.1 and 5.1.

6.1 Stabilizing the Projected TFQMR Algorithm

In Algorithm 2.2, the vector w2k+1 in Step 3 is the kth residual from the cgs process [29],
i.e.,

w2k+1 = rCGS
k .

Therefore, in Algorithm 3.1, we expect PG(w2k+1) to become small and following the discus-
sion of the above section, it is the latter projection that is subject to numerical errors. We
thus consider w2k+1 in the role of g and ŵ2k+1 in the role of ĝ, and should redefine w2k+1 as
w2k+1 −BT λ for some λ ∈ Rm prior to projection. Let the projection of w2k+1 be given by[

G BT

B 0

] [
ŵ2k+1

h2k+1

]
=

[
w2k+1

0

]
. (6.7)

Instead of redefining w2k+1 as the ideal w2k+1 − BT h2k+1 when solving (6.7), we redefine it
as w2k+1 − BT h2k−1, where h2k−1 was obtained as a by-product of the projection of w2k−1.
In the numerical implementation, this stabilization step turned out to be crucial.

6.2 Stabilizing the Projected Bi-CGSTAB Algorithm

In Algorithm 5.1, we consider sk in the role of g and s̄k = PG(sk) in the role of ĝ. From the
previous discussion, we should redefine sk as sk −BT λ for some λ ∈ Rm before computing s̄k

at stage 4. As in §6.1, let the projection of sk be given by[
G BT

B 0

] [
s̄k

hk

]
=

[
sk

0

]
. (6.8)

Again, instead of redefining sk as the ideal sk − BT hk when solving (6.8), we redefine it as
sk−BT hk−1, where hk−1 was obtained as a by-product of the projection of sk−1 and thus comes
at no extra cost. At variance with §6.1, this stabilization of the algorithm greatly enhances its
numerical performance and in our experience, its net effect is to have the algorithm terminate
in fewer iterations.
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7 Implementation and Numerical Results

Algorithms 3.1 and 5.1 are implemented as flexible Fortran 95 modules named ptfqmr and
pbcgstab in the forthcoming projected Krylov solvers library [43]. The modules crucially rely
upon either of the HSL [39] packages ma47 [19, 20] and ma57 [21] to factorize the projection
matrices PI and PG. The ma47 and ma57 packages are evolutions of the earlier ma27 [17, 18],
which implements a stable multi-frontal symmetric indefinite factorization. Both can take
advantage of the augmented structure of PI and PG—namely the presence of a zero diagonal
block—via their pivoting strategy and in particular their use of so-called oxo pivots [20]. Note
that all three packages are freely available for academic use as part of the Harwell Subroutine
Library, accessible from hsl.rl.ac.uk/hsl2007/hsl20074researchers.html. The ordering
scheme used by ma57 to promote sparsity of the factors is one of the approximate minimum
degree ordering (AMD) [1, 2], or the multilevel recursive-bisection and k-way partitioning
routine metis [41, 42]. Depending on the matrix size and column density, ma57 automatically
selects an appropriate ordering. For numerical experience supporting the decision criteria, see
[32]. In the tests below, the matrix A is formed but is only used for matrix-vector products.
In a practical setting, A may be held in finite-element format and never be assembled.

In the default implementation, we choose u0 = 0 so that r0 = b. The choice of r̄0 is guided
by the transformation used to convert Algorithm 2.2 into Algorithm 3.1 and Algorithm 4.1
into Algorithm 5.1.

The stopping test implemented by default in ptfqmr is classical. The stopping tolerance
is fixed at ε = εa + εrτ0, where εa and εr are absolute and relative stopping tolerances respec-
tively. The quasi residual τk is monitored along the iterations and we declare convergence if√

2k τk ≤ ε (or
√

2k + 1 τk ≤ ε, depending on the index of the inner loop of Algorithm 3.1) or
‖PG(wk)‖2 ≤ ε.

The stopping test implemented by default in pbcgstab can be triggered by the bi-cg
residual vector sk or by the residual vector rk. On the one hand, the iteration stops whenever

(sT
k PG(sk))

1
2 = ‖PG(sk)‖ ≤ εa + εr(r̄T

0 r0)
1
2 .

In this case, the iterate uk must still be updated using

uk+1 = uk + αkd̄k.

On the other hand, we also stop the iteration whenever the Galerkin-like condition

r̄T
0rk < 10−12 r̄T

0r0 and (rT
k PG(rk))

1
2 ≤ εa + εr(r̄T

0 r0)
1
2

is satisfied.

By default, εa and εr are set in both implementations to 10−6 but can of course be ajusted
by the user.

Finally, in both algorithms, the iteration terminates if the total number of matrix-vector
products exceeds q nA, where nA is the order of the (1, 1) block matrix A. In our tests, we
chose q = 3 in ptfqmr while q = 2 in pbcgstab.

We compare the projected bi-cgstab approach with a direct LU factorization of (1.1).
The comparison is based on the total solution time and memory requirements. The LU
factorization is realized by means of the umfpack package [15].

http://hsl.rl.ac.uk/hsl2007/hsl20074researchers.html


Les Cahiers du GERAD G–2008–46 19

Since the present study is not a study of preconditioners, we choose G = I in all our tests
and defer the examination of appropriate preconditioners to future research. All tests below
were performed with the Intel compiler 10.0 on a 2.4 GHz Intel Core 2 Duo Apple laptop with
4 GB of memory.

The test problems used below arise from the discretization of the Stokes or Navier-Stokes
equations describing the flow of an incompressible viscous Newtonian fluid in a domain Ω
which contains a (potentially) moving subdomain Ω∗, i.e.,(

∂~v

∂t
+ ~v · grad ~v

)
+ µ∇2~v + grad p = ~f in Ω, (7.1a)

div ~v = 0 in Ω, (7.1b)

~v = ~v∗ on Γ∗, (7.1c)

where ~v is the velocity field, p is the pressure, µ is the viscosity, ∇2 is the Laplacian operator,
~f is a body force, Γ∗ is the boundary of Ω∗, and ~v∗ is the prescribed velocity on Γ∗. In our
problems, Ω∗ represents an obstacle modeled by means of the fictitious domains method—see,
e.g., [34].

Example 7.1 In this test problem, the Newton system encountered at iterations 5, 7 and 8
of a Navier-Stokes solver was output to file. The continuous problems concerns the study of
the flow of two immiscible fluids in a cavity. The sparsity pattern of the coefficient matrix
is show in the leftmost plot of Figure 7.1, where it is clear that the (1, 1) block contains a
number of rows that make it unsymmetric. The three systems have nearly identical properties.
For instance, in the system encountered at iteration 8, the (1, 1) block is of order 7, 092 with
168, 054 nonzero elements—making it 0.28% dense in KA. The (1, 2) block has size 669×7092
with 21, 687 nonzero elements—making it 0.036% dense in KA. We thus see that it is A that
is responsible for most of the density of KA. The total number of nonzero elements to keep
in memory for this matrix of order 7, 761 is thus 211, 428—an overall density of 0.351%. On
the other hand, the projection matrix PI , being symmetric, we only store its lower triangle,
which amounts to 28, 779 nonzeros, a density of 0.048%. Its factors, as computed by ma57,
have 55, 316 nonzeros—a density of 0.092%—a minor example of fill-in. The factorization of
PI was realized in 0.10 seconds.

In the LU factorization, the L factor was found to have 568, 780 entries and U was found
to have 543, 144, densities of 0.944% and 0.902% respectively, a substantially more important
fill-in. In this small-scale example, the LU factorization was performed in a mere 0.33 seconds.

Algorithm 3.1 performed 13, 037 matrix-vector products before declaring convergence in
60.22 seconds, for a total running time of 60.32 seconds. Algorithm 5.1 performed 2, 464
matrix-vector products before reaching convergence in 13.18 seconds, for a total running time
of 13.28 seconds. The bottom plots of Figure 7.1 show the quasi-residual history of ptfqmr
(left) and the residual history of pbcgtab (right) on this linear system. The plot of Figure 7.1
are representative of the residual history on all problems that we tested.

At the end of the iterations, we record the norm of the ptfqmr quasi residual, the norm
of the recurred pbcgstab residual vector, the relative residual of (1.1), defined by∥∥∥∥[

A BT

B 0

] [
u∗

p∗

]
−

[
b
d

]∥∥∥∥∥∥∥∥[
b
d

]∥∥∥∥ ,
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Figure 7.1: History of the ptfqmr quasi-residual (left) and of the pbcgtab recurred residual
(right).

and the relative error with the solution found with the LU factorization. This data is reported
in Tables 7.1 and 7.2 for the three problems.

Although the relative errors with the solution found by the LU factorization only have 3
or 4 significant digits in Tables 7.1 and 7.2, we wish to stress that it is possible to improve the
estimates in pbcgstab. For instance, upon setting εa = 10−12 and εr = 10−11, we obtained a
relative error of 8.7e−07 in 5, 332 matrix-vector products, which was realized in 29.59 seconds
on the iter-8 problem. We were not able to attain the same accuracy with ptfqmr. It is
imporant to realize however that on the one hand, no preconditioner was used in the above
experiments, and on the other hand, these iterative solvers are meant to be included in a
Newton-Krylov process. In such a process, the stopping tolerance to which the linear systems
are solved decreases as the iterations proceed. For instance, results obtained in a Newton-
Krylov process based on pbcgstab yield much improvement over a Newton-LU process with

Table 7.1: Statistics on the ptfqmr runs on the three problems arising at iterations 5, 7 and
8 in a Navier-Stokes solver. The factorization and solve times are in seconds.

Instance nnz(A) nnz(B) Matvecs Quasi Res. Rel. Res. Rel. Err. Fact Solve
iter-5 168, 104 21, 688 6, 483 1.7e−05 2.4e−06 1.1e−04 0.11 29.96
iter-7 168, 031 21, 691 12, 054 6.1e−05 2.9e−05 4.3e−03 0.11 55.93
iter-8 168, 055 21, 687 13, 037 4.9e−05 1.6e−05 2.1e−04 0.11 60.22

Table 7.2: Statistics on the pbcgstab runs on the three problems arising at iterations 5, 7
and 8 in a Navier-Stokes solver. The factorization and solve times are in seconds.

Instance nnz(A) nnz(B) Matvecs Recur. Res. Rel. Res. Rel. Err. Fact Solve
iter-5 168, 104 21, 688 4, 200 9.7e−07 2.7e−03 1.9e−03 0.11 22.54
iter-7 168, 031 21, 691 2, 710 6.7e−07 1.1e−05 3.9e−03 0.11 14.56
iter-8 168, 055 21, 687 2, 464 9.5e−07 2.7e−05 3.7e−03 0.10 13.18
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an adaptive stopping tolerance defined by min{0.1‖rk‖, ‖rk‖1.5} at iteration k, where rk is the
right-hand side of (1.1). This is however the subject of ongoing research [16].

For comparison purposes, we ran the iterative Krylov methods as implemented in sparskit
[47] directly on the augmented system, without preconditioning. The results are summarized
in Table 7.3. In each case, the iteration limit was set to 6n where n is the order of the system.
In the present example, 6n = 46566. We refer the reader to [5, 47] for more details on the
Krylov algorithms and the various stopping criteria implemented in sparskit. All methods
reached the iteration limit in 21.95 seconds or more and the smallest residual has a magnitude
of about 1.53e−05.

Example 7.2 The same problem as in Example 7.1 was discretized more finely to yield
linear systems of order 32, 965. Similar experiments were performed and results are reported
in Tables 7.4 and 7.5. We were not able to obtain the desired accuracy on the iter-2 problem
with ptfqmr. The quasi residual lingers at a value around 10−4 early on in the iterations
and slowly increases.

Table 7.3: Summary results of the Krylov methods implemented in sparskit on the linear
system occurring at iteration 8 of a Navier-Stokes process. Residuals are absolute, as recurred
by the method. Workspace is the total number of double precision values to be kept in memory
for each solver. All solvers reach the maximal allowed number of iterations, in this case, 6n.

Solver Iterations Residual Workspace Time (s)
BCG 46566 0.1329880e+02 54327 21.95

DBCG 46567 0.4489614e+01 85371 23.02
CGNR 46567 0.1537764e−04 38805 21.25

BCGSTAB 46567 0.3111281e−04 62088 21.95
TFQMR 46567 0.8147863e−04 85371 23.11

FOM 46566 0.4278482e101 132108 28.89
GMRES 46566 0.6374488e+97 132108 28.33

FGMRES 46566 0.3499084e+96 248519 28.63
DQGMRES 46566 0.1387398e+95 256177 44.45

Table 7.4: Statistics on the ptfqmr runs on the four problems arising at iterations 2 and 6
in a Navier-Stokes solver. The factorization and solve times are in seconds. Horizontal bars
indicate a failure.

Instance nnz(A) nnz(B) Matvecs Quasi Res. Rel. Res. Rel. Err. Fact Solve
iter-2 541, 545 86, 083 — — — — 0.60 —
iter-6 795, 404 86, 063 2, 723 1.7e−05 7.8e−07 5.1e−05 0.60 58.40

Table 7.5: Statistics on the pbcgstab runs on the three problems arising at iterations 2 and
6 in a Navier-Stokes solver. The factorization and solve times are in seconds.

Instance nnz(A) nnz(B) Matvecs Recur. Res. Rel. Res. Rel. Err. Fact Solve
iter-2 541, 545 86, 083 2, 786 1.1e−06 9.0e−01 2.0e−03 0.60 59.16
iter-6 795, 404 86, 063 976 9.0e−07 1.7e−04 2.5e−04 0.61 24.11
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Our last test problem is the Von Karmann vortices problem: two immiscible fluids flow
in a rectangular cavity around a fixed circular obstacle. The latter is entirely immersed in
one of the fluids. The obstacle is modeled by means of the fictitious domains method with
200 control points. The (1, 1) block has size 87, 196 and 2, 084, 752 nonzero elements, and
the (2, 1) block has 7, 579 rows with 274, 087 nonzeros. Factorizing the augmented projection
matrix required 3.00 seconds and the triangular factor has 587, 336 nonzero elements. The
relatively high number of control points used in the fictitious domains method introduced near
rank deficiency in the (2, 2) block. For this reason, we could not compare our solution with
that of an LU factorization since the latter was unable to determine the p component of the
solution—umfpack was however able to return a complete solution vector u. The pbcgstab
method converged after 66 matrix-vector products with residual 7.7e−07 in 5.21 seconds to a
solution whose u component was within 1.0e−04 of that of the partial factorization.

The ptfqmr method converged in 492 matrix-vector products in 36.18 seconds with a
quasi residual of 1.2e−05 to a solution whose u component was within 6.8e−05 of that of the
partial factorization.

In order to cope with the near rank deficiency of B, the (2, 2) block of the projection
matrix PI was set to −δI for some small value of δ > 0. In the present experiment, we
selected δ = 10−8. In the context of Newton-Krylov solvers, this regularization strategy has
proved beneficial on most problems using the fictitious domains method.

8 Conclusion

We have presented a general framework to project a Krylov method, where the projection
is understood in the sense of solving an augmented system of the form (1.1) while only
performing matrix-vector products with the (1, 1) block. The framework requires that the
preconditioner be symmetric even if the original system is not. The method can be imple-
mented by making very few changes to an existing implementation of the tfqmr, bi-cgstab,
or any other Krylov iterative method and by interacting with a package for symmetric indef-
inite factorization to solve systems of the form (1.17). The projected tfqmr and bi-cgstab
algorithms were implemented as part of the upcoming library of projected Krylov methods
[43]. In our tests, ptfqmr appeared substantially slower and less robust that pbcgstab. In
future research, we will investigate projected variants of gmres and its restarted variants for
inclusion in the library.

The projected bi-cgstab implementation has been used to solve fluid flow problems with
moving obstacles when embedded in a Newton-Krylov algorithm. A complete analysis of the
general framework for nonlinear systems is deferred to [16].

Refinements of our implementation are possible, based on modified versions of bi-cgstab
for unsymmetric matrices with complex spectrum and for complex matrices [35, 49]. Moreover,
our assumption that B has full row rank does not necessarily hold in practice. In this case,
regularization methods, which perturb the zero (2, 2) block of K(A), are natural, but conflict
with the projection property. We are currently investigating this avenue.

Much remains to be done to take into account the case where B is either too dense or too
expensive to form in order to be able to afford a symmetric indefinite factorization of K(I)
or K(G). The investigation of matrix-free methods for the Navier-Stokes problem in that
context will be the subject of future research.

As an additional extension of the present work, we will mention the solution of fully non-
symmetric saddle-point problems by means of projected Krylov methods.
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Canada, 2008. In preparation.

[17] I. S. Duff and J. K. Reid. MA27—a set of Fortran subroutines for solving sparse symmetric
sets of linear equations. Report AERE R10533, HMSO, London, UK, 1982.

[18] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
systems. Transactions of the ACM on Mathematical Software, 9:302–325, 1983.



24 G–2008–46 Les Cahiers du GERAD

[19] I. S. Duff and J. K. Reid. MA47, a Fortran code for direct solution of indefinite sparse
symmetric linear systems. Technical Report RAL-95-001, Rutherford Appleton Labora-
tory, Chilton, Oxfordshire, UK, 1995.

[20] I. S. Duff and J. K. Reid. Exploiting zeros on the diagonal in the direct solution of
indefinite sparse symmetric linear systems. Transactions of the ACM on Mathematical
Software, 22(2):227–257, 1996.

[21] I. S. Duff. MA57—a code for the solution of sparse Symmetric Definite and Indefinite
Systems. Transactions of the ACM on Mathematical Software, 30(2):118–144, 2004.

[22] H. C. Elman. Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear
Equations. Ph.D. thesis, Yale University, New Haven, CT, 1982.

[23] H. Elman and D. Silvester. Fast nonsymmetric iterations and preconditioning for navier-
stokes equations. SIAM Journal on Scientific Computing, 17(1):33–46, 1996.

[24] M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications to the Nu-
merical Solution of Boundary-Value Problems. North-Holland, Amsterdam, 1983.

[25] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems.
Acta Numerica, 1:57–100, 1991.

[26] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. Watson, editor,
Numerical Analysis Dundee 1975, pages 73–89. Springer Verlag, Berlin, New-York, 1976.

[27] R. W. Freund and N. M. Nachitgal. QMR: a quasi-minimal residual method for non-
hermitian linear systems. Numerische Mathematik, 60:315–339, 1991.

[28] R. W. Freund and N. M. Nachtigal. A new krylov-subspace method for symmetric indefi-
nite linear systems. Technical Report ORNL/TM-12754, Oak Ridge National Laboratory,
Oak Ridge, TN, 1994.

[29] R. W. Freund. A transpose-free quasi-minimal residual method for non-hermitian linear
systems. SIAM Journal on Scientific Computing, 14(2):470–482, 1993.

[30] G. H. Golub and C. Greif. On solving block-structured indefinite linear systems. SIAM
Journal on Scientific Computing, 24(6):2076–2092, 2003.

[31] N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained
quadratic programming problems arising in optimization. SIAM Journal on Scientific
Computing, 23(4):1376–1395, 2001.

[32] N. I. M. Gould, Y. Hu, and J. A. Scott. A numerical evaluation of sparse direct symmetric
solvers for the solution of large sparse, symmetric linear systems of equations. Techni-
cal Report RAL-TR-2005-005, Rutherford Appleton Laboratory, Chilton, Oxfordshire,
England, 2005.

[33] N. I. M. Gould. On practical conditions for the existence and uniqueness of solutions
to the general equality quadratic-programming problem. Mathematical Programming,
32(1):90–99, 1985.

[34] R. Glowinski, T. Pan, and J. Périaux. A fictitious domain method for dirichlet problem
and applications. Computer Methods in Applied Mechanics and Engineering, 111(3–
4):283–303, 1994.

[35] M. H. Gutknecht. Variants of BICGSTAB for matrices with complex spectrum. SIAM
Journal on Scientific Computing, 14(5):1020–1033, 1993.

[36] G. H. Golub and A. J. Wathen. An iterations for indefinite systems and its applications
to the navier-stokes equations. SIAM Journal on Scientific Computing, 19(2):530–539,
1998.



Les Cahiers du GERAD G–2008–46 25

[37] G. H. Golub, X. Wu, and J.-Y. Yuan. SOR-like methods for augmented systems. BIT,
41(1):71–85, 2001.
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