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Abstract

In this paper, we study a decentralized supply chain in which the manufacturer sells
a short lifecycle product using wholesale price (only) contracts to a price-setting re-
tailer, who in turn sells it to the market. Our two-period framework captures the salient
features of this product: Price-sensitive stochastic retail demand; non-stationary de-
mand and cost parameters; correlated demands which enable updating of demand
characteristics; and limited, but possibly more than one, pricing, replenishment and
wholesale pricing (contracting) opportunities. First, we develop a benchmark model
where the integrated chain can price and order at the beginning of each period. We
then model four decentralized decision-making paradigms with increasing degrees of
decision flexibilities: Neither pricing nor ordering recourse; only pricing recourse; pric-
ing and ordering recourses; and finally, pricing, ordering and contracting recourses.
A novel transformation technique allows us to analytically characterize all the five
models, and reduce the complex profit maximization problems in each case to a mere
one-dimensional search. Subsequently, based on a numerical study, we systematically
compare the values and behaviors of the optimal decisions for the five models. In ad-
dition, we offer managerial insights as to how optimal decisions behave temporally and
how they are affected by system characteristics like price elasticity, demand correlation
and demand uncertainty. A more detailed investigation comparing the optimal profits
for the five models allows us to identify the values of pricing, ordering and contracting
flexibilities from the viewpoint of the two channel partners. Our analysis generates
managerial suggestions as to which decision-making paradigm might be most suitable
for the chain depending on the business environment and on the lifecycle phase of the
product.



Résumé

Dans cet article, nous étudions une châıne logistique décentralisée dans laquelle le
manufacturier vend un produit à court cycle de vie, sur une base contractuelle de prix
de gros seulement, à un distributeur qui lui, revend au marché à un prix ajustable.
Notre formulation à deux périodes représente adéquatement les caractéristiques domi-
nantes du produit : une demande au distributeur stochastique et sensible au prix; une
demande non stationnaire et des paramètres de coût; des demandes corrélées qui per-
mettent de mettre à jour les caractéristiques de la demande; et des possibilités limitées
d’ajuster de manière différente le prix client, la fréquence de placement des comman-
des de même que le prix de gros du manufacturier. Au départ, nous développons
un modèle de référence dans lequel la châıne intégrée peut placer la commande au
début de chaque période. Nous formulons ensuite quatre autres modèles comportant
un niveau de flexibilité croissant dans la prise de décision : aucun ajustement de prix et
aucun renouvellement de commande possible; ajustement de prix possible; ajustement
de prix et renouvellement de commande possibles; ajustement de prix, renouvellement
de commande et renégociation du prix de gros possibles. Une technique de transfor-
mation nouvelle nous permet de caractériser analytiquement les cinq modèles, et de
réduire les problèmes multidimensionnels de maximisation du profit à une recherche
unidimensionnelle. Par la suite, sur la base d’un cas numérique particulier, nous com-
parons systématiquement les valeurs de profit et les natures des décisions dans les cinq
modèles. De plus, nous développons des intuitions de gestion concernant les prises
de décision optimales et la manière dont elles sont affectées par les caractéristiques
du système incluant élasticité du prix, corrélations de la demande ainsi qu’incertitude
de la demande. Plus loin, une investigation détaillée comparant les profits des cinq
modèles nous permet d’identifier les valeurs de prix, et les divers schémas de flexibilité
tels que perçus par chacun des deux partenaires. Notre analyse débouche sur des sug-
gestions de gestion quant au paradigme décisionnel le plus adéquat pour la châıne pour
un environnement d’affaires donné et un cycle de vie donné du produit.
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1 Introduction and Motivation

In this era of ever-changing technology and consumer tastes, short lifecycle products have
become a fact of life in the business world. These products are characterized by high
demand uncertainties and limited number of decision-making opportunities. In analyzing
operational issues related to such products, the literature commonly adopts the newsvendor
framework. That is, there is a single period of sales, along with a single replenishment and
pricing opportunity for retailers. In reality, however, the selling period (product lifecycle)
might be long enough to allow multiple production/buying opportunities for firms. Fur-
thermore, demand characteristics and operating costs can change during the course of the
selling season as the product progresses in its lifecycle. As a result, manufacturers/retailers
often adjust prices during the selling period. For example, Taylor (2001) indicates that
technology-related industries face sharp declines in product pricing due to the rapid rate
of product introductions, which forces channel members to renegotiate the terms of their
trade agreements. In such industries, less price-sensitive customers purchase early in the
selling period. As the product matures rapidly, the costs and prices drop, triggering de-
mand also from more price-sensitive customers. Moreover, the demand signal obtained
from early period sales can help to set the adjusted prices and additional replenishment
quantities (Fisher and Raman 1996). As Fisher et al. (2001) point out, in the fashion gar-
ment industry, the extent of correlation between early sales and remaining demand can be
quite significant (0.95 in their application). These realities naturally call for a multi-period,
temporal analysis with some correlation between early and late demands.

Recently, we have also witnessed a dramatic rise in outsourcing and resulting fragmen-
tation of supply chains. Decisions of chain members in such decentralized settings are often
uncoordinated; there is a trading mechanism (contract) in place and each firm tends to
act independently with their own profit-maximization motive in mind. The most prevalent
contract used in practice is the wholesale price-only type (Cachon 2003), which involves
the retailer paying a per-unit price for the quantity it orders from the manufacturer.

Motivated by the above salient characteristics, we focus on a decentralized, two-echelon
supply chain operating under a price-only contract in a two-period setting with the ability
for demand information updating. Specifically, we deal with a single product whose de-
mand is uncertain and price-sensitive. Our primary objective in studying this setting is to
determine the impact of dynamic decision-making flexibilities (in terms of retail pricing,
replenishment, and wholesale pricing/contracting) on the optimal decisions and profits of
each of the channel partners, as well as on that of the entire chain.

Considerable research has been undertaken on issues related to our study. Our objective
here is not to provide a comprehensive review, but rather to position our work with respect
to this vast, ever-growing literature, and briefly review the most related works. Figure 1
visualizes the positioning of our study with representative examples. As seen in Figure 1,
three main research thrusts orthogonally extend the traditional newsvendor framework.
One line of work recognizes the strategic importance of making integrated operations-
marketing decisions and incorporates pricing as an endogenous variable. Another direction
(and perhaps the most popular one) is the inclusion of upstream members to analyze the
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A: Classical Newsvendor 
Porteus (2002)

B: Price-Setting Newsvendor                            
Petruzzi & Dada (1999)

C: Selling to a Newsvendor 
Lariviere & Porteus (2001)

D: Selling to a Price-Setting Newsvendor            
Cachon (2003), Petruzzi (2004)

E: Multi-Period, Single-Location Inventory Models 
Zipkin (2000)

F: Multi-Period Joint Inventory Pricing Models 
Federgruen & Heching (1999), Petruzzi & Dada (2001)

G: Multi-Period Selling to a Newsvendor           
Barnes-Schuster et al (2002), Taylor (2001)

H: Our Models
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Figure 1: Positioning of our study with respect to the existing literature

supply chain in a decentralized setting. A third avenue is the allowance of multiple decision-
making opportunities (multi-period).

Three main research categories combine issues around two dimensions. The models
within each category differ significantly with respect to their assumptions and objectives.
Hence, here we only provide a brief overview of each stream, without going into specific
details, and highlight their relationship to our study:

• Pricing + Decentralized: Cachon (2003, Sections 3 and 5) and Bernstein and Fed-
ergruen (2005) present a detailed analysis of both competitive (vertical and horizontal,
respectively) and centralized supply chains in price-sensitive newsvendor settings. They
also study various contracts, including wholesale pricing, for decentralized chains under
similar settings and concentrate on coordination issues.1 Petruzzi (2004) and Wang et al.
(2004), on the other hand, analyze wholesale price and consignment contracts, respectively,
in decentralized settings, but focus on determining the optimal decisions from the perspec-
tive of the channel member offering the contract. As such, the multiple decision-making
and demand-updating aspects of our study are not considered in this research stream. It
should be noted that papers dealing with decision postponements (e.g., Van Mieghem and
Dada 1999; Erhun et al. 2004) may also be included in this category, although they allow
an extra pricing and ordering opportunity (once before demand is realized and once after).
Such papers aim to determine the value of postponing the procurement and/or pricing
decision by one of the channel partners or the integrated channel. As we will show later
on, the dynamic pricing opportunity by both channel partners, which is ignored by this
stream, plays a significant role in our paper. Moreover, in our setting, all decisions are

1That is, designing contracts that can allow a decentralized chain attain the profit performance of a
centralized one.
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made in a random environment, although the latter ones with additional information about
the actual demand situation.

• Multi-Period + Pricing: A second body of research tackles retail pricing and/or
ordering decisions in a multi-period setting (e.g., Cachon and Kok 2004; Chen et al. 2005;
Federgruen and Heching 1999; Ferguson and Koenigsberg 2003; Monahan et al. 2004;
Petruzzi and Dada 2001; Bernstein and Federgruen 2003). All of these studies are based
on a centralized environment, and hence some of the defining elements of our paper –
decentralized analysis, wholesale pricing and related issues – are not addressed.

• Decentralized + Multi-Period: The stream of research that conducts decentralized
analysis in a multi-period (typically two-period) setting assumes a price-insensitive de-
mand environment (e.g., Kouvelis and Gutierrez 1997; Donohue 2000; Taylor 2001; Barnes-
Schuster et al. 2002). These papers are normally based on a particular contract setting
(e.g., price-only, buyback, option), and the primary goal is to select the appropriate con-
tract parameters so as to coordinate the chain. Hence, retail pricing and related issues
(e.g., price elasticity) are not studied. We remark that there are similar works that assume
all prices, retail and wholesale, to be exogenous (e.g., Fisher et al. 2001; Gurnani and Tang
1999; Milner and Kouvelis 2002).

To the best of our knowledge, no explicit attempt to address all three directions simul-
taneously has yet been undertaken. The models studied in this paper accomplish precisely
this. In this sense, we synthesize and generalize most of the existing literature, albeit in a
two-period setting.2

The remainder of this paper is organized as follows. § 2 provides a description of our
framework and models. Sections 3 and 4 contain a comprehensive analysis of the models.
In § 5 we conduct a numerical study to compare the optimal decisions and profits for
different models, and generate managerial insights on the values of decision flexibilities.
A summary of the main results and our concluding remarks are presented in § 6. An
extended appendix contains a glossary of notation (Appendix A), detailed proofs of all
results presented in the paper (Appendix B), and some additional formulas related to the
numerical study (Appendix C).

2 Description of the Framework and Models

The investigative framework of this paper is a manufacturer-retailer supply chain selling a
single, short lifecycle product for two periods. The demand in each period, which occurs
at the retail site, is price-sensitive as well as stochastic (in a multiplicative form). Fur-
thermore, the demand in the second period is correlated with early demand in the first
period, which is fully observable. We assume a decentralized Stackelberg setting (led by

2Anand et al. (2003) also has addressed all three issues, but in a deterministic setting. They show that
even if all the classical reasons for holding inventory are eliminated, the retailer might still decide to carry
inventories purely for “strategic” reason of reducing the monopoly pricing power of the manufacturer in
the second period.
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the manufacturer) with a wholesale price contract in place. The retailer makes (at most)
two decisions in each period: Retail price pi and order-up-to level yi, i = 1, 2. The manu-
facturer produces the retail orders instantaneously at cost ci and sets the wholesale price
wi for i = 1, 2. Note that the manufacturer does not keep any stock for retail orders. The
initial stock at the retailer is zero. Any demand that is not satisfied in either period is lost,
and any leftover inventory from the first period (denoted as x ≥ 0) is carried over to the
second period. For simplicity, we assume that the holding costs for carried over inventory
and the salvage costs/values of the leftovers at the end of second period are zero (like in
Monahan et al. 2004). In line with the inherent characteristics of most short lifecycle
products, we focus on the scenario in which the second period faces more elastic demand
(k2 ≥ k1) and benefits from lower production costs (c1 ≥ c2). This scenario also aids in
expositional clarity. All parameters are common knowledge and both channel partners are
risk-neutral. We comment more on our key assumptions in our concluding discussion.

The above general framework helps analysis of a wide variety of decision-making con-
texts. Specifically, we are able to study several scenarios that differ in the degree of
flexibility in making pricing and/or ordering decisions. In decreasing order of flexibilities,
they are:

Dynamic Supply Chain Model (DSCM): In this fully dynamic model, the retailer
makes pricing and ordering decisions and the manufacturer wholesale-pricing decision at
the beginning of each period (i.e., dynamic contract).

Dynamic Retail Pricing and Ordering Model (DRPOM): This is the DSCM with
a static contract, i.e., the manufacturer decides on a single wholesale price for two periods
at the beginning of period one.

Dynamic Retail Pricing Model (DRPM): This is the DRPOM except that the
retailer is constrained to place only one order, at the beginning of period one.

Static Model (SM): Both channel partners make decisions only at the beginning of
period one. The same retail price is applied at the beginning of period two.

We also study the integrated scenario, namely the Centralized Model (CM), which
serves as a benchmark. Note that the difference in profits between DRPM and SM provides
the value of retail pricing flexibility, while DRPOM and DRPM profit difference renders the
(incremental) value of retail ordering flexibility, and DSCM and DRPOM profit difference
gives the (incremental) value of wholesale pricing flexibility (or equivalently, the value of
dynamic contracting).

From a technical standpoint, our primary contribution is the analytical characteriza-
tion of the above models. A particular transformation technique enables us to tackle the
dynamic analysis of three decisions simultaneously. Specifically, we are able to express the
rather complicated profit expression for each model as a single variable optimization prob-
lem. Consequently, the optimal decision variables and profits – for each channel partner,
as well as the integrated system – can be determined by a simple one-dimensional search
procedure under some relatively mild conditions. Subsequently, we address the effects of
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system features like price elasticity, demand correlation and demand uncertainty in a nu-
merical study. Comparing the optimal decisions, we identify the systematic differences
in the optimal pricing and ordering strategies under each operating regime. Specifically,
analysis of stationary settings reveals a number of interesting behavior. Non-dynamic con-
tracts (i.e., all models except DSCM) always result in the same constant optimal wholesale
price; dynamic contracts (DSCM), however, show a high-low pattern - the optimal whole-
sale price is higher than the constant value in the first period and lower in the second,
with the average value being less than non-dynamic cases. The optimal retail prices also
usually demonstrate a high-low pattern for dynamic contracts, but a low-high structure
for their non-dynamic counterparts. Moreover, the optimal retail price and the optimal
order quantity exhibit conflicting behaviors. The former, in general, increases with decen-
tralization and decreases with “flexibility”, while the latter acts inversely. We also show
how the optimal decisions behave in non-stationary settings and the effects of the three
system characteristics on the optimal values.

We then focus on the comparison of optimal profits for the different decision-making
paradigms. Generally speaking, both parties’ profits improve with greater decision flexibil-
ity. However, we also noticed exceptions, e.g., when the retailer might be worse-off because
of the manufacturer’s ability to change wholesale prices. Although profit improvements
from decision flexibilities are significant, a fully “flexible” decentralized chain might still
be substantially less profitable than a centralized system. The comparisons also enable
us to identify the values of different decision flexibilities. The relative improvements from
retail pricing and ordering flexibilities are normally equal for both channel partners, but
wholesale pricing flexibility provides more value to the manufacturer. In majority of the
cases, from the retailer’s viewpoint, the most important concern is the ability to change
its retail price in the second period; whereas for the manufacturer, it is to set its wholesale
price dynamically. So, under certain situations, selecting a mutually acceptable operat-
ing paradigm might itself create conflict. However, there are situations when dynamic
contracting is valuable for the retailer, and dynamic retail pricing for the manufacturer.
Retail ordering flexibility is of value to both parties only for very uncertain demand en-
vironments. We can generate managerial insights as to which decision-making paradigm
might be suitable for the supply chain, depending on the business environment or on the
stage of the product in its lifecycle.

3 Model Preliminaries

We assume a multiplicative demand form3 Di = di(pi)ǫi, i = 1, 2, where ǫi is a positive

random variable and di(pi) = p−ki

i (ki > 1 is price elasticity). We allow the demand
distributions for the two periods to be non-identical with any form of correlation between
them. But the actual demand in the first period must be fully observable regardless of
the stocking quantity. We make this assumption primarily for analytical tractability, and
note that this is reasonable in many cases (e.g., on-line firms), where firms are able to
track demand even when there is no inventory (and hence no sales). The pdf and cdf of

3A comprehensive list of notations is provided in Appendix A.
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ǫ1 and (ǫ2|ǫ1) are denoted as f1(u), F1(u) and f2(u|ǫ1), F2(u|ǫ1) respectively. For ease of
exposition, we assume that ǫ1 and (ǫ2|ǫ1) have supports over [0,∞), although our analysis
readily extends to finite supports. The key assumption we make is that ǫ1 and (ǫ2|ǫ1) have
increasing generalized failure rates (IGFR),4 i.e.,

r1(u) =
uf1(u)

1 − F1(u)
and r2(u|ǫ1) =

uf2(u|ǫ1)

1 − F2(u|ǫ1)

are increasing over [0,∞). Furthermore, we assume the following to hold:

limu→+∞u[1 − F1(u)] = 0 and limu→+∞u[1 − F2(u|ǫ1)] = 0 for any given ǫ1.

Note that the above are rather standard assumptions in the related literature. The mul-
tiplicative demand form with an iso-elastic deterministic price function has been used
extensively in the literature and is supported by empirical studies (Cachon and Kok, 2004,
Petruzzi and Dada, 1999, and references therein). The IGFR property, on the other hand,
is satisfied by most of the theoretical distributions used in the operations management
(OM) literature including Uniform, Gamma with shape parameter ≥ 1, Beta with both
parameters ≥ 1, Normal, Exponential and Left-truncated (at 0) Normal (refer to Lariviere
and Porteus, 2001, for more details).

Defining µ1 = E[ǫ1] and µ2(ǫ1) = E[ǫ2|ǫ1], we introduce several functions that are used
throughout the paper:

Θ1(z) =

Z +∞

z

(u − z)f1(u)du, Λ1(z) =

Z z

0

(z − u)f1(u)du, V1(z) =
µ1 − Θ1(z)
R z

0
uf1(u)du

,

Θ2(z|ǫ1) =

Z +∞

z

(u − z)f2(u|ǫ1)du, Λ2(z|ǫ1) =

Z z

0

(z − u)f2(u|ǫ1)du, V2(z|ǫ1) =
µ2(ǫ1) − Θ2(z|ǫ1)

R z

0
uf2(u|ǫ1)du

,

for any z ≥ 0. It is easy to verify that for any z ≥ 0,

µ1 − Θ1(z) =

Z z

0

uf1(u)du + z[1 − F1(z)], zF1(z) − Λ1(z) =

Z z

0

uf1(u)du,

µ2(ǫ1) − Θ2(z|ǫ1) =

Z z

0

uf2(u|ǫ1)du + z[1 − F2(z|ǫ1)], zF2(z|ǫ1) − Λ2(z|ǫ1) =

Z z

0

uf2(u|ǫ1)du.

The functions Vi(·), i = 1, 2, are crucial to our analysis. The next lemma characterizes
the basic properties of these functions. For brevity, we omit the proof of this lemma, and
refer the interested reader to Song et al. (2005):

Lemma 1 V1(z) is decreasing, limz→0+V1(z) = +∞, and limz→+∞V1(z) = 1. Also,
for any specific realization of ǫ1, V2(z|ǫ1) is decreasing, limz→0+V2(z|ǫ1) = +∞, and
limz→+∞V2(z|ǫ1) = 1. Let U(z) = µ1 − Θ1(z) − k1

∫ z

0 uf1(u)du; U(z) is unimodal on
(0,+∞) and there exists a unique positive Z0 such that U(z) = 0. 2

4Throughout the paper we use increasing and decreasing in the weak sense, unless otherwise stated.
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For any realization of ǫ1 in period one, we define H2(ǫ1) as the unique, positive solution
of V2(z|ǫ1) = k2. Note that the uniqueness follows from Lemma 1 since k2 > 1. Based on
this, we also define

B(ǫ1) = H2(ǫ1)
1−k2

k2 [µ2(ǫ1) − Θ2(H2(ǫ1)|ǫ1)]. (1)

4 Analysis of the Models

In this section, we provide a comprehensive characterization of the optimal decisions and
profits for the five models. Note that each model requires a separate, non-trivial analysis,
although seemingly they are special cases of each other. In fact, even the “simplest” one
(static) has not been analyzed before in the literature. Our common result is that the
optimizations of these models – with up to six decision variables – can each be reduced to
a one-variable optimization problem. To establish this result, in addition to the notation
introduced earlier, we occasionally make use of the stocking-factor transformation zi, where
zi = yi

di(pi)
for i = 1, 2. We also point out that we use the superscripts M,R to denote the

profits of the manufacturer and the retailer respectively, while the profit expressions for
the two-period problem have no subscripts and those for the centralized chain have no
superscripts. We start our analysis with CM and then continue with the decentralized
models.

4.1 Analysis of the Centralized Model (CM)

The CM serves as the benchmark in our subsequent analysis. In this setting, there is a
single decision maker, who sets the retail prices (p1 and p2) and order-up-to quantities (y1

and y2) to maximize overall supply chain profits. To derive these quantities, we proceed
with the analysis in two steps. First, we study the second-period profit for a given initial
stock level x(≥ 0) and a realization of ǫ1, and determine the resulting optimal supply
chain profit π2(x, ǫ1). We then investigate the properties of the two-period profit function
π(p1, z1).

Consider a given x(≥ 0) and a realization of ǫ1. For any order-up-to level y2 ≥ x and a
price p2, the expected supply chain profit in period two can be expressed as

π2(p2, y2, x, ǫ1) = p2E[Min {y2, d2(p2)(ǫ2|ǫ1)}] − c2(y2 − x)

= p2d2(p2)[µ2(ǫ1) − Θ2(
y2

d2(p2)
|ǫ1)] − c2(y2 − x), (2)

where the first term in (2) represents the revenue, and the second term the purchase/

production cost. As
∂πR

2 (p2,y2,x,ǫ1)
∂p2

= d2(p2)(
∫

y2
d2(p2)

0 uf2(u|ǫ1)du){V2(
y2

d2(p2) |ǫ1) − k2}, from

Lemma 1, it follows that π2 is unimodal in p2. Hence, for any given order-up-to inventory

level y2(≥ x), the unique optimal retail price p2(y2) satisfies
∂πR

2 (p2,y2,x,ǫ1)
∂p2

= 0, which, after

some manipulation, can be expressed as

p2(y2) = H2(ǫ1)
1

k2 y
− 1

k2
2 . (3)
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Substituting p2(y2) in (2), we obtain π2(y2, x, ǫ1) = B(ǫ1)y
k2−1

k2
2 − c2(y2 − x), where B(ǫ1)

is as defined in (1). Note that π2(y2, x, ǫ1) is concave in y2. Hence the optimal order-up-to
inventory level is given as:

y2(x, ǫ1) =

{

S(ǫ1) if x ∈ [0, S(ǫ1))
x if x ∈ [S(ǫ1),+∞)

, (4)

where S(ǫ1) = (k2−1
k2

)k2(B(ǫ1)
c2

)k2 . Substitution of y2(x, ǫ1) in π2(y2, x, ǫ1) yields the optimal
profit for period two:

π2(x, ǫ1) =

{

c2
k2−1S(ǫ1) + c2x if x ∈ [0, S(ǫ1))

B(ǫ1)x
k2−1

k2 if x ∈ [S(ǫ1),+∞).
(5)

Observe that π2(x, ǫ1) is increasing and piece-wise concave in the initial inventory level x.

We can now represent the total two-period expected supply chain profit under CM as:

π(p1, z1) = p1d1(p1)[µ1 − Θ1(z1)] +

∫ +∞

0
π2(x, u)f1(u)du − c1d1(p1)z1, (6)

where x = d1(p1)(z1 − u) if z1 > u, and x = 0 otherwise. We have the following result
about π(p1, z1).

5

Theorem 1 For any given z1, π(p1, z1) is unimodal in p1, and has a unique optimizer
p1(z1) which satisfies

k1 − 1

k1
p1[µ1 − Θ1(z1)] +

∫ z1

0

∂π2(x, u)

∂x
[z1 − u]f1(u)du − c1z1 = 0. (7)

Consequently, the optimization of CM can be reduced to a one-variable optimization problem
in terms of z1, i.e., π(p1(z1), z1). Furthermore, p1(z1) is increasing in z1. 2

Under certain mild conditions, we can even prove the unimodality of π(p1(z1), z1).

Theorem 2 Let S1 be the overall optimal order quantity of the profit function I1(p1, y1) =
p1d1(p1)[µ1 −Θ1(

y1

d1(p1)
)] + c2d1(p1)Λ1(

y1

d1(p1)
)− c1y1. If S1 ≤ S(0), then π(p1(z1), z1), and

hence CM, has a unique maximizer. 2

Note that I1 is the expected price-setting newsvendor profit function with zero initial
inventory and a salvage value of c2. Clearly, based on the definition of S(0), S1 ≤ S(0)
is a comparison between two optimal order-up-to levels. It is noteworthy that this is a
sufficient condition which only depends on system parameters, and can easily be checked
numerically. Theorem 2 establishes that optimizing CM boils down to finding the unique
optimal stocking factor z∗1 of π(p1(z1), z1). The remaining optimal decisions can then
be easily backtracked. The following corollary summarizes the optimal decisions and the
resulting profit.

5Proofs for all Lemmas and Theorems are provided in Appendix B.
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Corollary 1 In the first period, it is optimal to charge p∗1 = p1(z
∗
1) to end customers and

order y∗1 = z∗1d1(p
∗
1). In period two, it is optimal to charge p2(y2(x, ǫ1)) (as in (3)) and

set the optimal order-up-to level as y2(x, ǫ1), and actually place an order (y2(x, ǫ1) − x)

if x ∈ [0, S(ǫ1)) and 0 if x ∈ [S(ǫ1),+∞), where x = y∗1 − d1(p
∗
1)ǫ1 if ǫ1 ≤

y∗

1
d1(p∗1) , and 0

otherwise. The optimal total supply chain profit is given as π(p∗1, z
∗
1). 2

4.2 Analysis of the Decentralized System

The basis of analysis for the decentralized system is a Stackelberg game with the manu-
facturer as the leader and the retailer as the follower. However, interaction between the
manufacturer and the retailer differs in each of the models. For this reason, each decen-
tralized model needs to be analyzed separately. In this section, we establish the main
properties, and using these properties characterize the optimal decisions for each model.
From a temporal standpoint, the analysis follows the same two steps as CM. However,
for decentralized analysis, in each step we start by optimizing the retailer’s profit for a
given set of manufacturer’s decisions. This establishes the link between the manufacturer’s
decision and the retailer’s optimal response. To determine the manufacturer’s optimal deci-
sion, we use a slightly different approach than incorporating the retailer’s optimal response
functions into the manufacturer’s profit function. Instead, we invert the relationship to
express the manufacturer’s decision as a function of retail decisions, and then optimize
over the retailer’s decisions. Once the optimal values are characterized, using the same
relationships in the reverse order we can infer the manufacturer’s optimal decisions, and
finally compute the resulting expected profits. We present our analysis in decreasing order
of flexibility (DSCM, DRPOM, DRPM, and SM).

4.2.1 Dynamic Supply Chain Model (DSCM)

DSCM is the focal model of our paper and the one that represents the highest degree
of decision making flexibility. Specifically, it involves dynamic contracting on the part of
the manufacturer, as well as a dynamic pricing and ordering opportunity for the retailer.
Consider the second period. For any wholesale price w2 set by the manufacturer and any
given initial stock x and a realization of first period demand ǫ1, the retailer determines the
optimal order-up-to level y2(≥ x) and the retail price p2 to maximize her expected profit
in period two:

πR
2 (p2, y2, x, ǫ1) = p2d2(p2)[µ2(ǫ1) − Θ2(

y2

d2(p2)
|ǫ1)] − w2(y2 − x). (8)

Note that (8) is the same as the second-period CM profit (2) with c2 replaced by w2, and
hence possesses an optimal (p2, y2) pair. It also stands to reason that the manufacturer
will set her wholesale price (as long as it is ≥ c2) to induce a positive ordering quantity
from the retailer, which means that for any such wholesale price the retailer’s first order

conditions
∂πR

2 (p2,y2,x,ǫ1)
∂p2

= 0 and
∂πR

2 (p2,y2,x,ǫ1)
∂y2

= 0 should be satisfied. This implies that:

V2(
y2

d2(p2)
|ǫ) = k2 and w2 = p2[1 − F2(

y2

d2(p2)
|ǫ1)]. (9)
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Recall that the solution to the first equation in (9) is defined as H2(ǫ1). Also, for a given
order-up-to inventory level y2(≥ x), the expression for the optimal retail price p2(y2) is
identical to that in CM, given by (3). Substituting p2(y2) into the second equation in (9),
the manufacturer’s optimal wholesale price can be expressed as

w2(y2) = A(ǫ1)y
− 1

k2
2 , (10)

where A(ǫ1) = H2(ǫ1)
1

k2 [1 − F2(H2(ǫ1)|ǫ1)]. Consequently, we can express the manufac-
turer’s second-period expected profit function (w2 − c2)(y2 − x) in terms of y2 only:

πM
2 (y2, x, ǫ1) = [A(ǫ1)y

− 1
k2

2 − c2](y2 − x). (11)

Analyzing the above profit function we can conclude that:

Lemma 2 The retailer’s optimal order-up-to level y2(x, ǫ1) in the second period is the
unique positive solution of

k2 − 1

k2
A(ǫ1)y

− 1
k2

2 +
1

k2
A(ǫ1)xy

− k2+1
k2

2 = c2. (12)

Moreover, y2(x, ǫ1) is increasing and concave in x(≥ 0). Hence, w2(x, ǫ1) = w2(y2(x, ǫ1))
and p2(x, ǫ1) = p2(y2(x, ǫ1)) are decreasing and convex in x on [0,+∞). 2

Lemma 2 characterizes the optimal decisions of the channel partners in the second period
under the assumption that the manufacturer can always extract positive profit. Note from
Lemma 2 that this will be true for a certain range of initial stock levels. In particular,

defining S(ǫ1) = (A(ǫ1)
c2

)k2 , from the characterization of w2(y2) in (10) we see that for any

x > S(ǫ1), the manufacturer can only offer w2 = c2 and obtain zero profit. Hence, it is
optimal for the manufacturer to offer the following contract to the retailer:

w2(x, ǫ1) =

{

A(ǫ1)y2(x, ǫ1)
− 1

k2 if x ∈ [0, S(ǫ1)]
c2 if x ∈ (S(ǫ1),+∞),

(13)

The optimal retail price is p2(x, ǫ1) = H2(ǫ1)
1

k2 y2(x, ǫ1)
− 1

k2 . The optimal order-up-to level
for the retailer is y2(x, ǫ1) (refer to Lemma 2) for any initial stock level x ∈ [0, S(ǫ1)] and
x otherwise. The actual order quantity then follows. The ensuing expected profits for the
second period and their behavior are derived in the next result.

Theorem 3 For any given realization of ǫ1 in period one and initial stock level x(≥ 0) in
period two, the retailer’s and the manufacturer’s expected profit functions can be expressed
respectively as:

πM
2 (x, ǫ1) =

{

c2
(y2−x)2

(k2−1)y2+x
|{y2=y2(x,ǫ)} if x ∈ [0, S(ǫ1)]

0 if x ∈ (S(ǫ1),+∞),
(14)
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and πR
2 (x, ǫ1) =







k2c2
k2−1

y2[y2+(k2−1)x]
(k2−1)y2+x

|{y2=y2(x,ǫ1)} if x ∈ [0, S(ǫ1)]

k2
k2−1A(ǫ1)x

k2−1
k2 if x ∈ (S(ǫ1),+∞).

(15)

Furthermore, the following properties hold true:

(1) πM
2 (x, ǫ1) is decreasing and convex with respect to x ∈ [0,+∞); πR

2 (x, ǫ1) is increasing
and concave with respect to x ∈ [0,+∞).

(2) Both
∂πM

2 (x,ǫ1)
∂x

and
∂πR

2 (x,ǫ1)
∂x

are continuous with respect to x on [0,+∞).

(3)
∂πR

2 (x,ǫ1)
∂x

+ k2x
∂2πR

2 (x,ǫ1)
∂x2 > 0 for any x ∈ [0,+∞). 2

The Two-Period Problem: The above results pave the way for the two-period analysis.
For any given wholesale price w1 offered by the manufacturer at the beginning of period
one, the retailer optimizes her total expected profit

πR(p1, z1) = p1d1(p1)[µ1 − Θ1(z1)] − w1z1d1(p1) +

∫ +∞

0
πR

2 (x, u)f1(u)du, (16)

where x = d1(p1)(z1 − u) if z1 > u and 0 otherwise (recall that z1 = y1

d1(p1)
is the stocking

factor). The first order conditions for the retailer’s optimal response decisions can then be
written as

∂πR(p1, z1)

∂p1

=
d1(p1)

p1
{(1 − k1)[µ1 − Θ1(z1)]p1 + k1w1z1 − k1

∫ z1

0

∂πR
2 (x, u)

∂x
(z1 − u)f1(u)du} = 0,

and
∂πR(p1, z1)

∂z1
= d1(p1){p1[1 − F1(z1)] +

∫ z1

0

∂πR
2 (x, u)

∂x
f1(u)du − w1} = 0.

From the first condition we derive a unique w1 satisfying the retailer’s FOC:

w1(p1, z1) =
1

z1
{
k1 − 1

k1
p1[µ1 − Θ1(z1)] +

∫ z1

0

∂πR
2 (x, u)

∂x
(z1 − u)f1(u)du}. (17)

Furthermore, combining the two conditions, the retailer’s optimal (p1, z1) should satisfy

L(p1, z1) = p1{k1

∫ z1

0
uf1(u)du − [µ1 − Θ1(z1)]} − k1

∫ z1

0

∂πR
2 (x, u)

∂x
uf1(u)du = 0. (18)

Utilizing (17), the manufacturer’s total expected profit over the two-period planning hori-
zon which is given by,

πM (w1, p1, z1) = (w1 − c1)d1(p1)z1 +

∫ +∞

0
πM

2 (x, u)f1(u)du,
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can be expressed in terms of (p1, z1) only as:

πM (p1, z1) =
k1 − 1

k1
p1d1(p1)[µ1 − Θ1(z1)]

+d1(p1)

∫ z1

0

∂πR
2 (x, u)

∂x
(z1 − u)f1(u)du − c1d1(p1)z1

+

∫ +∞

0
πM

2 (x, u)f1(u)du. (19)

Clearly, the manufacturer needs to maximize πM (p1, z1) taking into account the fact that
(p1, z1) should also satisfy (18). It is obvious that for any z1 ∈ [0, Z0], there is no p1 such
that (18) is satisfied, where Z0 is the unique positive solution of U(z1) = 0 (refer to Lemma
1 for definition of U(z1)). Carrying out this analysis, we claim that:

Theorem 4 For any given z1 ∈ (Z0,+∞), there exists a unique p1(z1) satisfying con-
straint (18). Substituting p1(z1) in (19), the optimization of DSCM can be reduced to a
one-variable optimization problem in terms of z1. 2

Theorem 4 establishes that optimizing DSCM requires a search over z1. Once the optimal
stocking factor z∗1 is determined, the remaining optimal decisions and the resulting profits
can be backtracked as summarized in the following corollary.

Corollary 2 The optimal contract for the manufacturer is w∗
1 = w1(p1(z

∗
1), z∗1) (as in

(17)) and w2(x, ǫ1) (as in (13)), where the leftover inventory at the end of period one
x = d1(p

∗
1)(z

∗
1 − ǫ1) if ǫ1 ≤ z∗1 and x = 0 if ǫ1 > z∗1. The optimal strategy for the retailer in

response to the contract is to charge p∗1 = p1(z
∗
1) to customers and order y∗1 = z∗1(d1(p

∗
1))

from the manufacturer in period one. In the second period, it is optimal for the retailer
to charge p2(x, ǫ1) and set the order-up-to level as y2(x, ǫ1), and actually place an order
(y2(x, ǫ1)−x) if x ∈ [0, S2(ǫ1)) and 0 if x ∈ [S2(ǫ1),+∞). The retailer’s optimal total profit
over the two periods is given as πR(p∗1, z

∗
1), while that for the manufacturer is πM (p∗1, z

∗
1).
2

4.2.2 Dynamic Retail Pricing and Ordering Model (DRPOM)

In this model, the wholesale price is set by the manufacturer only once at the beginning of
the first period, and the manufacturer commits to charging the same wholesale price w1 in
the second period (i.e., static contract). The retailer, however, has the flexibility to price
and order dynamically.

Consider a fixed wholesale price w1. The retailer’s second period expected profit, for
given ǫ1 and x, is similar to those analyzed for CM and DSCM:

πR
2 (p2, y2, x, ǫ1) = p2d2(p2)[µ2(ǫ1) − Θ2(

y2

d2(p2)
|ǫ1)] − w1(y2 − x).

As in those models, the retailer’s optimal price for a fixed y2 is p2(y2), given by (3).
Substituting p2(y2) into πR

2 (p2, y2, x, ǫ1) and carrying out essentially the same analysis as
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for CM/DSCM, it is easy to establish that the retailer’s optimal order-up-to inventory level
is

y2(x, ǫ1) =

{

S(ǫ1) if x ∈ [0, S(ǫ1))
x if x ∈ [S(ǫ1),+∞),

(20)

where S(ǫ1) = (k2−1
k2

)k2(B(ǫ1)
w1

)k2 . The resulting optimal second-period profit is

πR
2 (x, ǫ1) =

{

w1
k2−1S(ǫ1) + w1x if x ∈ [0, S(ǫ1))

B(ǫ1)x
k2−1

k2 if x ∈ [S(ǫ1),+∞).
(21)

Observe further, that for any fixed w1, the retailer’s two-period total profit πR(p1, z1) is
identical to that in CM, with c1 and c2 replaced with w1. From Theorem 2 it then follows
that under certain condition (see below) there exists a unique optimal stocking factor
z1(w1) and optimal price p1(z1(w1)) for the retailer. Consequently, the manufacturer’s
total expected profit can be expressed only in terms of w1 as follows:

πM (w1) = (w1 − c1)y1(w1) + (w1 − c2)

∫ +∞

0
[y2(x, u) − x]f1(u)du,

where y1(w1) = z1(w1)d1(p1(z1(w1))) is the retailer’s optimal order-up-to level for period
one and x is the initial stock level at the beginning of the second period. Hence, we can
claim that:

Theorem 5 For any given w1(> c1), let S1(w1) be the optimal order quantity of the
expected profit function I1(p1, y1) = (p1 − w1)d1(p1)[µ1 − Θ1(

y1

d1(p1)
)]. If S1(w1) ≤ S(0),

then the optimization of DRPOM can be reduced to a one-variable optimization problem in
terms of w1. 2

Note that, like in Theorem 2, S1(w1) ≤ S(0) is a sufficient condition that can be
checked numerically. Once the optimal wholesale price w∗

1 (for both periods) is determined
via search, all remaining optimal decisions can be backtracked. The following corollary
summarizes the optimal decisions and the resulting profit for DRPOM.

Corollary 3 The optimal strategy for the retailer in response to the static contract w∗
1 is to

charge p∗1 = p1(z1(w
∗
1)) to customers and order y∗1 = z1(w

∗
1)(d1(p

∗
1)) from the manufacturer

in period one. In the second period, it is optimal for the retailer to charge p2(y2(x, ǫ1))
and set the order-up-to level as y2(x, ǫ1), and actually place an order (y2(x, ǫ1) − x) if
x ∈ [0, S2(ǫ1)) and 0 if x ∈ [S2(ǫ1),+∞). The retailer’s optimal total profit is given as
πR(p∗1, z

∗
1). The manufacturer’s optimal total profit is given as πM (w∗

1). 2

4.2.3 Dynamic Retail Pricing Model (DRPM)

This model differs from DRPOM in that the retailer is constrained to order only once, at the
beginning of the first period. However, the retailer still has the flexibility to dynamically
change the retail price.
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Consider a wholesale price w1. The retailer’s second-period expected profit for given ǫ1

and x is given as

πR
2 (p2, x, ǫ1) = p2d2(p2)[µ2(ǫ1) − Θ2(

x

d2(p2)
|ǫ1)].

Note that this function is identical to the DSCM profit (8) with y2 replaced by x. It is
then straightforward to verify that, for any fixed x, there exists a p2(x) which maximizes

πR
2 (p2, x, ǫ1), and substituting this into πR

2 (p2, x, ǫ1) we have πR
2 (x, ǫ1) = B(ǫ1)x

k2−1
k2 . Con-

sequently, the retailer’s total profit πR(p1, z1) can be expressed as

πR(p1, z1) = p1d1(p1)[µ1−Θ1(z1)]+d1(p1)
k2−1

k2

∫ z1

0
B(u)(z1−u)

k2−1
k2 f1(u)du−w1d1(p1)z1.

For any given w1, the retailer’s optimal decisions should clearly satisfy the first order

conditions ∂πR(p1,z1)
∂z1

= 0 and ∂πR(p1,z1)
∂p1

= 0, which can respectively be written as

w1(p1, z1) = p1[1 − F1(z1)] +
k2 − 1

k2
d1(p1)

− 1
k2

∫ z1

0
B(u)(z1 − u)

− 1
k2 f1(u)du, and (22)

p1{[µ1−Θ1(z1)]−k1

∫ z1

0
uf1(u)du}+

k1

k2
(k2−1)d1(p1)

− 1
k2

∫ z1

0
B(u)(z1−u)

− 1
k2 uf1(u)du = 0.

(23)
Substituting w1 given by (22) into the manufacturer’s total expected profit (w1−c1)d1(p1)z1,
we obtain:

πM (p1, z1) = p1d1(p1)z1[1 − F1(z1)]

+
k2 − 1

k2
d1(p1)

k2−1
k2 z1

∫ z1

0
B(u)(z1 − u)

− 1
k2 f1(u)du − c1d1(p1)z1. (24)

Hence, the manufacturer’s problem is reduced to maximizing πM (p1, z1) subject to the fact
that the optimal (p1, z1) should satisfy (23). Carrying out the analysis, we claim that:

Theorem 6 For any given z1, there exists a unique p1(z1) satisfying constraint (23). Sub-
stituting this p1(z1) in πM (p1, z1), the optimization of DRPM can be reduced to a one-
variable optimization problem in terms of z1. 2

As before, once the optimal stocking factor z∗1 is determined by search, the remaining
optimal decisions can be backtracked. The following corollary summarizes the optimal
decisions and the resulting profit for DRPM. 6

6Specifically for k1 = k2 = k, we can show that w∗

1 = k
k−1

c1 and
ΠM (p∗

1
,z∗

1
)

ΠR(p∗

1
,z∗

1
)

= k−1
k

(refer to the proof of

Theorem 6 in Appendix B).
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Corollary 4 The optimal contract for the manufacturer is w∗
1 = w1(p1(z

∗
1), z∗1) with ensu-

ing profit over two periods πM (p1(z
∗
1), z∗1). The optimal strategy for the retailer in response

to the contract is to charge p∗1 = p1(z
∗
1) to customers and order y∗1 = z∗1d(p∗1) from the

manufacturer in period one. In the second period, it is optimal for the retailer to charge

p∗2 = H2(ǫ1)
1

k2 x
− 1

k2 , where x = d1(p
∗
1)(z

∗
1 − ǫ1) if ǫ1 ≤ z∗1 and x = 0 if ǫ1 > z∗1 . The

retailer’s optimal total profit is given as πR(p∗1, z
∗
1). 2

4.2.4 Static Model (SM)

In this model, all decision variables are set at the beginning of the first period. Specifically,
the retailer charges the same price in both periods, and is allowed to order only once at
the beginning of the first period. The retailer’s second-period expected profit, for a given
ǫ1, x and retail price p1, is given as

πR
2 (p1, x, ǫ1) = p1d2(p1)[µ2(ǫ1) − Θ2(

x

d2(p1)
|ǫ1)].

The total two-period expected profit of the retailer then becomes

πR(p1, z1) = p1d1(p1)[µ1 − Θ1(z1)] + p1d2(p1)

∫ z1

0
[µ2(u)

− Θ2(
d1(p1)

d2(p1)
(z1 − u)|u)]f1(u)du − w1d1(p1)z1.

As before, for any given w1, the retailer’s optimal decisions should satisfy the first order

conditions ∂πR(p1,z1)
∂z1

= 0 and ∂πR(p1,z1)
∂p1

= 0. The first condition can be expressed as

w1(p1, z1) = p1{[1 − F1(z1)] +

∫ z1

0
[1 − F2(

d1(p1)

d2(p1)
)(z1 − u)|u)]f1(u)du}. (25)

On the other hand, combining the two conditions, we obtain the following constraint

L(q(p1), z1) = 0, (26)

where q(p1) = d1(p1)
d2(p1)

and L(q, z1) = k1z1q{[1−F1(z1)]+
∫ z1

0 [1−F2(q(z1 −u)|u)]f1(u)du}−

(k1 − 1)q[µ1 − Θ1(z1)] − (k2 − 1)
∫ z1

0 [µ2(u) − Θ2(q(z1 − u)|u)]f1(u)du − (k1 − k2)q
∫ z1

0 [1 −
F2(q(z1 − u)|u)]f1(u)du.

Substituting w1 given by (25) into the manufacturer’s total expected profit (w1 −
c1)d1(p1)z1, we derive

πM (p1, z1) = p1d1(p1)z1{[1−F1(z1)] +

∫ z1

0
[1−F2(q(p1))(z1 −u)|u)]f1(u)du}− c1d1(p1)z1.

Note that the manufacturer’s optimal (p1, z1) should satisfy constraint (26). As per the
previous cases, we find:
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Theorem 7 For any given z1, there exists a unique p1(z1) satisfying constraint (26). Con-
sequently, substitution of p1(z1) in πM (p1, z1) reduces the optimization of SM into a one-
variable optimization problem in terms of z1. 2

The following corollary summarizes the optimal decisions and the resulting profit for
SM based on z∗1 . 7

Corollary 5 The optimal contract for the manufacturer is w∗
1 = w1(p

∗
1 = p1(z

∗
1), z∗1) with

ensuing profit over two periods = πM (p∗1, z
∗
1). The optimum response strategy for the re-

tailer is to charge p∗1 to customers in both periods and order y∗1 = z∗1d(p∗1) from the manu-
facturer in period one. The retailer’s optimal total profit is πR(p∗1, z

∗
1). 2

5 Numerical Study and Managerial Insights

The previous section focused on the analytical characterization of the profit functions and
optimal decisions. However, any further comparison is intractable due to the complex
first order conditions involved. Consequently, we focus on generating managerial insights
through extensive numerical tests. In this section, we first examine the optimal decision
values under each model and their sensitivities to key market conditions. These compar-
ative statics allow us to identify the structural differences between the optimal decisions,
which shed light on how managers should adapt their decisions to changes in decision-
making paradigms and business environments. We then proceed to compare the optimal
profits, and isolate and quantify the values of retail pricing, retail ordering and whole-
sale pricing (or equivalently, dynamic contracting) flexibilities from the perspective of the
channel partners. Hence, we are able to indicate to managers the conditions under which
each form of flexibility is of most value. We also explore the efficiency of the decentralized
chain by comparing the profit of CM with the decentralized models.

For the purpose of this paper we define the market conditions in terms of three char-
acteristics: Price-elasticity, correlation of demand between the two periods and natural
demand uncertainty. To provide some perspective about our insights, we first discuss how
these characteristics vary depending on products/markets.

Price elasticity: The value of this particular characteristic depends largely on the
product type. For example, “functional” products like basic apparel and groceries are
likely to have higher price elasticities than “innovative” products like fashion apparel, or
high-end telecom products (Fisher 1997; Ray et al. 2005). However, depending on the
target market niche, innovative products (e.g., DVD players) can also be aimed at price-
elastic customers. Furthermore, price elasticities of most products dynamically increase
over time, especially as a product progresses towards its maturity stage. We believe that the
extent of increase will be greater for fashion products (impulsive purchases) like cellphones,
than for industrial products (planned purchases) like telecom networks.

7As in DRPM, when k1 = k2 = k, we have w∗

1 = k
k−1

c1 and
ΠM (p∗

1
,z∗

1
)

ΠR(p∗

1
,z∗

1
)

= k−1
k

.
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Demand correlation: For most products, the demand profile over time displays some
correlation, although the extent again depends on product/market characteristics. Fisher
et al. (2001) indicate that for fashion apparels the correlation between early and late
demands is extremely high. Other fashion items like toys, cellphones, books are also likely
to exhibit high demand correlation. On the other hand, for more mature products (e.g.,
basic apparel) or for products whose purchases are carefully planned (e.g., most industrial
products), the demand correlation might be comparatively smaller.

Natural Demand Uncertainty: In our stochastic price-sensitive setting, uncertainty
in final customer demand is influenced both by retail prices and by the inherent variability
in end-customer demand. We refer to the second element as the natural demand uncer-
tainty, which depends on the particular product type and the amount/quality of demand
information available to the firm. For example, functional products like groceries tend to
have rather predictable demand, while innovative high-end telecom products face highly
variable demand. Similarly, online firms with faster access to better demand information
can be more accurate in their demand forecasting compared to their offline competitors
(Ray et al. 2005). Moreover, the natural randomness of demand also changes over time
and, once again, the degree of change depends on market and product characteristics. Al-
though the demand uncertainty in the second period is expected to fall below than that in
the first, we also study reverse scenarios in order to provide more general insights.

Numerical Experiment Setting: We conduct our numerical study utilizing a trun-
cated (at zero) normal distribution for the random part of the demand (which satisfies
IGFR requirement), and incorporating correlation between the two periods. We let ǫ1 de-
note the truncated version of ǫ1 and (ǫ2|ǫ1) be the truncated version of (ǫ2|ǫ1) over [0,+∞),
where ǫ1 and ǫ2 are correlated and their joint distribution is bivariate normal. Let µi and
σi be the mean and standard deviation of ǫi, i = 1, 2, respectively. We can then express the
distributions F1(u) and F2(u | ǫ1) of ǫ1 and (ǫ2|ǫ1) respectively, in terms of µi, σi, i = 1, 2,
and the correlation coefficient ρ (for details refer to Appendix C).

The basic data set for our numerical study is as follows: µ1 = 100, σ1 = 40, µ2 = 100,
σ2 = 40, k1 = 1.5, k2 = 1.5, ρ = 0.5 and c1 = c2 = c = 1. We capture the effects of
absolute levels of price elasticities by assuming k1 = k2 = k, and then changing k from 1.5
to 2.5. On the other hand, in order to represent the relative difference in price elasticity
levels for the two periods (specifically, k2 ≥ k1) we fix k1 = 1.5 and vary k2 from 1.5 to 2.5.8

The effects of demand correlation between the two periods are studied by changing the
value of ρ from 0 (independent demands) to 0.9 (highly correlated demands). Lastly, we
examine the effects of natural demand uncertainty by varying σi, i = 1, 2. By assuming
σ1 = σ2 = σ and varying σ from 10 to 100, we investigate the effects of differences in
demand uncertainty levels between products. The temporal aspect of demand uncertainty
is analyzed by keeping σ1 fixed at 40 and only changing σ2 from 10 to 100. Note that in
all our experiments the single-dimensional profit function turned out to be unimodal, thus
enabling us to evaluate the optimal decision variables and profit values.

8The selected price elasticity values have empirical justification; refer to Cachon and Kok (2004).
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5.1 Optimal Decision Variables

In this section, we present a comparative study of the behavior of optimal wholesale prices,
retail prices, and retail orders under each modelling framework.

5.1.1 Wholesale Prices

The effects of the three market characteristics on the optimal wholesale prices for the dif-
ferent models are shown in Figures 2–3.9 We have pointed out in the previous section that,
when k1 = k2 = k, the optimal wholesale prices for DRPM and SM models are identical
(w∗

1 = k
k−1c). In fact, Figure 2 suggests that this is valid even for the DRPOM model.

Furthermore, the optimal value is the same as that of a single-period newsvendor prob-
lem with the same demand function as our first period (Petruzzi 2004). This means that
whenever the manufacturer employs a non-dynamic contract (all models except DSCM)
and the price elasticity of customers does not change over time, it is optimal to charge a
price that maximizes myopic profits. Under a dynamic contract (DSCM), however, the
manufacturer should charge a higher price in the first period and lower (in the expected
sense) in the second one. This mark-down pricing strategy discourages the retailer from
procuring significantly in the first period and carrying the excess inventory to the second
period to curtail the monopoly pricing power of the manufacturer (refer also to Anand
et al. 2003). Moreover, as evident from Figure 2, the average wholesale price for DSCM
(average of first period and expected second-period wholesale prices) is lower than the
optimal wholesale price for non-dynamic contracts. As we will show later on, this induces
the retailer to order significantly more in DSCM. In summary, the optimal wholesale prices
for k1 = k2 = k are ordered as follows:

DSCMi=1 > DRPOM = DRPM = SM > DSCMi=2.

When k1 6= k2, the high-low pricing is still optimal for DSCM, but the optimal wholesale
prices for the other models need not be equal. In particular, the manufacturer charges a
lower price under SM compared to DRPM or DRPOM so as to counterbalance the lack of
retail pricing or ordering recourses. Clearly, for all models, the optimal wholesale prices
are shaped primarily by price elasticities and are decreasing in ki of either period.

5.1.2 Retail Prices

As far as optimal retail prices are concerned, we first focus on the symmetric scenarios,
i.e., k1 = k2 = k and σ1 = σ2 = σ, and medium values of ρ (Figures 4–5). In those cases
the behavior of the optimal pricing policy for the retailer is governed by the degree of
decision flexibility and the (vertical) competition in the system. Expectedly, CM with full
decision flexibility and no competition results in lowest retail prices in both periods. The

9For brevity, in all figures we denote the five models by the following: DSCM - D, DRPOM - SD, DRPM
- P, SM - S, CM - C. Also, σi refers to the natural demand uncertainty σ̄i, i = 1, 2. Furthermore, we present
the expected values of the second-period optimal wholesale and retail prices, since their actual values will
depend on the realization of the first period demand.
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Figure 2: Optimal wholesale prices
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Figure 3: Optimal wholesale prices under asymmetric conditions

decentralized models have inherent double-marginalization, so must price higher than CM.
In order to gain an understanding of the retail prices in a broad sense, we have computed
and compared average retail prices, i.e., average of first-period and expected second-period
retail prices, for decentralized models. Although not shown, it can be inferred that average
retail prices are inversely related to the extent of flexibility (SM > DRPM > DRPOM >
DSCM). This is intuitive since the fewer levers the firm has to match supply and demand,
the more conservative it becomes in its pricing policy.

A closer examination of retail prices in Figures 4–5 shows that under a dynamic contract
(DSCM), it is optimal for the retailer to employ mark-down pricing, which essentially
mimics the manufacturer’s wholesale pricing strategy. In contrast, under a non-dynamic
contract with dynamic retail pricing (DRPOM, DRPM), mark-up10 pricing is optimal for
the retailer, even though the entire inventory is procured at the same wholesale price. Since
CM shares the same characteristics, mark-up pricing is also optimal for that scenario. The
reason is that the lower price in the first period (and resulting expected higher demand)
lessens the chance of the retailer having substantial leftover inventory at the end of the
planning horizon. However, by the second period, the retailer will be able to reduce its
stock and collect information about demand characteristics. The risk of leftovers is then
comparatively lower and the retailer can increase the price. Since SM does not possess such

10In the sense that the expected optimal retail price is higher in the second period. This pricing strategy
is akin to the concept of penetrative pricing in the marketing literature (e.g., Tellis 1988), and should not
be confused with cost-plus pricing.



20 G–2007–96 Les Cahiers du GERAD

0

2

4

6

8

10

12

1.5 1.7 1.9 2.1 2.3 2.5
k1=k2=k

p1D

p1P

p1S=p2S

p1C

p1SD

(a)

0

2

4

6

8

10

12

1.5 1.7 1.9 2.1 2.3 2.5
k1=k2=k

p1D

p1P

p1S=p2S

p1C

p1SD

(a)

2

4

6

8

10

12

0 0.3 0.6 0.9

rho

p1D
p1S=p2S
p1P
p1C
p1SD

(b)

2

4

6

8

10

12

0 0.3 0.6 0.9

rho

p1D
p1S=p2S
p1P
p1C
p1SD

(b) (c)

0
2
4
6
8

10
12
14

0 20 40 60 80 100�1= �2 =�
p1D
p1P
p1S=p2S
p1C
p1SD

(c)

0
2
4
6
8

10
12
14

0 20 40 60 80 100�1= �2 =�
p1D
p1P
p1S=p2S
p1C
p1SD

Figure 4: Optimal retail prices for the first period
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Figure 5: Optimal retail prices for the second period

flexibility, it charges a high price in both periods. Although mark-down pricing of fashion
products has garnered most attention, empirical literature has shown that mark-up pricing
as a means of penetrating the market is also employed regularly by retailers (Elmaghraby
and Keskinocak 2003; Tellis 1988). To summarize, under symmetric conditions, the first-
and second-period optimal retail prices are ordered as:

DSCMi ≈ SMi > DRPMi > DRPOMi > CMi, i = 1;

DRPMi ≈ SMi > DRPOMi > DSCMi > CMi, i = 2.

The above ordering of retail prices across the models holds (approximately) true even for
an asymmetric system (k1 6= k2 or σ1 6= σ2 or low/high values of ρ), as seen from Figures 4b,
5b, 6 and 7. However, our previous conclusions regarding the optimal retail prices of the
two periods for a particular model might no longer be valid. In particular, since optimal
prices decrease with elasticity, when k2 ≫ k1 (e.g., fashion products), the second-period
optimal retail price might be lower than the first-period one for DRPOM, DRPM and CM.
Hence, mark-down pricing can still be optimal under a non-dynamic contract when there
is retail pricing flexibility. With respect to overall demand uncertainty, recall that it is
driven by both the natural demand variability σi and the retail prices pi; so optimal prices
increase with σi to restrain the increase of overall demand uncertainty (Figures 4c, 5c, 7).
This enables the retailer to reduce inventory costs, as we will demonstrate shortly. When
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Figure 6: Optimal retail prices under asymmetric price elasticities
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Figure 7: Optimal retail prices under asymmetric natural demand uncertainties

there is no retail pricing flexibility (i.e., SM), the retailer obviously has to accomodate the
characteristics of both periods when setting the uniform price. This balancing act explains
why the retailer charges a lower price in the first period and a higher one in the second
period compared to other decentralized models when k2 ≫ k1, as evident from Figure 6
(the behavior for σ2 ≫ σ1 or σ2 ≪ σ1 can be similarly explained). In order to understand
the effects of the demand correlation ρ, note that higher values of ρ represent an increase in
the total variability of the system (over two periods), but an almost deterministic demand
in the second period after the realization of ǫ1. It is known that (Petruzzi and Dada 1999),
under a multiplicative demand function, deterministic demand results in a lower optimal
retail price than stochastic one for the same expected demand value. In line with this
fact, for all models with dynamic retail pricing, the second-period retail prices decrease
with ρ (Figure 5b). This enables the retailer to slightly increase prices in the first period
(Figure 4b). For SM, there is no pricing recourse; hence the retailer increases prices with
ρ so as to curb variability (Figures 4b and 5b).
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Figure 8: Total (expected) retail orders
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Figure 9: Total (expected) retail orders under asymmetric conditions

5.1.3 Retail Orders

The total amount of inventory ordered by the retailer reflects the demand effect of retail
prices. As illustrated in Figure 8, in symmetric scenarios and all correlation levels, the
higher the average retail prices, the lower the total expected retail orders over two periods,
i.e., they are ordered as

CM > DSCM > DRPOM > DRPM > SM.11

The increasing behavior of the orders with respect to k is intuitive. Note, however, the
non-monotone effects of σ in Figure 8c. As natural demand uncertainty increases, so
does the optimal retail price, which counteracts variability. The joint effect results in the
non-monotone nature of the total retail orders (Figures 8c, 9b). In the case of demand
correlation ρ (Figures 4b, 5b), however, our numerical studies indicate that the retail price
effect dominates. Hence, for SM, the total order size decreases with ρ; whereas, in all
other models, the total orders increase with ρ. As evident from Figure 9, most of the above
relationships also hold true for asymmetric cases.

11Note that we do not show the order quantity of CM in Figures 8–9. The behavior in that case is
exactly the same as in others, except that the order size is much larger. For example, in the base case it is
around 35.
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A number of other observations deserve attention. First, the decentralized environment
considerably reduces the inventory availability compared to a centralized system. This is,
of course, driven largely by double marginalization. Within decentralized models, the total
amount ordered in SM, DRPM, and DRPOM is quite similar, due to the similar wholesale
prices charged for these models. However, inventory availability for DSCM is substantially
higher, primarily because of the lower average wholesale prices. Thus, the manufacturer
cannot induce the retailer to purchase more by simply allowing her to adjust prices or place
multiple orders; it is essential that the manufacturer also offers sufficient price incentives
(i.e., reductions). Finally, although not shown, we observed that in DSCM, the expected
order size is, in general, smaller in the second period than in the first, in spite of the fact
that the wholesale price is actually higher in the first period. This signifies the retailer’s
motivation to carry inventory from the first period to restrict the manufacturer’s pricing
power.

5.2 Values of Decision Flexibilities

In this section, we compare the profits under different models and provide a detailed
account of the values of pricing and ordering flexibilities to each channel member, as well
as the supply chain as a whole. Note that, later on in §6 we synthesize the results of this
section (as well as §5.1) to generate further managerial insights.

5.2.1 Values of Decision Flexibilities to the Manufacturer

We first briefly discuss the behavior of the manufacturer’s total profit with respect to the
three market characteristics for the decentralized models. Like before, we focus on symmet-
ric scenarios (Figure 10) and on asymmetric cases (Figure 11a).12 Figures 11b and 11c
depict the retailer’s total profits for asymmetric conditions. Observe from these figures
that the manufacturer’s profit improves with the degree of decision-making flexibility:

DSCM > DRPOM > DRPM > SM.

Evident from Figure 10a, customers’ price sensitivity has a non-monotone effect on the
manufacturer’s profits. This is somewhat counter-intuitive because, as customers become
more price concerned, we would expect both retail and manufacturer profits to decrease.
However, as we know from the preceding section, as k increases, the wholesale price de-
creases, but the retailer’s order quantity increases. When k is low, e.g., products in the
growth phase of the lifecycle, the effect of retail orders dominates, whereas for higher k,
e.g., mature products, the wholesale price effect matters more. The impact of natural de-
mand uncertainty (Figure 10c) follows the behavior of the retail orders shown in Figure 8c,
as the wholesale price is relatively independent of σ̄. Interestingly, this means that the
manufacturer prefers either a highly deterministic (e.g., commodity products) or highly
uncertain demand environment (e.g., very fashionable products). On the other hand, as
ρ increases, the total demand variability increases for SM, which reduces the manufac-
turer’s profit (Figure 10b). For all other models, higher values of ρ allow more informed

12The behavior for k2 > k1 is structurally similar to Figure 10a and, hence, is not presented.
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Figure 10: Manufacturer’s profit
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Figure 11: Manufacturer and retailer profits under asymmetric conditions

decision-making in the second period, which benefits the manufacturer. Clearly, the extent
of benefits increases with ρ and with the degree of flexibility.

Although the manufacturer’s profit increases with degree of decision-making flexibil-
ity, the extent of the improvement is governed by operating/market conditions. For this
reason, it is important to quantify the distinct values of wholesale pricing, retail pricing
and ordering flexibilities and how they are influenced by the above conditions. We can
then identify the most desirable conditions for each decision-making paradigm, from the
manufacturer’s perspective. Since the profit for SM is the lowest, we quantify the values
of the flexibilities by comparing the profits under DRPM, DRPOM and DSCM against
SM profit. In Figures 12 and 13, the lines RPM, ROM and WPM show the percent profit
improvement for the manufacturer for DRPM, DRPOM and DSCM scenarios respectively,
compared to SM. Clearly, RPM denotes the value of retail pricing flexibility, (ROM - RPM)
denotes the (incremental) value of retail ordering flexibility, and (WPM - ROM) denotes
the (incremental) value of wholesale pricing flexibility (or of dynamic contracting), from
the manufacturer’s perspective.13

13The corresponding percent improvements for the retailer are illustrated by the lines RPR, ROR, and
WPR, respectively, and the decision flexibilities can be deduced in a similar fashion.
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Figure 12: Values of decision flexibilities
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Figure 13: Values of decision flexibilities under asymmetric conditions

• Effects of Price Elasticity: From Figure 12a we observe that as k(= k1 ≈ k2)
increases, the values of retail pricing and ordering flexibilities increase, while that for the
wholesale pricing flexibility decreases. When customers are generally less price-concerned
(e.g., for high-tech products), the manufacturer benefits most from dynamic contracting,
whereas in the opposite scenario (e.g., basic apparel), the retailer’s dynamic pricing cap-
tures most of the profit gains. On the other hand, Figure 13a shows that as k2 (hence,
price elasticity differential) increases, the value of retail pricing flexibility initially decreases
and then increases, while the incremental values of the other two flexibilities remain rel-
atively stable. Consequently, if the late demand proves significantly more price-sensitive
(e.g., for cellphones), even the manufacturer gains most from the ability of the retailer to
dynamically set prices.

• Effects of Demand Correlation: As the extent of correlation ρ increases, so does the
value of information updating, resulting in an increase in the profit gain from all three re-
course opportunities (Figure 12b). For low values of ρ (e.g., planned industrial purchases),
the manufacturer benefits most from dynamically changing the contract. However, as ρ
increases, retail pricing flexibility also becomes important for improving the manufacturer’s
profit.

• Effects of Natural Demand Uncertainty: From Figure 12c we note that as σ(=
σ1 = σ2) increases, the values of retail pricing and ordering flexibilities both increase, while
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that for wholesale pricing falls. Evidently, for products with relatively known demand, the
profit gain to the manufacturer accrues mainly from the ability to dynamically change the
wholesale price. On the other hand, for highly variable demand, all three recourse decisions
(especially retail pricing) might be important. For asymmetric conditions, we can conclude
from Figure 13b, that when the second period demand is quite certain, dynamic wholesale
and retail pricing flexibilities contribute most to the manufacturer’s profit. But if second-
period demand proves to be significantly more uncertain, then the retailer’s flexibility to
place a second order also becomes crucial.

5.2.2 Values of Decision Flexibilities to the Retailer

The structural behavior of the retail profits for symmetric scenarios is similar to those
for the manufacturer and hence are not presented. As Figure 11b shows, the same is true
when second-period demand uncertainty is different than that of the first-period. The main
difference, as illustrated in Figure 11c, is that the retailer’s profit strictly decreases (rather
than being non-monotone) as the second-period demand becomes more price sensitive.
This is intuitive since the retailer directly faces the price elasticity of the customers. In
general, it is true that the retailer earns more profit when there is more decision-making
flexibility, but exceptions are actually possible. A close look at Figure 11c shows that when
k2 ≫ k1, e.g., fashion apparel or cellphones, DRPOM profit is actually higher than DSCM.
This proves that although dynamic contracting is always beneficial to the manufacturer,
it might actually hurt the retailer. In these cases, a single static wholesale price provides
more favorable terms to the retailer as opposed to the dynamic mark-down wholesale price
scheme.

From a managerial perspective, it is perhaps more important to assess the values of
different recourse decisions to the retailer under various business conditions. Figures 12
and 13 serve this purpose. Observe that, except for the case when early and late purchasers
exhibit different price elasticities, the magnitude of gains from retail pricing and ordering
flexibilities are almost identical for the manufacturer and for the retailer. Wholesale pricing
flexibility, however, provides more profit gains to the manufacturer than to the retailer.

• Effects of Price Elasticity: Figure 12a shows that as k(= k1 ≈ k2) increases, the
values of all decision flexibilities also increase. For innovative products, when customers
are generally less price-concerned, dynamic retail pricing captures most of the profit gains
for the retailer; the added benefit of second ordering and dynamic contracting is almost
negligible. Only when customer price elasticity is high, do the added values of the other
two flexibilities become observable. Note that retail pricing remains the most important
element of flexibility even when the second-period customers turn out to be significantly
more price sensitive, but (as indicated earlier) the manufacturer’s dynamic contracting
flexibility might deteriorate the retailer’s profits.

• Effects of Demand Correlation: The impact of demand correlation on the retailer’s
profits is identical to that on the manufacturer’s profits. Clearly, for all values of ρ,
the major benefit for the retailer stems from retail pricing flexibility (Figure 12b). The
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retailer’s ordering or the manufacturer’s pricing recourse does not add much incremental
profit, except the latter for almost independent demands.

• Effects of Natural Demand Uncertainty: The behavior of the values of decision
flexibilities to the retailer as a function of natural demand uncertainty is similar to that to
the manufacturer. However, since dynamic contracting confers considerably less profit gain
to the retailer, the comparative values of the three recourse decisions are altered accord-
ingly. Consequently, the retailer’s ability to dynamically change prices is critical in most
situations. In particular, when the second-period demand is highly certain (Figure 13b),
this decision flexibility by far adds most value among the three elements. As evident from
Figure 12c, for products with generally known demand, dynamic contracting is important
for the retailer (even more than retail pricing flexibility), whereas for products with highly
variable demand, the profit gains from this flexibility prove to be almost negligible. In
highly variable demand environments, the opportunity to place a second order remains a
valuable option for the retailer.

5.2.3 Values of Decision Flexibilities to the Chain

The magnitude and behavior of decision flexibilities for the supply chain as a whole are
largely governed by the relative share of the profit which each channel member garners.
We note that in our multiplicative demand setting, the retailer usually earns a larger share
of profit. This benefit is comparatively low when k is high or k2 ≫ k1.

14 The results of
this section become clear when this fact is taken into perspective. For this reason, we omit
detailed illustrations and directly provide the key insights.

As expected, the supply chain always benefits from higher decision making flexibility.
In most cases, dynamic retail pricing is the most significant of all three elements. In market
conditions when dynamic retail pricing is also significantly profitable for the manufacturer
(high k, k2 ≫ k1, high ρ, high σ, or σ2 ≪ σ1), this flexibility indeed accounts for almost
the entire profit gain for the chain. However, when dynamic contracting is substantially
profitable for the manufacturer (k1 ≈ k1 and low, low ρ, low σ, or σ2 ≫ σ1), it might be so
for the entire chain. The benefits of the second ordering opportunity are maximized when
the second-period demand uncertainty is the most distinct market characteristic (high ρ,
high σ or σ2 ≫ σ1).

When analyzing chain profits, it might also be constructive to investigate the extent of
profit loss due to decentralized decision making. Figure 14 serves that purpose. Clearly, a
decentralized chain suffers from substantial profit loss even when all decisions are made dy-
namically. Only when customers are generally less price-sensitive and the product has rel-
atively certain demand, e.g., pharmaceutical products, are the losses comparatively lower.
Note that these are the same conditions (as well as independent demand scenarios) when
the overall profit improvement from dynamic decision-making, compared to the static one
(SM), is relatively small.

14Recall from Sections 4.2.3 and 4.2.4 that when k1 = k2 = k, ΠM/ΠR = (k − 1)/k.
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Figure 14: Comparison of Supply Chain Profits

6 Concluding Discussion and Future Research

Opportunities

In this paper, we developed and analyzed four different models to investigate the effects
of dynamic decision making in a decentralized supply chain facing non-stationary, price-
sensitive stochastic demand. We also studied a centralized model as a benchmark for
evaluating the inefficiencies created by decentralized decision making. This paper’s con-
tribution is two-fold. From a technical standpoint, we are able to characterize the main
analytical properties of the optimal decisions (up to six in total) and profits for each of
the models. From a managerial perspective, our comparison of the optimal decisions and
the resulting profits under each model yields key insights regarding the effects of different
decision-making paradigms. Since the four decentralized models differ in the number of
recourse decisions allowed for the channel members, we are able to distinguish the value of
each recourse decision for the channel members and the supply chain as a whole.

Our main technical result is that, under mild parameter restrictions and distributional
assumptions, the optimization of each model can be reduced to a search over a single
decision variable. We obtain our main result utilizing a series of transformations of the
decision variables as well as changes to the optimization spaces. We strongly believe that
such techniques can form the building blocks for the analysis of multi-period versions
of our models. For example, the multi-period version of CM corresponds to the joint
inventory-pricing problem with iso-elastic, price-sensitive demand and multiplicative form
of uncertainty. To the best of our knowledge, characterizations of the optimal form of the
policy, as well as of the optimal inventory and pricing decisions have not been carried out
for this rather fundamental demand modelling framework. 15

Our results highlight some structural differences in the optimal decisions under each
operating regime. When the manufacturer employs a non-dynamic wholesale contract,
it sets the optimal wholesale price myopically, with little consideration to the retailer’s
ordering and pricing flexibilities. Hence, the optimal wholesale prices are very similar
(and in certain cases provably identical). In a dynamic contract setting, however, we find

15Such results exist for other demand models such as the linear demand function with additive uncertainty
(Chen et al. 2005).
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that it is optimal for the manufacturer to adopt a mark-down strategy, which results in
higher prices in the first period and lower prices in the second period compared to non-
dynamic scenarios. Moreover, average wholesale prices are also lower for dynamic contracts
compared to non-dynamic ones. With a mark-down pricing strategy, the manufacturer aims
at enhancing its pricing power in the second period by curbing the amount of inventory
that the retailer carries over from the first period. Naturally, the retailer’s response to
a dynamic wholesale contract is to also pursue a mark-down retail pricing strategy. In
contrast, under a non-dynamic wholesale price contract, although all units are procured
at the same unit price, the retailer’s tendency is to follow a mark-up (penetrative) pricing
strategy, except when the late purchasers are significantly more price-sensitive. The initial
low price enhances demand and reduces the probability of excess stock in either period.
When the retailer has the option to adjust decisions, she does so with renewed demand
information, which makes higher prices justifiable. Generally speaking, the average retail
price (over two periods) decreases with accrued decision-making flexibility to the chain.
The demand effects of retail prices have an immediate consequence on total retail orders,
which increase when the supply chain has more flexibility. The most distinct increase,
however, is due to dynamic wholesale pricing. This implies that giving pricing or ordering
recourse to the retailer does not necessarily induce higher orders for the manufacturer,
unless the wholesale price is likewise revised.

As for the impact of recourse decisions on profit, while there are exceptions, it is gener-
ally true that profits for both channel partners improve with the degree of decision-making
flexibility in the chain. Furthermore, the scale of profit improvement due to dynamic retail
pricing or ordering is quite similar for the two parties, whereas wholesale price adjustments
provide comparatively more gains to the manufacturer. As a matter of fact, dynamic whole-
sale pricing can even be detrimental to the retailer (i.e., the exception), particularly when
late purchasers are significantly more price-sensitive. The supply chain, on the other hand,
always benefits from higher decision-making flexibility. This benefit is most significant
for products which exhibit high levels of price elasticity (especially k2 ≫ k1), variability
(especially σ2 ≪ σ1) and correlation. But the effects of double-marginalization are strong,
regardless. In our numerical experiments, the optimal profit of the best decentralized
model does not capture more than 85% of the optimal centralized profits.

We also shed light on the relative importance of the three decision flexibilities to the
manufacturer and to the retailer. In particular, on the basis of price elasticity of demand,
demand correlation between periods, and (natural) demand uncertainty, we identify sce-
narios under which the contribution of each decision flexibility to the overall profit im-
provement is maximal. Without repeating these results but synthesizing them, we can
infer that these conditions are not necessarily the same for the manufacturer as for the
retailer. Hence, in certain cases, deciding on a particular contracting scheme itself might
be a source of conflict within the supply chain.

For the retailer, pricing flexibility is the most critical decision flexibility in majority of
the cases. In fact, under certain conditions, the ability to dynamically price captures the
potential profit gains almost in its entirety for the retailer. These conditions are: i) When
customer price sensitivity in both periods is similar and low, or ii) the late demand is much
more price-concerned or more predictable or independent of early demand. Unfortunately,
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many of these conditions do not constitute a favorable environment for the manufacturer
to be satisfied with only retail pricing flexibility. A favorable scenario arises when late
purchasers are significantly more price-sensitive than early purchasers, e.g., fashion prod-
ucts. Under some other previously described conditions, especially low k1 ≈ k2 and low
ρ, the manufacturer would insist on renegotiating the contract, since this flexibility would
enable her to garner the highest profit gains. Such dynamic contracting is also important
for the manufacturer in relatively certain demand environments, or when demand uncer-
tainty increases over the planning horizon. On the other hand, in addition to the condition
k2 ≫ k1, retail pricing flexibility can be valuable to the manufacturer: i) If the demand
is quite uncertain, or ii) price elasticities are generally high, or iii) demands are highly
correlated. Finally, in general, ordering flexibility is relatively less valuable (compared to
the other two) to both channel partners. The only conditions under which this flexibility is
relevant are aligned for the two parties and are indeed rather intuitive: When uncertainty
in both periods or in the second period is high.

While decision flexibilities add to the profits of the channel partners, their administra-
tion may incur significant costs (Elmaghraby and Keskinocak 2003). Hence, the ensuing
benefits must be able to counterbalance these costs in order to give credence to the flexibil-
ities. Against this backdrop, we can suggest the decision-making paradigms which might
be most favorable for the channel partners (and consequently the chain) under different
business environments, as summarized below.

• Absolute Price Elasticity (k1 ≈ k2): High (e.g., basic apparel or mature products) –
Static contract with retail pricing and ordering flexibility (DRPOM); Low (e.g., high-tech
industrial products) - Dynamic wholesale price contract with retail pricing and ordering
flexibility (DSCM).

• Relative Price Elasticity (k2 − k1): High (e.g., fashion apparel, cellphones) - Only
retail pricing flexibility (DRPM).

• Demand Correlation (ρ): High (e.g., fashion apparel) - DRPOM; Low (e.g., planned
industrial purchases) - DSCM.

• Absolute Demand Uncertainty (σ̄1 ≈ σ̄2): High (e.g., growth phase industrial
products) - DRPOM; Low (e.g., mature products) - DSCM.

• Relative Demand Uncertainty: High – for σ̄2 ≪ σ̄1 (e.g., fashion products), DRPM;
for σ̄2 ≫ σ̄1, DSCM.

• Static decision-making paradigm (SM): Only for very low (and similar) price
elasticities for the two periods, low demand correlation and relatively certain demand
(e.g., pharmaceutical products).

For the analytical results in Section 4 we assumed k2 ≥ k1 and c1 ≥ c2. Note that these
are sufficient conditions; numerical experiments have shown that the unimodality property
of the profit functions hold true even if they are not satisfied. We do not experiment with
c1 6= c2 in Section 5, as otherwise the profit comparison between the models would not be
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justified (recall that for SM and DRPM all units are procured in the first period, while
for others they are procured in both periods). Note also that we ignore the holding costs
for carryover inventories and the salvage values of the final leftovers. These assumptions
are indeed common in the related literature for technical tractability (e.g., Monahan et al.
2004; Wang et al. 2004). We believe that our key qualitative results will not be affected if
these costs are taken into consideration, although the precise values of the optimal decisions
and profits will surely change. Notice that the two cost elements will have a counteracting
effect on the retailer’s overall order quantity - while the first one will force the retailer to
procure less, the second one will encourage her to purchase more. However, depending on
their values, these costs might cause the relative amount of inventories procured in the two
periods to change considerably (there will be an incentive to procure comparatively more
in the second period). As a result, we can surmise that the ordering flexibility would most
probably become more relevant in the presence of these costs.

Dynamic decision-making is an issue of considerable recent interest for managers, espe-
cially those in online firms, and will remain so for the foreseeable future. In fact, a number
of software applications have been developed specifically for this purpose (Elmaghraby and
Keskinocak 2003). Under these circumstances, our paper which addresses such dynamic
decisions in three dimensions - retail pricing, retail ordering and contracting - simultane-
ously, should be of considerable significance. However, there are still a number of possible
future extensions of our framework. Specifically we identify four avenues which may benefit
from future research: i) Examination of how results will change if the lost sales are unob-
servable, ii) investigation of a competitive setting either at retail or manufacturer level, iii)
extension of our model to analyze T -period (T > 2) or infinite horizon problems, and iv)
incorporation of inventory decisions at the manufacturer level.

Appendix A: Glossary of Notation16

ki = price elasticity of the deterministic part of the demand in period
i

di, ǫi = deterministic price sensitive and random non-price dependent
parts of the demand in period i

µ1, µ2(ǫ1) = mean values of ǫ1 and (ǫ2|ǫ1)
f1(u), F1(u) = density and distribution functions of ǫ1, respectively
f2(u|ǫ1), F2(u|ǫ1) = density and distribution functions of (ǫ2|ǫ1), respectively
pi, yi = retail price per unit and order-up-to level in period i

ci, wi = manufacturer’s per unit purchasing cost and wholesale price in
period i

x(≥ 0) = = y1 − d1(p1)ǫ1 if y1 > d1(p1)ǫ1, and 0 otherwise; initial inven-
tory level at the beginning of period two

z1 = stocking factor in period one, z1 = y1

d1(p1)

16i = 1, 2 in all notation represents the two periods
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π2(x, ǫ1) = centralized system’s expected profit in period two for a given x

and demand realization of ǫ1 in period one
π(p1, z1) = centralized system’s expected profit over the two-period plan-

ning horizon
πM

2 (x, ǫ1) = manufacturer’s expected profit in period two for a given x and
ǫ1

πR
2 (x, ǫ1) = retailer’s expected profit in period two for a given x and ǫ1

πM (w1, p1, z1) = manufacturer’s expected profit over the planning horizon for a
given (w1, p1, z1)

πR(p1, z1) = retailer’s expected profit over the planning horizon for a given
(p1, z1)

Appendix B: Proofs of Lemmas and Theorems

Proof of Theorem 1:

For any given z1(> 0), taking partial derivatives of (6) with respect to p1, we get

∂π(p1, z1)

∂p1
= −k1

d1(p1)

p1
{
k1 − 1

k1
p1[µ1 − Θ1(z1)] +

∫ z1

0

∂π2(x, u)

∂x
[z1 − u]f1(u)du − c1z1},

∂2π(p1, z1)

∂p2
1

|{∂π(p1,z1)
∂p1

=0} = −k1
d1(p1)

p1
{
k1 − 1

k1
[µ1 − Θ1(z1)]

−k1
d1(p1)

p1

∫ z1

0

∂2π2(x, u)

∂x2
[z1 − u]2f1(u)du}

≤ −(k1 − 1)d1(p1)[µ1 − Θ1(z1)] < 0.

Hence, for any given z1(> 0), π(p1, z1) is unimodal. The unique optimizer p1(z1) is then

the solution of the first order condition ∂π(p1,z1)
∂p1

= 0, which simplifies to (7). Substituting

this p1(z1) in (6), we can express the CM profit function only in terms of z1. Observe from
(7) that

c1z1−
k1 − 1

k1
p1[µ1−Θ1(z1)] =

∫ z1

0

∂π2(x, u)

∂x
[z1−u]f1(u)du ≤ c2[z1F1(z1)−

∫ z1

0
uf1(u)du].

Since c1 ≥ c2,
k1−1

k1
p1[µ1 − Θ1(z1)] ≥ c1z1 − c2[z1F1(z1) −

∫ z1

0 uf1(u)du] ≥ c2[µ1 − Θ1(z1)],

implying p1(z1) ≥
k1

k1−1c2.

To show that p1(z1) is increasing, we define L(p1, z1) = k1−1
k1

p1[µ1−Θ1(z1)] +
∫ z1

0
∂π2(x,u)

∂x

[z1 − u]f1(u)du − c1z1. Note that p1(z1) satisfies L(p1, z1) = 0. Clearly dp1(z1)
dz1

=



Les Cahiers du GERAD G–2007–96 33

−∂L(p1,z1)
∂z1

(∂L(p1,z1)
∂p1

)−1 from the implicit function theorem. As ∂L(p1,z1)
∂p1

|{L(p1,z1)=0} =

k1−1
k1

[µ1 − Θ1(z1)] − k1
d1(p1)

p1

∫ z1

0
∂2π2(x,u)

∂x2 [z1 − u]2f1(u)du > 0, we only need to show
∂L(p1,z1)

∂z1
|{L(p1,z1)=0} ≤ 0. It is easy to verify that

z1
∂L(p1, z1)

∂z1
=

k1 − 1

k1
p1z1[1 − F1(z1)] + z1

∫ z1

0

∂π2(x, u)

∂x
f1(u)du

+ d1(p1)z1

∫ z1

0

∂2π2(x, u)

∂x2
[z1 − u]f1(u)du − c1z1.

For L(p1, z1) = 0, we also know that

k1 − 1

k1
p1z1[1 − F1(z1)] − c1z1 = −

k1 − 1

k1
p1

∫ z1

0
uf1(u)du −

∫ z1

0

∂π2(x, u)

∂x
[z1 − u]f1(u)du.

Substituting the above into the expression for z1
∂L(p1,z1)

∂z1
, we get

z1
∂L(p1, z1)

∂z1
|{L(p1,z1)=0} = −

∫ z1

0
[
k1 − 1

k1
p1 −

∂π2(x, u)

∂x
]uf1(u)du

+ d1(p1)z1

∫ z1

0

∂2π2(x, u)

∂x2
[z1 − u]f1(u)du.

It now follows from (5) and p1(z1) ≥
k1

k1−1c2, that ∂L(p1,z1)
∂z1

|{L(p1,z1)=0} ≤ 0. 2

Proof of Theorem 2:

Let I1(p1, y1) = p1d1(p1)[µ1 − Θ1(
y1

d1(p1))] + c2d1(p1)Λ1(
y1

d1(p1)) − c1y1 and I2(p1, y1) =
∫ +∞
0 [π2(x, u) − c2x]f1(u)du where x = y1 − d1(p1)u if y1 > d1(p1)u and x = 0 otherwise.

It is obvious that the total expected supply chain profit under CM can be rewritten as
π(p1,

y1

d1(p1)
) = I1(p1, y1) + I2(p1, y1) (note that y1

d1(p1) = z1).

First, we show that S(u) is increasing in terms of u, the realization of ǫ1. In order to show
this, it is sufficient to show that B(u) is increasing in terms of u (by the definition of S(u)).
Based on the expression of π2(y2, x, u), we get B(u) = π2(1, 1, u) = Maxp2>0π2(p2, y2 =
1, x = 1, u) = Maxp2>0{p2E[Min{y2 = 1, d2(p2)(ǫ2|u)}]} and it is obvious that B(u) is
increasing if (ǫ2|u) is stochastically increasing in terms of u.

Secondly, as S(u) ≥ S(0) by the above result and S(0) ≥ S1 based on our assumption,
so I2(p1(y1), y1) is constant if y1 ≤ S1, where p1(y1) is the maximizer of π(p1,

y1

d1(p1)
), for a

given y1. Hence, π(p1(y1),
y1

d1(p1(y1))) is increasing on [0, S1].

Thirdly, we show that π(p1(y1),
y1

d1(p1(y1))) is decreasing on [S1,+∞). By the result in

Song et al. (2005, Property 2), for any given S1 ≤ y1 ≤ y2 and p2,17 there exists a p1 such

17Note that pi and yi are used to denote particular points (i is not an exponent). We use this notation
to distinguish it from functions.
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that I1(p
1, y1) > I1(p

2, y2) and max(0, y1 −d1(p
1)u) ≤ max(0, y2 −d1(p

2)u) for any u > 0.
Hence, π(p1(y1),

y1

d1(p1(y1))) is decreasing on [S1,+∞).

Clearly, π(p1(y1),
y1

d1(p1(y1))) is then unimodal and S1 is the unique maximizer.

We now show that there is a one-to-one relationship between y1 and z1. Note that
the centralized system needs to maximize (6), subject to the fact that the two first order
conditions (FOCs) in terms of p1 and z1 are satisfied. Combining these two conditions we
get the following equation:

p1{k1

∫ z1

0
uf1(u)du − [µ1 − Θ1(z1)]} − k1

∫ z1

0

∂πR(x, u)

∂x
uf1(u)du = 0. (27)

So, CM needs to maximize (6) keeping in mind that the optimal p1 and z1 must satisfy
(27). We can then show that for z1 ∈ [0, Z0], there is no p1 such that (27) is satisfied, where
Z0 is the unique positive solution of U(z1) = 0 (DSCM model also uses a similar argument).
Hence, we only focus on z1 ∈ (Z0,+∞), and show that y1(z1) = z1d1(p1(z1)) is increasing

in that range, where p1(z1) is as defined in Theorem 1. As y′1(z1) = d1(p1)[1 − k1z1
p′1(z1)
p1(z1)

],

it is equivalent to showing that k1z1p
′
1(z1) < p1(z1). Based on the expression of p′1(z1) in

the proof of Theorem 1, the above inequality can be further reduced to

k1 − 1

k1
p1(z1)[µ1 − Θ(z1)] − (k1 − 1)p1(z1)

∫ z1

0
uf1(u)du

+ k1d1

∫ z1

0

∂2π2(x, u)

∂x2
(z1 − u)uf1(u)du + k1

∫ z1

0

∂π2(x, u)

∂x
uf1(u)du > 0.

This is obvious since [µ1 − Θ(z1)] − k1

∫ z1

0 uf1(u)du > 0 on (Z0,+∞) and
∫ z1

0 [∂π2(x,u)
∂x

+

k1x
∂2π2(x,u)

∂x2 ]uf1(u)du ≥ 0.

Since π(p1(y1),
y1

d1(p1(y1))) is unimodal in y1 (recall that z1 = y1

d1(p1(y1))) and there is a

one-to-one relation between y1 and z1, π(p1(z1), z1) is also unimodal. Furthermore, note
that Theorem 5 then also holds true since the retailer’s problem in DRPOM is equivalent
to CM with c1 = c2 = w1. 2

Proof of Lemma 2:

Taking partial derivatives of (11), we have

∂πM
2 (y2, x, ǫ1)

∂y2
=

k2 − 1

k2
A(ǫ1)y

− 1
k2

2 +
1

k2
A(ǫ1)xy

− k2+1
k2

2 − c2,

∂2πM
2 (y2, x, ǫ1)

∂y2
2

= −
k2 − 1

k2
2

A(ǫ1)y
− k2+1

k2
2 −

k2 + 1

k2
2

A(ǫ1)xy
− 2k2+1

k2
2 < 0.
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Hence, πM
2 (y2, x, ǫ1) is concave in y2. The optimal y2(x, ǫ1) is given by the solution of the

first order condition which yields (12). Using implicit differentiation, we can establish

∂y2(x, ǫ)

∂x
=

k2y2

(k2 − 1)y2 + (k2 + 1)x
|{y2=y2(x,ǫ1)}

and
∂2y2(x, ǫ1)

∂x2
= −

k2(k2 + 1)[xy2 + (k2 − 1)y2
2 ]

[(k2 − 1)y2 + (k2 + 1)x]3
|{y2=y2(x,ǫ1)}.

Hence y2(x, ǫ) is increasing concave in x(≥ 0) (note that k2 > 1). Since both p2(y2) and
w2(y2) are decreasing convex in y2, the other results follow. 2

Proof of Theorem 3:

We need to consider two cases: x ∈ [0, S(ǫ1)] and x ∈ (S(ǫ1),+∞).

Case 1. x ∈ [0, S(ǫ1)]: As both the optimal retail price p2 and the wholesale price w2

can be expressed in terms of y2 for any given realization of ǫ1, the retailer’s total expected
profit in period two can be expressed in terms of y2 as:

πR
2 (y2, x, ǫ1) = H2(ǫ1)

1−k2
k2 [µ2(ǫ1) − Θ2(H2(ǫ1)|ǫ1)]y

k2−1
k2

2 − A(ǫ1)y
k2−1

k2
2 + A(ǫ1)xy

− 1
k2

2 .

Since µ2(ǫ1) − Θ2(H2(ǫ1)|ǫ1) =
∫ z

0 uf2(u|ǫ1)du + z[1 − F2(z|ǫ1)], πR
2 (y2, x, ǫ1) can be sim-

plified as

πR
2 (y2, x, ǫ1) = H2(ǫ1)

1−k2
k2 (

∫ H2(ǫ1)

0
uf2(u|ǫ1)du)y

k2−1
k2

2 + A(ǫ1)xy
− 1

k2
2 .

From the definition of H2(ǫ1), this can be further simplified as

πR
2 (y2, x, ǫ1) = A(ǫ1)y

− 1
k2

2 {
y2

k2 − 1
+ x}. (28)

Clearly, πR
2 (x, ǫ1) = πR

2 (y2(x, ǫ1), x, ǫ1) and πM
2 (x, ǫ1) = πM

2 (y2(x, ǫ1), x, ǫ1), where
πM

2 (y2(x, ǫ1), x, ǫ1) is given in (11). Substituting y2(x, ǫ1) characterized in (12) and noting

that A(ǫ1)y
− 1

k2
2 |{y2=y2(x,ǫ1)} = k2c2y2

(k2−1)y2+x
|{y2=y2(x,ǫ1)}, we get

πM
2 (x, ǫ1) = c2

(y2 − x)2

(k2 − 1)y2 + x
|{y2=y2(x,ǫ)}

and πR
2 (x, ǫ1) =

k2c2

k2 − 1

y2[y2 + (k2 − 1)x]

(k2 − 1)y2 + x
|{y2=y2(x,ǫ1)}.
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Case 2. x ∈ (S(ǫ1),+∞): In this case, the optimal order-up-to level y2(x, ǫ1) = x and
the optimal wholesale price w2(x, ǫ1) = c2, which results

πM
2 (x, ǫ1) = 0 and πR

2 (x, ǫ1) =
k2

k2 − 1
A(ǫ1)x

k2−1
k2 .

Combining the results for the two cases, we get the profit expressions in Theorem 3.

In order to establish the properties of πR
2 (x, ǫ1) and πM

2 (x, ǫ1), we only need to focus on
the interval [0, S(ǫ1)] (for [S(ǫ1),+∞] it is obvious). Taking partial derivatives of πM

2 (x, ǫ1)
with respect to x, we get

∂πM
2 (x, ǫ1)

∂x
= −

c2(y2 − x)

(k2 − 1)y2 + x
|{y2=y2(x,ǫ1)} ≤ 0.

Hence, πM
2 (x, ǫ1) is decreasing with respect to x on [0, S(ǫ1)]. In order to prove the con-

vexity of πM
2 (x, ǫ1) in terms of x on [0, S(ǫ1)], it suffices to show that

{(y′2 − 1)[(k2 − 1)y2 + x]}|{y2=y2(x,ǫ)} ≤ {(y2 − x)[(k2 − 1)y′2 + 1]}|{y2=y2(x,ǫ)}.

By the expression of y′2 in Lemma 2, the above is equivalent to proving that {(k2 − 1)y2 +
x}|{y2=y2(x,ǫ)} ≥ 0, which is obviously true.

On the other hand, taking partial derivatives of πR
2 (x, ǫ1) with respect to x, we get

∂πR
2 (x, ǫ1)

∂x
=

k2
2c2(x + y2)y2

[(k2 − 1)y2 + x][(k2 − 1)y2 + (k2 + 1)x]
|{y2=y2(x,ǫ1)} ≥ 0.

Hence, πR
2 (x, ǫ1) is increasing with respect to x on [0, S(ǫ1)]. Furthermore,

∂2πR
2 (x, ǫ1)

∂x2
=

−
k2
2y2c2

[(k2 − 1)y2 + x][(k2 − 1)y2 + (k2 + 1)x]3
{3(k2 − 1)y2

2 +(k2 +1)x2 +2(k2 +1)xy2} < 0.

Finally,
∂πR

2 (x,ǫ1)
∂x

+k2x
∂2πR

2 (x,ǫ1)
∂x2 = (k2−1)xy2

2+(k2+1)x3+(k2−1)x2y2+(k2−1)2y3
2 > 0

for any x ∈ [0,+∞), which proves part (3). 2

Proof of Theorem 4:

It is easy to check that

∂L(p1, z1)

∂p1
|{L(p1,z1)=0} =

k1

p1

∫ z1

0
[
∂πR

2 (x, u)

∂x
+ k1x

∂2πR
2 (x, u)

∂x2
]uf1(u)du.

By the result of part (3) in Theorem 3 we get ∂L(p1,z1)
∂p1

|{L(p1,z1)=0} > 0 for any z1(> 0) if

k1 ≤ k2. For any z ∈ (Z0,+∞), as limp1→0+L(p1, z1) < 0 and limp1→+∞L(p1, z1) > 0,
there exists a unique p1(z1) such that L(p1, z1) = 0. Substituting this p1(z1) in (19), we
can express the profit function only in terms of z1. 2
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Proof of Theorem 6:

If k1 6= k2, for any given feasible z1(> 0) we get the closed form expression of p1(z1) by
(23):

p1(z1) =
k2

k1(k2 − 1)
{−

[µ1 − Θ1(z1)] − k1

∫ z1

0 uf1(u)du
∫ z1

0 B(u)(z1 − u)
− 1

k2 uf1(u)du
}

k2
k1−k2 .

Substituting this p1(z1) in (24), we can express the profit function only in terms of z1.

If k1 = k2 = k, let d1(p1) = d2(p1) = d(p1) and z1 = y1

d(p1) . The retailer’s expected

two-period profit can be simplified as πR(p1, z1) = p1d(p1)I(z1)−w1d(p1)z1 where I(z1) =

µ1−Θ1(z1)+
∫ z1

0 B(u)(z1−u)
k−1

k f1(u)du. The manufacturer’s total expected profit can be

simplified as: πM (p1, z1) = k−1
k

p1d(p1)I(z1)−c1d(p1)z1, under the constraint of kz1I
′(z1) =

(k − 1)I(z1). For any given z1(≥ 0), from ∂πM (p1,z1)
∂p1

= k
d(p1)

p1
{−(k−1

k
)2I(z1)p1 + c1z1} = 0,

the optimal p1 is given by:

p1(z1) = (
k

k − 1
)2

c1z1

I(z1)
. (29)

Thus, the manufacturer’s total expected profit over the two-period planning horizon can be

expressed solely in terms of z1 as πM (p1(z1), z1) = (k−1)2k−1

ck−1
1 k2k

I(z1)k

zk−1
1

. The optimal z∗1 follows

from ∂πM (p1(z1),z1)
∂z1

= 0 via any one-variable search technique.

Note that, based on ∂πR(p1,z1)
∂p1

= 0, the wholesale price w1 = k−1
k

p1
I(z1)

z1
. Combining

this and (29), we get w∗
1 = k

k−1c1. Substituting w1 = k−1
k

p1
I(z1)

z1
into πR(p1, z1), we get

πR(p1, z1) = 1
k
p1Id(p1)(z1). On the other hand, by (29) we get c1z1 = (k−1

k
)2I(z1)p1.

Substituting this into πM (p1, z1), we get πM (p1, z1) = k−1
k2 p1Id(p1)(z1). Hence, ΠM

ΠR = k−1
k

follows. 2

Proof of Theorem 7:

For any feasible z1(> 0), we get

∂L(q, z1)

∂q
= k1z1[1 − F1(z1)] − (k1 − 1)[µ1 − Θ1(z1)]

+q

∫ z1

0
[−k1z1 + (k1 − k2)]f1(u)f2(q(z1 − u))[z1 − u]du

+

∫ z1

0
[k1z1 − (k2 − 1)(z1 − u) − (k1 − k2)](1 − F2)f1du,

and
∂2L(q, z1)

∂q2
= −

∫ z1

0
[(k2 − 1)u + (k2 + 1)z1]f1(u)f2(q(z1 − u))[z1 − u]du < 0.
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As L(0, z1) = F1(z1) > 0 if k1 < k2 and L(+∞, z1) = F1(z1) > 0 if k1 > k2, for any feasible
z1(> 0) there exists a unique p1(z1) satisfying L(q, z1) = 0. If k1 = k2, the proof is almost
identical to the one of Theorem 6. 2

Appendix C: Numerical Experiment Setting Details

Note that (ǫ2|ǫ1) is normally distributed with mean µ(ǫ1 = x1) = µ2 + ρσ2
σ1

[x1 − µ1] and

standard deviation σ(ǫ1 = x1) = σ2

√

1 − ρ2, where ρ is the correlation coefficient between

the demands for the two periods. As the density function f1(x1) of ǫ1 can be expressed as
∫ +∞
−∞ f(x1, x2)dx2, i.e., f1(x1) = 1√

2πσ1
e
− 1

2
{x1−µ1

σ1
}2

, and the density function f2(x2|x1) can

be expressed as f(x1,x2)

f1(x1)
, i.e., f2(x2|x1) = 1√

2πσ(x1)
e
− 1

2
{x2−(µ(x1))

σ(x1)

2

, we get f1(x1) = 1
N1

f1(x1)

and f2(x2|x1) = 1
N2

f2(x2|x1) for any x1 ∈ [0,+∞) and any x2 ∈ [0,+∞) where N1 and N2

are normalizing factors. They can be expressed as: N1 = 1−Φ(−
µ1
σ1

) N2 = 1−Φ(−µ(x1)
σ(x1)).

Next we can calculate the mean values µ1 and µ2(x1) of ǫ1 and (ǫ2|ǫ1 = x1), respectively,
as:

µ1 = µ1 +
σ1φ(−

µ1
σ1

)

1 − Φ(−µ1
σ1

)
and µ2(x1) = µ(x1) +

σ(x1)φ(−µ(x1)
σ(x1))

1 − Φ(−µ(x1)
σ(x1))

.

The standard deviation σ1 of ǫ1 can be expressed as:

σ1 = σ2
2{1 −

φ(−µ1
σ1

)

1 − Φ(−µ1
σ1

)
[

φ(−µ1
σ1

)

1 − Φ(−µ1
σ1

)
+

µ1

σ1
]}.

Note that

F1(z) =
1

[1 − Φ(−µ1
σ1

)]
{Φ(

z − µ1

σ1
) − Φ(−

µ1

σ1
)},

and

∫ z

0
uf1(u)du =

1

[1 − Φ(−
µ1
σ1

)]
{σ1[φ(−

µ1

σ1
) − φ(

z − µ1

σ1
)] + µ1[Φ(

z − µ1

σ1
) − Φ(−

µ1

σ1
)]}.

Thus, based on Lemma 1, we can express Θ1(z) and Λ1(z) in terms of φ(x) and Φ(x).
Similarly, Θ2(z|x1) = µ2(x1)−

∫ z

0 uf2(u|x1)du−z[1−F2(z|x1)] and Λ2(z|x1) = zF2(z|x1)−
∫ z

0 uf2(u|x1)du for any z ∈ [0,+∞) and any x1 ∈ [0,+∞). Now

F2(z|x1) =
1

[1 − Φ(−µ(x1)
σ(x1))]

{Φ(
z − µ(x1)

σ(x1)
) − Φ(−

µ(x1)

σ(x1)
,

and

∫ z

0
uf2(u|x1)du =

1

[1 − Φ(−µ(x1)
σ(x1))]

{σ[φ(−
µ(x1)

σ(x1)
) − φ(

z − (µ(x1))

σ(x1)
)]



Les Cahiers du GERAD G–2007–96 39

+ (µ(x1))[Φ(
z − (µ(x1))

σ(x1)
) − Φ(−

µ(x1)

σ(x1)
)]}.

Hence, we also can express Θ2(z|x1) and Λ2(z|x1) in terms of φ(x) and Φ(x). Consequently,
both V1(z) and V2(z|x1) can be expressed only in terms of φ(x) and Φ(x), which facilitate
numerical computations.
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