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Abstract

How can a cooperative agreement made at the start of a dynamic game can be
sustained over time? Early work has avoided this question by supposing that the
players sign binding agreements. This assumption is hard to accept from a theoretical
perspective, and a practical one as well. Conceptually, there is no reason to believe
that rational players would stick to an agreement if they can achieve a better out-
come by abandoning, no matter what they have announced before. At an empirical
level, it suffices to look at the number of disputes (between spouses, business partners,
countries, etc.) in the courts to convince ourselves that binding agreements are not
so binding. Scholars in dynamic games have followed different lines of thoughts to
answer the question. This tutorial reviews one of them, namely time consistency,
a concept which has also been termed dynamic individual rationality, sustainability,
dynamic stability, agreeability, or acceptability.

Key Words: Time Consistency, Differential Games, Sustainability of Cooperation.

Résumé

Comment garantir qu’un accord signé au début d’un jeu dynamique demeure en
place à mesure que le temps passe? Les premiers travaux dans le domaine ont contourné
cette question en supposant que l’accord était contraignant (binding). Cette hypothèse
est difficile à accepter aussi bien sur le plan théorique qu’empirique. En effet, pourquoi
des joueurs qui sont par définition rationnels continuent à coopérer si une déviation
à une autre stratégie leur permettrait de performer mieux? Au niveau empirique, il
suffit de constater le nombre de procès (entre conjoints, partenaires d’affaires, pays,
etc.) pour se convaincre que l’accord n’était pas si contraignant. Les chercheurs en
jeux dynamiques ont traité la question posée selon plusieurs lignées. Ce tutorial revoit
une d’elles, à savoir la cohérence dynamique, un concept connu aussi sous les termes
de rationalité individuelle dynamique et de durabilité.

Mots clés : cohérence dynamique, jeux différentiels, coopération durable.
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1 Prologue

This paper is an invited contribution to the special issue of INFOR to celebrate the 50th
anniversary of the Canadian Operational Research Society. I am honored by this invita-
tion to report on (a part of) an area, cooperative differential games, to which Canadian
researchers at GERAD, jointly with colleagues from different countries, have made signif-
icant contributions. Differential games were initiated by Rufus Isaacs at the Rand Cor-
poration in the early sixties of the last century. His book (Isaacs (1965)) is considered as
the starting point of the field. Initially, the focal point of differential games scientists was
military applications and antagonistic zero-sum games. The theory of differential games
has developped much since then, and applications are now found in many areas, e.g., in
management science (operations management, marketing, finance), economics (industrial
organization, macroeconomics, resource economics, environmental economics, etc.), biol-
ogy, ecology, military, etc. For an introduction to differential games (DG), the interested
reader may consult one of the available textbooks on the subject, e.g., Başar and Olsder
(1995), Petrosjan (1993), Dockner et al. (2000), Jørgensen and Zaccour (2004), Engwerda
(2005), Yeung and Petrosjan (2005).

2 Introduction

It happens every day that players (e.g., firms, union and management, countries, spouses,
etc.) agree to cooperate over a certain period of time, say [t0, T ] , where t0 is the starting
date of the agreement and T the end date of the contract. Cooperation means that the
parties agree to coordinate their strategies in view of optimizing a collective performance
index (profit, cost, welfare, happiness, etc.) Although coordination may induce some loss
of freedom to the parties in terms of their choice of actions, its rationale stems, on balance,
from the collective and individual gains it generates compared to noncooperation.

One interesting question is why economic and social agents sign long-term contracts,
instead of keeping all of their options open by committing for only one period at the
time? A first answer is that negotiating to reach an acceptable arrangement is costly (not
only in terms of dollars, but also in time, emotions and feelings, etc.), and, therefore, it
naturally makes sense to avoid frequent renegotiation whenever this is feasible. Second,
some problems are inherently dynamic. For instance, curbing polluting emissions in the
industrial and transport sectors requires investments in cleaner technologies, changes in
consumption habits, etc., which clearly cannot be achieved overnight. If the players have
short-planning horizons when they perform their cost-benefit analysis, they may end up
constantly postponing relevant decisions concerning the future, and nothing would ever be
achieved. This explains why the parties (countries, provinces, regions, etc.) typically seek
long-term environmental agreements.

It also happens every day that some cooperative programs are abandoned before reach-
ing their maturity at T . In a dynamic game setting, if an agreement breaks down before
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its intended end date, we say that it is time inconsistent. This means that some parties
prefer, payoff-wise, to switch at an intermediate instant of time τ ∈ [t0, T ] to a noncooper-
ative mode of play, rather than stick to the agreement. The interest in dealing with such
instabilities is not in explaining why they may occur (which would be a tautology), but in
attempting to design mechanisms, schemes, side payments, etc., that would help prevent
breakdowns from taking place. This tutorial aims at introducing the reader to time consis-
tency, a concept that has also been termed sustainability of cooperation, dynamic individual
rationality, dynamic stability, durability of an agreement, agreeable solution, etc.

The remainder of the paper is organized as follows. Section 3 provides a refresher
on differential games. It introduces only the elements that are needed for the sequel.
Following the same philosophy, Section 4 recalls some concepts of cooperative game theory.
Section 5 formally introduces the main issues related to time consistency and Section 6
some schemes to implement it. Section 7 concludes by pointing out to the reader some
alternative approaches to maintaining cooperation over time.

3 Differential Games: A Refresher

The description of a deterministic differential game played on a prespecified time interval
[t0, T ] involves the following ingredients:

1. A set of players I = {1, . . . , n} .

2. A vector of controls ui(t) ∈ Ui ⊆ R
mi ,∀i ∈ I, where Ui is the set of admissible

controls of player i.

3. A vector of state variables x(t) ∈ X ⊆ R
p, where X is the state space. The evolution

of the state variables is governed by a system of differential equations (hence the name
of differential games), called the state equations:

ẋ(t) = f (x(t), u1(t), . . . , un(t), t) , x(t0) = x0. (1)

4. A payoff functional of player i

Ji(u(·);x0, t0) =

∫ T

t0

gi(x(t), u(t), t) dt + Si(x(T ), T ) (2)

where u(t) , (u1(t), . . . , un(t)), function gi is player i’s instantaneous payoff and
function Si is the terminal payoff. Throughout the paper, I assume that the players
seek to maximize their payoffs.

5. An information structure. Here one needs to specify what information is available
to a player when she selects a value of her control variable ui(t). The open-loop
and Markovian information structures are the most often used in applications of
differential games in management science. Open-loop means that the players base
their decision only on time, whereas they use the position of the game, i.e., (x, t), as
information, in a Markovian context.
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6. A strategy for each player. For player i ∈ I, a strategy ϕi is a decision rule, chosen
from the outset, which selects an action as a function of the information. A Markovian
(or feedback) strategy selects the control action according to the rule ui(t) = ϕi(x, t).
This means that player i observes the position (x, t) of the system and chooses her
action as prescribed by the decision rule ϕi. An open-loop strategy is a degenerate
Markovian strategy, that is, the control action is selected according to the decision
rule ui(t) = ϕi(t). (In this case, there is actually no need to distinguish between
ui(t) and ϕi(t).)

Before introducing the cooperative and noncooperative solutions, we state the following
remarks.

Remark 1 If
∑

i∈I Ji(u(·);x0, t0) = 0 the game is zero sum. Applications of DG in man-
agement science and economics are however typically of the nonzero-sum variety.

Remark 2 If the game is played over an infinite horizon, then each player optimizes the
discounted stream of profits

Ji(u(·);x0, t0) =

∫

∞

t0

e−ritgi(x(t), u(t)) dt,

where ri is the discount rate of player i. Note that gi is independent of t, and there is
no salvage value, i.e., Si(x(T ), T ) = 0. Following the tradition in dynamic optimization,
in this context, one focuses on autonomous problems, i.e., one considers functions f and
gi that do not depend explicitly on time, and confines the interest to stationary strategies:
ui(t) = ϕi(x). The reason is that at any instant of time, the players face essentially the
same game for the remaining part of the time horizon.

Remark 3 Using an open-loop strategy means that the player commits at t0 to a fixed
time path for her control actions, that is, her choice of control at each instant of time
is predetermined. Obviously, a Markovian strategy gives more flexibility since it involves
less commitment. However, open-loop strategies are technically easier to identify than their
feedback counterparts.

3.1 Noncooperative and Cooperative Solutions

Whereas in one-player decision problems the meaning of optimality is unambiguous, in
many-player decision problems, the optimal collective and individual outcomes depend on
the mode of play, i.e., whether or not the players cooperate. In a cooperative game, the
starting point is that the players do not face any legal, political, sociological, psychological
or economic obstacles to communicating and coordinating their strategies in view of opti-
mizing their collective payoff. One popular assumption in such context is that the players
maximize their joint payoff

J(u(·);x0, t0) =
∑

i∈I

Ji(u(·);x0, t0). (3)
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Remark 4 A more general formulation is to suppose that the players optimize a weighted
sum of their objectives, i.e., J =

∑

i∈I αiJi(u(·);x0, t0), where the weights reflect bargaining
strength and satisfy αi ≥ 0 and

∑

i∈I αi = 1. In the sequel, we assume that all players have
equal weight.

Denote by u∗(t) = (u∗

1(t), . . . u
∗

n(t)), t ∈ [t0, T ], the control paths that provide a solution
of the optimal control problem (3), subject to the state equations in (1). Denote by
J∗(x0, t0) the solution to the joint optimization problem. If this solution is implemented
throughout the game, then player i receives the payoff (before any side payment)

J∗

i (t0, x0) =

∫ T

t0

gi(x
∗(t), u∗(t), t) dt + Si(x

∗(T ), T ), (4)

where x∗(t) is the solution to

ẋ(t) = f(x(t), u∗(t), t), x(t0) = x0. (5)

In the absence of cooperation, the players seek an equilibrium. If the players intervene
simultaneously in the game, then the fundamental solution concept is the Nash equilibrium.

Definition 1 The n-tuple ϕN =
(

ϕN
1 , . . . , ϕN

n

)

is a Nash equilibrium if

Ji(ϕ
N
1 , . . . , ϕN

n ) ≥ Ji(ϕ
N
1 , . . . , ϕN

i−1, ui, ϕ
N
i+1 . . . , ϕN

n ),∀ui ∈ Ui,∀i ∈ I.

In words, the above definition says that no player can benefit from unilaterally deviating
from the equilibrium strategy profile. Note that there may be more than one Nash
equilibrium. In some game situations, one player (the follower) knows the strategy of
the other (the leader) when she has to design her own strategy. An equilibrium in such
a sequential game is called a Stackelberg equilibrium. When the game involves n > 2
players, then typically one assumes that the leader announces her strategy and then the
n − 1 followers play a simultaneous game in which a Nash equilibrium is sought.

Remark 5 There are some papers dealing with the coincidence of open-loop and feedback
Nash equilibria and on the coincidence of Nash and Stackelberg equilibria (see, e.g., Rein-
ganum (1982), Dockner et al. (1985), Freshtman (1983), Rubio (2006)).

The usual tools for identifying noncooperative equilibria are the Hamilton-Jacobi-
Bellman and the Maximum Principle methods, both originally developed within a con-
text of dynamic optimization.

Denote by uN (t) =
(

uN
1 (t) , . . . , uN

n (t)
)

the control path generated by the Nash equi-

librium strategy ϕN (x (t) , t) =
(

ϕN
1 (x (t) , t) , . . . , ϕN

n (x (t) , t)
)

. The resulting payoff for
player i is given by

JN
i (x0, t0) =

∫ T

t0

gi

(

xN (t), uN (t) , t
)

dt + Si

(

xN (T ), T
)

, (6)
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where xN (t) is the solution of

ẋ(t) = f
(

x(t), uN (t) , t
)

, x(t0) = x0. (7)

Noncooperative equilibria often play the role of benchmarks in a cooperative game, i.e.,
they provide what players could secure for themselves if there is no agreement.

4 Sharing the (Total) Cooperative Payoff

By virtue of joint optimization, the sum of individual payoffs under cooperation is greater
than or equal to for its noncooperative counterpart, i.e.,

J∗ (x0, t0) =
∑

i∈I

J∗

i (x0, t0) ≥
∑

i∈I

JN
i (x0, t0) ...

To allocate the total cooperative outcome, and thereby distribute the dividend of coop-
eration, given by

∑

i∈I J∗

i (x0, t0) −
∑

i∈I JN
i (x0, t0), one can rely on a cooperative game

approach or a bargaining procedure (e.g., Nash or Kalai-Smorodinsky). The staring point
here is the concept of a characteristic function which assigns to each possible coalition of
players K (K ⊆ I) a numerical value v (K) to be interpreted as a measure of its power
(payoff, strength). In a n-player game, one needs to compute 2n − 1 values. The char-
acteristic function satisfies the condition v (∅) = 0, i.e., a void coalition has zero value or
no power at all. For the grand coalition, we have v (I) = J∗ (x0, t0), i.e., the maximal
outcome that the players can achieve when they cooperate. If v(·) satisfies the condition

v(K ∪ L) ≥ v(K) + v(L), ∀K,L ⊆ I, K ∩ L = ∅,

then the characteristic function is superadditive. This means that when two coalitions join
forces, they can achieve at least the same payoff as they act separately. (In minimization
games, the sought-after property is subadditivity, i.e., v(K ∪ L) ≤ v(K) + v(L),∀K,L ⊆
I,K ∩ L = ∅).

To compute the value for coalition K,∀K ⊆ I, one assumes that its members optimize
their joint payoff. The optimal result that the coalition can achieve depends on the
behavior of the left-out players (LOP). Here, a number of options are available. A first
option is the one suggested by von Neumann and Morgenstern (1944) in their breakthrough
book. They assumed that the LOP form an anticoalition whose objective is to minimize the
payoff of coalition S. The reason for supposing such extreme behavior is that computing
v (K) then amounts to solving a zero-sum game between K and I\K (i.e., the complement
of K in I), which is easy and, more importantly, was known at that very early stage in
the development of game theory. A second option is to suppose that the LOP also form a
coalition, and define v (K) as the Nash equilibrium outcome of coalition K in a two-player
noncooperative game between K and I\K. A third possibility is to assume that the left-
out players do not form a coalition, but play individually. The value v (K) is then defined
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as the Nash-equilibrium outcome in the noncooperative game with n−k+1 players, where
k is the number of players in K. In this case, which is commonly used in applications, we
have v ({i}) = JN

i (x0, t0) ,∀i ∈ I, i.e., each player obtains her Nash payoff.

Denote by Y the set of imputations. A vector y = (y1, ..., yn) ∈ Y is an imputation if
it satisfies

yi ≥ v({i}),∀i ∈ I,

n
∑

i=1

yi = v(I).

An imputation is a vector of players’ payoffs. The first condition above refers to individual
rationality. Individual rationality means that a player will not accept an outcome that
is not at least equal to what she could secure by acting alone, as measured by her char-
acteristic function value. Group rationality simply states that the total cooperative gain
when the grand coalition I forms is fully shared. From a negotiation perspective, the set
of imputations can be seen as the set of feasible agreements. This set is seldom a singleton
and therefore one needs other properties to predict the final outcome of the game. This
is precisely the objective pursued by the different solution concepts of cooperative games.
The set of solutions include the kernel, the bargaining set, the stable set, the core, the
Shapley value and the nucleolus (see, e.g., Osborne and Rubinstein (1994) or Ordeshook
(1986) for an introduction to these concepts). A solution is a sharing mechanism based on
a series of desirable properties (often stated as axioms), such as fairness or stability. The
two widely used solutions in practice are the Shapley value and the core. The Shapley
value selects a single imputation, a n-vector denoted φ (v) = (φ1 (v) , . . . , φn (v)), satisfying
three axioms: fairness (similar players are treated equally), efficiency (

∑n
i=1

φi (v) = v(I))
and linearity (a rather technical axiom needed to obtain uniqueness). The Shapley value
is defined by

φi (v) =
∑

K∋i

(n − k)! (k − 1)!

n!
(v(K) − v (K\ {i})) , ∀i ∈ I.

The term v(K)−v (K\ {i}) corresponds to the marginal contribution of player i to coalition
K. Thus, the Shapley value allocates to each player the weighted sum of her contribution.

The core is the set of undominated imputations. This confers stability onto the core:
there is no coalition that can claim to offer a better deal to its members. A drawback is
that the core can be empty or contain a large number of imputations. In the former case,
the players must adopt another solution concept to share the dividend of their cooperation,
and in the latter, they will still need to negotiate to choose one specific imputation to be
implemented. For an imputation to be in the core, it must satisfy

∑

i∈K

yi ≥ v(K),∀K ⊆ I.
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This condition is a generalization of the concept of individual rationality to coalitional
rationality.

Remark 6 The Shapley value may not lie in the core of the cooperative game, even when
the core is nonempty. However, if the game is convex, that is,

v(K ∪ L) + v (K ∩ L) ≥ v(K) + v(L), ∀k, L ⊆ I,

then the core is nonempty and the Shapley value corresponds to its center of gravity.

To summarize, using a cooperative game approach yields individual payoffs for the whole
interval [t0, T ]. In terms of individual rationality, whatever the selected imputation, it
has, by definition, the property that each player’s payoff in the cooperative game played on
[t0, T ] is higher or equal to what she would get in a noncooperative game played on the same
time interval. This property can be termed as overall individual rationality (OIR).
For each player, it constitutes a necessary global condition, or a minimal requirement, for
her to adhere to the cooperative agreement. Dutta (1995) refers to this condition as
individual rationality in an ex ante sense.

An alternative way of looking at a payoff-sharing problem is to consider it as a bar-
gaining situation with two or more parties making claims until they reach a solution that
is acceptable to all. Skipping the negotiation process itself, Nash (1953) proposed an
axiomatic approach to solve a two-player bargaining problem. To introduce the Nash
Bargaining Solution (NBS) in a simple way, denote by Z the set of feasible solutions, and
by z1 and z2 the utilities of player 1 and 2, respectively. Nash proved that the unique
solution satisfying the six axioms defined below is

max g (z1, z2) = (z1 − z̃1) (z2 − z̃2) ,

subject to : z1 + z2 = c,

where (z̃1, z̃2) is the status quo point, that is, the utilities that the players obtain if they
walk away from the negotiation table, and c a constant corresponding to the maximal
joint payoff. Denote by (z∗1 , z∗2) the unique solution to the above optimization problem.
The axioms state that the solution must be (1) feasible, (z∗1 , z∗2) ∈ T ; (2) individually
rational z∗1 ≥ z̃1 and z∗2 ≥ z̃2; (3) Pareto-optimal; (4) invariant with respect to linear
transformations; (5) fair, z∗1 − z̃1 = z∗2 − z̃2; (6) independent of irrelevant alternatives.

In the notation used here, the NBS allocates to player i the payoff

Jc
i (x0, t0) = JN

i (x0, t0) +
1

2

2
∑

i=1

(

J∗

i (x0, t0) − JN
i (x0, t0)

)

. (8)

In words, NBS allocates to each player her noncooperative outcome (status quo) plus half
of the surplus or dividend of cooperation, given as previously by the optimal joint payoff
minus the sum of the noncooperative payoff. This sharing rule is often referred to as
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the egalitarian principle (see, e.g., Moulin (1980)). The following remarks are in order
here. First, the status quo point

(

JN
1 (t0, x0), J

N
2 (t0, x0)

)

need not necessarily be the Nash
outcome. It could be given by another point representing the payoffs that the players
can secure if negotiation breaks down. Second, the formula in (8) assumes that the two
players have equal bargaining power. This is a specific instance of the NBS, which also
deals with the general case of unequal weights. Finally, the NBS can be generalized to
n > 2 players.

Remark 7 The optimization of the sum of payoffs of all players yields the individual
payoffs J∗

i (x0, t0), i ∈ I. These rewards are the ones obtained before any side payment has
taken place. However, the payoff Jc

i (x0, t0), i ∈ I defined in (8) corresponds to the after-
side-payment payoff of player i. Similarly, the Shapley-value component φi (v) of player i

is also the after-side-payment payoff of player i. Put differently, the J∗

i (x0, t0), i ∈ I do not
embed the properties of the solution of a cooperative game, but the payoffs Jc

i (x0, t0), i ∈ I

do.

5 Time Consistency

The overall individual rationality criteria does not guarantee that the players will stick
to cooperation as time goes by. In a two-player differential game setting, Haurie (1976)
showed that an agreement that is individually rational at initial instant of time t0 may
fail to remain in place till T . He distinguished between two possible reasons for such a
breakdown:

1. If the players agree to renegotiate the original agreement at time τ ∈ [t0, T ], it is not
sure that they will wish to continue with that agreement. In fact, they will not go
on with the original agreement if it is not a solution of the cooperative game that
starts out at time τ .

2. Suppose that a player is considering deviating from the agreement, that is, as of
time τ ∈ [t0, T ] she will use a strategy different from the cooperative one. Actually,
a player should deviate if this gives her a payoff in the continuation game that is
greater than the one she stands to receive through continued cooperative play.

Given these possible instabilities, the natural question is whether or not something can
be done about them. Before dealing with this, some definitions and notation are needed.

Recall that the total before-side-payment payoff that player i collects assuming that
cooperation is in place during the whole planning horizon, is given by J∗

i (x0, t0) . Depending
on the cooperative-game solution that the players agree to adopt, each one of them will
end up with an imputation element that corresponds to an after-side-payment outcome.
Denote by Jc

i (x0, t0), player i’s imputation. By definition of an imputation, we have
Jc

i (x0, t0) ≥ v ({i}), and
∑

i∈I Jc
i (x0, t0) = J∗(x0, t0) = v (I) . To define time consistency,

denote by J∗

i (x∗ (τ) , τ) the cooperative payoff-to-go before side payment for player i, at
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position (x∗(τ), τ) , τ ∈ [t0, T ] of the game. This quantity is easily obtained from (4) by a
restriction of the time interval to [τ, T ]. Note that the implicit, but important, assumption
here is that cooperation has prevailed from the beginning of the game at t0 untill τ . Denote
by Jc

i (x∗ (τ) , τ) the cooperative payoff-to-go after side payment for player i, at position
(x∗(τ), τ) , τ ∈ [t0, T ] of the game. This is the amount that player i will actually pocket.
The difference between Jc

i (x (τ) , τ) and J∗

i (x (τ) , τ) can assume any sign, depending on
whether the player is receiving or paying a certain amount.

Let Jnc
i (x∗ (τ) , τ) be the noncooperative payoff-to-go at the same position (x∗(τ), τ) ,

τ ∈ [t0, T ]. It is important to realize here that (i) this payoff is computed along the
optimal collective trajectory x∗ (τ) and (ii) it does not coincide with the equilibrium payoff
computed earlier. Indeed, the restriction of (6) to the time interval [τ, T ] would give to
player i the following outcome:

Ji

(

xN (τ), τ
)

=

∫ T

τ

gi

(

xN (t), uN (t) , t
)

dt + Si

(

xN (T ), T
)

.

Unless the Nash equilibrium is efficient (Pareto-optimal), there is no reason to believe
that xN (τ) and x∗(τ) are the same. Hence, determining Jnc

i (x∗ (τ) , τ) requires solving a
noncooperative differential game on [τ, T ] with an initial state value given by x∗ (τ) . With
these ingredients, one can now define formally the concept of time consistency.

Definition 2 A cooperative solution is time consistent at (x0, t0) if, at any position
(x∗(τ), τ), and for all τ ∈ [t0, T ], it holds that

Jc
i (x∗(τ), τ) ≥ Jnc

i (x∗(τ), τ) , i ∈ I, (9)

where x∗ ∈ X denotes the cooperative state trajectory.

Remark 8 The concept of time consistency and its implementation in cooperative differ-
ential games was initially proposed in Petrosjan (1977) and Petrosjan and Danilov (1979,
1982, 1986). In these publications in Russian, as well as in the subsequent books in En-
glish (Petrosjan (1993), Petrosjan and Zenkevich (1996)), and in Petrosjan (1997), time
consistency was termed dynamic stability.

A stronger condition for dynamic individual rationality is that the cooperative payoff-
to-go dominates (at least weakly) the noncooperative payoff-to-go, at any position of the
game. This amounts to relaxing the assumption that the players have been following the
cooperative state trajectory untill the comparison point, as is the case in time consistency.
This is the agreeability concept developed by Kaitala and Pohjola (1990).

Definition 3 A cooperative solution is agreeable at (x0, t0) if at any feasible position
(x(τ), τ) , and for all τ ∈ [t0, T ] , the following inequality holds:

Jc
i (x(τ), τ) ≥ Jnc

i (x(τ), τ) , i ∈ N.
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There is a clear link between the overall individual rationality (OIR) condition and
those of time consistency and agreeability. Indeed, OIR requires that the cooperative
payoff-to-go dominate its noncooperative counterpart at position (x0, t0), i.e., OIR is a
static concept. Time consistency and agreeability generalize OIR by imposing that the
cooperative payoff-to-go dominance holds at any intermediate position of the game. Hence,
one may refer to time consistency and agreeability as subgame individual rationality

(SIR) conditions, i.e., at a game starting at an intermediate instant of time τ ∈ [t0, T ] with
the appropriate initial condition for the state, i.e., x (τ) = x∗ (τ) for time consistency and
an arbitrary feasible x (τ) for agreeability.

An alternative approach to the sustainability of cooperation is to look at instantaneous
outcomes. Recalling that gi (x(t), u (t) , t ) denotes the instantaneous gain of player i at
instant of time t ∈ [t0, T ], one may impose one of the following instantaneous individual

rationality (IIR) conditions,

gi (x
∗(t), u∗ (t) , t ) ≥ gi (x

∗(t), u (t) , t ) , ∀u (t) ∈ Ui, ∀t ∈ [t0, T ] , (10)

gi (x(t), u∗ (t) , t ) ≥ gi (x(t), u (t) , t ) , ∀u (t) ∈ Ui, ∀t ∈ [t0, T ] . (11)

The inequality in (10) states that if player i implements her cooperative control at position
(x∗(t), t ), then she would collect a higher instantaneous payoff than if she implemented
any other feasible control. The inequality in (11) states a similar condition, but at any
feasible position (x(t), t ). These conditions can be termed instantaneous time-consistency
and instantaneous agreeability, respectively. Clearly, each IIR implies its corresponding
SIR. Therefore, requiring an IIR condition to guarantee sustainability may appear, at a
first glance, an appealing strategy. However, it may be impossible in practice to guar-
antee IIR, especially when decisions have carry-over effects as is generally the case in a
differential game. As a possible scenario, consider two firms that want to merge their
delivery operations. Suppose that the cooperative solution dictates that they should build
a costly new depot at t0. If in the benchmark noncooperative game such an investment
is not necessary, then neither one of the two players is better off at t0 under a cooperative
regime. The implication is that imposing IIR may simply lead the players to drop the
idea of coordinating their operations even if this option is profitable in the long term, both
collectively and individually. This anecdotal example largely explains why the literature
does not retain IIR as a workable concept and focuses on SIR.

6 Designing Transfer Schemes for Time Consistency

Solving a cooperative differential game and sustaining the agreement over time can be seen
as a four-step algorithm:

Step 1 Compute the characteristic function values of the cooperative game for the whole
agreement period [t0, T ];

Step 2 Choose a solution concept and select one particular imputation to allocate to the
players their shares in the total cooperative payoff;
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Step 3 Compute the benchmark payoff entering in the definition of time consistency, i.e.,
Jnc

i (x∗(τ), τ) , ∀i ∈ I,∀τ ∈ (t0, T ];

Step 4 Decompose over time the total individual cooperative payoffs, i.e., Jc
i (x0, t0) , ∀i ∈

I, subject to the satisfaction of the condition of time consistency.

The first two steps can be replaced by choosing a bargaining approach and its corre-
sponding solution, e.g., a Nash bargaining solution.

6.1 Payoff Distribution Procedure

To implement Step 4 of the above algorithm, one determines a vector of time functions
β (t) = (β1 (t) , . . . , βI (t)) such that the following two conditions hold:

∫ T

t0

βi (t) dt = Jc
i (x(t0), t0) , i ∈ I, t ∈ [t0, T ] , (12)

∫ T

τ

βi (z) dz ≥ Jnc
i (x∗(τ), τ) , i ∈ I, z ∈ [t0, T ] . (13)

The first equality is a feasibility condition. Indeed, it states that the sum of payments
to player i over the agreement period [t0, T ] must correspond to her share in the total
cooperative outcome as determined in Step 2 of the algorithm. Petrosjan (1997) calls the
vector β (t) = (β1 (t) , . . . , βI (t)) a payoff distribution procedure (PDP). The inequality in
(13) tells us that the payments that player i should receive over [τ, T ] under cooperation
must be greater than or equal to what she can get by switching to noncooperation at
τ,∀τ ∈ [t0, T ], with the state value given by x∗(τ). (The assumption here is that if a
player deviates and switches to her noncooperative strategy, she must continue to do so for
the rest of the game.) Note that this is precisely the time-consistency condition, stated in
terms of the time function βi (t), and that the left-hand side of (13) is player i’s payoff-to-go
at time τ . A PDP satisfying (13) is called a time-consistent PDP.

Two remarks are in order regarding the definition of a PDP. First, there is an infinite
number of time functions that qualify as a PDP. This has the advantage of leaving room for
adding other properties that one may wish to satisfy in the context of the problem at hand.
One interpretation of the first remark is that the payment βi (t) may not be directly related
to the instantaneous revenues and costs of player i at time t. Put differently, a PDP may
have neither a particular relationship with the data of the problem beyond the fact that it
does the job of ensuring the sustainability of the agreement, nor any particular economic
interpretation. A natural question is then: could the time-functions βi (t) , i ∈ I be related
to cooperative game solutions or bargaining outcomes? This is actually possible as seen
in the following two examples. Second, the values of βi (t) , t ∈ [t0, T ] are not constrained
to be nonnegative. This means that one cannot exclude a priori that some players may
have to pay at some instants of time, instead of receiving money. This may be a less
realistic in some applications. Petrosjan (1997) suggests some “regularization” procedures
to alleviate the problem.
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6.1.1 Decomposition Over Time of Shapley Value

Petrosjan and Zaccour (2003) have analyzed an infinite-horizon differential game of pollu-
tion control where each player (country) minimizes the cost of emissions reduction. Recall
that the position of the game is defined by the pair (x (t) , t), where x (t) is the state value at
t. In this particular application, x (t) represents the pollution stock. Denote by Γ(x (t) , t)
the subgame starting at date t with a stock of pollution x (t). Denote by x∗(t) the optimal
trajectory of the pollution stock under full cooperation, that is, when the grand coalition
forms and minimizes the sum of all players’ joint costs. Let Γ(x∗(t), t) denote a subgame
that starts along the cooperative trajectory of the state. The characteristic function value
for a coalition S ⊆ I in subgame Γ(x∗ (t) , t) is defined to be its minimal cost and is denoted
v(S, x∗ (t) , t). With this notation, the total cooperative cost to be allocated among the
players is then v(I, x0, t0), that is, the minimal cost for the grand coalition I, as given by its
characteristic function value in the game Γ(x0, t0). Let φ(v, x (t) , t) = (φ1(v, x (t) , t), ...,
φn(v, x (t) , t)) denote the Shapley value in subgame Γ(x (t) , t). In this setting of cost min-
imization, βi(t) denotes the cost to be allocated to player i at instant of time t. Denote
by r the common discount rate of all players.

Definition 4 The vector β(t) = (β1(t), · · · , βn(t)) is an Imputation Distribution Procedure
(IDP) if

φi(v, x0, t0) =

∫

∞

t0

e−rtβi(t)dt, i = 1, ..., n. (14)

Note that here the authors use the term imputation instead of payoff, to stress the
relationship with the cooperative solution. The interpretation of the above definition is
obvious: a time-function βi(t) qualifies as an IDP if it decomposes over time the total cost
of player i as given by her Shapley-value component for the whole game Γ(x0, t0), i.e., the
sum of discounted instantaneous costs is equal to φi(v, x0, t0).

Definition 5 The vector β(t) = (β1(t), · · · , βn(t)) is a time-consistent IDP if at (x∗(τ), τ),
∀τ ∈ [t0,∞), the following condition holds,

φi(v, x0, t0) =

∫ τ

t0

e−rtβi(t)dt + e−rτφi(v, x∗ (τ) , τ). (15)

To interpret condition (15), assume that the players wish to renegotiate the initial
agreement reached in the game Γ(x0, t0) at (any) intermediate instant of time τ . At this
moment, the state of the system is (x∗(τ), τ), meaning that cooperation has prevailed from
the initial time untill τ, and that each player i would have been allocated a stream of mon-
etary amounts given by the first right-hand-side term. Now, if the subgame Γ(x∗(τ), τ),
starting with initial condition x(τ) = x∗(τ), is played cooperatively, then player i will get
her Shapley-value component in this game given by the second right-hand-side term of
(15). If what she has been allocated until τ and what she will be allocated from this date
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onward add up to her cost in the original agreement, i.e., her Shapley value φi(v, x0, t0),
then a renegotiation would leave the original agreement unaltered. If one can find an IDP
β(t) = (β1(t), · · · , βn(t)) such that (15) holds true, then this IDP is time consistent. To
obtain the value βi(t), t ∈ [t0,∞), it suffices to differentiate (15), that is

βi(t) = rφi(v, x∗ (τ) , τ) −
d

dt
φi(v, x∗ (τ) , τ). (16)

This formula has an interesting economic interpretation. It allocates at instant of time t,

to player i, a cost corresponding to the interest payment (interest rate time her cost-to-go
under cooperation given by her Shapley value) minus the variation over time of this cost-
to-go. This example shows that it is possible to choose a meaningful payoff-distribution
procedure (or imputation-distribution procedure).

Remark 9 The decomposition of the Shapley value in (16) is independent of the context
considered in Petrosjan and Zaccour (2003), and therefore, the result is general.

6.1.2 Decomposition of NBS Outcomes

Suppose that two players agree to cooperate over [t0, T ] and that there is no salvage value,
i.e., Si (x (T ) , T ) = 0. Suppose further that the players adopt the Nash bargaining solution
to share the joint Pareto-optimal payoff. Recall that, for the whole game, player i’s share
is given by

Jc
i (x0, t0) = JN

i (x0, t0) +
1

2

[

J∗(x0, t0) − JN (x0, t0)
]

,

where JN (x0, t0) =
∑

2

i=1
JN

i (x0, t0). Following the same philosophy as above, one defines

Jc
i (x0, t0) =

∫ τ

t0

βi(t)dt + Jc
i (x∗ (τ) , τ) , (17)

where the last term corresponds to player i’s payoff-to-go under a continuation of NBS
given by

Jc
i (x∗ (τ) , τ) = JN

i (x∗ (τ) , τ) +
1

2

[

J∗ (x∗ (τ) , τ) − JN (x∗ (τ) , τ)
]

.

Differentiating (17) with respect to time leads to

βi(t) = −
d

dt
(Jc

i (x∗ (t) , t))

= −
d

dt

(

JN
i (x∗ (t) , t) +

1

2

[

J∗ (x∗ (t) , t) − JN (x∗ (t) , t)
]

)

. (18)

To show that the time function defined above is indeed a PDP, one needs to show that the
following equality holds,

∫ T

t0

βi(t)dt = Jc
i (x0, t0).
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Integrating (18) yields

∫ T

t0

βi(t)dt = −

[

JN
i (x∗ (τ) , τ) +

1

2

[

J∗ (x∗ (τ) , τ) − JN (x∗ (τ) , τ)
]

]T

t0

= −JN
i (x∗ (T ) , T ) + JN

i (x∗x0, t0) −
1

2
J∗ (x∗ (T ) , T )

+
1

2
J∗ (x∗x0, t0) +

1

2
JN (x∗ (T ) , T ) −

1

2
JN (x∗x0, t0) .

Noting that all terms at (x∗ (T ) , T ) are equal to zero, the above equation becomes
∫ T

t0

βi(t)dt = JN
i (x0, t0) +

1

2

(

J∗ (x0, t0) − JN (x0, t0)
)

= Jc
i (x0, t0).

¿From (18), the interpretation of βi(t) is straightforward. Indeed, it corresponds to the
negative of the variation of the NBS payoff-to-go along the Pareto-optimal state trajec-
tory. If the value function is decreasing over time (which is intuitive in deterministic
maximization problems), then βi(t) is non-negative.

Remark 10 It is easy to verify that in the presence of a salvage value, one needs to make
the following correction,

∫ T

t0

βi(t)dt + Si (x
∗ (T ) , T ) = Jc

i (x0, t0).

In an infinite-horizon game, one introduces discounting and follows the same reasoning as
in the Shapley-value example to get the appropriate formula.

6.2 Other Schemes

Gao et al. (1989) analyze a two-player differential game where the players maximize their
joint payoff over a finite horizon [t0, T ], assuming zero-salvage values, Si (x (T ) , T ) = 0.
The optimal value is given by

J∗ (x0, t0) =
2

∑

i=1

J∗

i (x0, t0) ,

where J∗

i (x0, t0) is the before-side payment of player i. The authors suggest allocating at
τ ∈ [t0, T ] to player i the following cooperative payoff-to-go:

Jc
i (x∗ (τ) , τ) =

JN
i (x∗ (τ) , τ)

∑

2

i=1
JN

i (x∗ (τ) , τ)

2
∑

i=1

J∗

i (x∗ (τ) , τ) , (19)

in which JN
i (x∗ (τ) , τ) is the Nash outcome of player i in the subgame Γ (x∗ (τ) , τ). The

following remarks are in order concerning this scheme:
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1. The allocated amounts satisfy

2
∑

i=1

Jc
i (x∗ (τ) , τ) =

2
∑

i=1

J∗

i (x∗ (τ) , τ) , ∀τ ∈ [t0, T ] ,

Jc
i (x∗ (τ) , τ) ≥ JN

i (x∗ (τ) , τ) , ∀τ ∈ [t0, T ] ,

which shows feasibility and time consistency.

2. The fraction of the total efficient payoff allocated to player i varies over time and is
determined as the player’s “market share” of the total disagreement payoff-to-go.

3. Given that player i obtains J∗

i (x∗ (τ) , τ) in the joint optimal solution, side payments
will generally be necessary to reach Jc

i (x∗ (τ) , τ).

It is interesting to note that the above scheme can be easily generalized to more than
two-player settings and to infinite-horizon problems.

Haurie and Zaccour (1986) introduce the concept of dynamic side payment to allocate
the dividend of cooperation over time. The setup is a two-player differential game where
the players agree to optimize their joint payoff, and to use the Nash bargaining solution to
share the total efficient payoff. In the absence of cooperation, player i implements at t the
noncooperative control unc

i (t), which results in the state value xnc(t) and instantaneous
payoff gi (x

nc(t), unc(t), t) . In the authors’ setting, the players are electric utilities and their
payoffs are independent in the noncooperative game. Hence, in the latter, the authors
solve a pair of optimal control problems, not a game. The need for a dynamic side payment
stems from the fact that whereas the total dividend of cooperation J∗ (x0, t0)−Jnc (x0, t0)
is nonnegative, this does not necessarily hold true at each instant of time. Indeed, there
is no reason a priori to believe that the quantity

2
∑

i=1

[gi (x
∗(t), u∗(t), t) − gi (x

nc(t), unc(t), t)]

is positive for all t ∈ [t0, T ]. The authors define an extended instantaneous dividend (EID),
and show, under some concavity conditions, that this quantity is nonnegative at any instant
of time. More precisely, let λ∗(t) ∈ R

p denote the costate vector associated with the
solution of the joint-optimal-control problem (3), subject to the state dynamics (1). The
reader who is not familiar with the concept of costate variables in optimal control theory
may wish to consult a textbook, e.g., Kamien and Schwartz (1991), Sethi and Thompson
(2000), Léonard and Long (1992). A costate (or adjoint) variable is the shadow price of
the corresponding state variable. Denote by Gi (x(t), u(t), t) the instantaneous extended
payoff of player i:

Gi (x(t), u(t), t) = gi (x(t), u(t), t) +
d

dt
(λ∗(t)x(t)) ,
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that is, the current payoff plus the variation in the state, valued at the optimal shadow price.
The extended instantaneous dividend is the difference between the extended instantaneous
efficient and noncooperative payoffs, i.e.,

2
∑

i=1

[Gi (x∗(t), u∗(t), t) − Gi (x
nc(t), unc(t), t)]

=

2
∑

i=1

[gi (x∗(t), u∗(t), t) − gi (xnc(t), unc(t), t)]

+
d

dt
(λ∗(t) [x∗(t) − xnc (t)]) ,

which happens to be nonnegative for concave control problems. Thus at each instant of
time, the players have a positive dividend to share. The dynamic side payment is given
by

sp(t) =
1

2

d

dt
{λ∗(t) [x∗(t) − xnc(t)]} +

1

2
[g1 (xnc(t), unc(t), t)

−g1 (x∗(t), u∗(t), t) + g2 (x∗(t), u∗(t), t) − g2 (xnc(t), unc(t), t)]. (20)

The above rule is based on two principles. First, the instantaneous cooperative surplus
is divided according to the egalitarian principle. This induces a side-payment rule at any
instant of time. Second, this payment is modified by adding the rate of change of the
imputed value of the (instantaneous) deviation between the cooperative and the noncoop-
erative states. The imputed value is calculated along the cooperative path. In this setting,
the conditions for time consistency can be written as follows:

∫ T

τ

(g1 (x∗(t), u∗(t), t) − sp (t)) dt ≥ Jnc
1 (x∗ (τ) , τ) ,∀τ ∈ [t0, T ] ,

∫ T

τ

(g2 (x∗(t), u∗(t), t) + sp (t)) dt ≥ Jnc
2 (x∗ (τ) , τ) ,∀τ ∈ [t0, T ] .

These conditions may not necessarily be satisfied from the outset. The interest of the
approach followed here is that it links time consistency with some important ingredients
of a dynamic bargaining problem, namely, current payoffs, instantaneous dividend of co-
operation, and side payments.

7 Concluding Remarks

The following sections comment on (i) the literature on time consistency in differential
games; (ii) the concept of time consistency in noncooperative games; and (iii) the other
approaches proposed in the literature to sustain cooperation over time.
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7.1 Additional Readings

We provide here some aditional references to the literature that use the mechanisms dealt
with in this tutorial. Haurie and Zaccour (1986, 1991) introduce the notion of dynamic side
payments and applied it in the context of power exchange between interconnected utilities.
Kaitala and Pohjola (1988) determine a transfer payment rule based on the steady state
stock level in an infinite-horizon differential game in fisheries. Kaitala and Pohjola (1995)
and Jørgensen and Zaccour (2001) analyze a pollution differential game where a vulnerable
player is located downstream a polluting player. In both papers, dynamic side payments
are derived to sustain cooperation over time between the two players. Kaitala and Pohjola
(1990) introduce the concept of agreeability in a game of capitalists versus workers. Simply
stated, this is a classical problem of sharing the proceeds of collective effort by different
groups in a firm. Yeung and Petrosjan (2001) provide a proportional time-consistent
solution for cooperative differential games.

¿From the definitions of time consistency and agreeability, it is clear that the latter
implies the former. In the class of linear-state differential games (LSDG), Jørgensen et al.
(2003) show that, if the cooperative solution is time consistent, then it is also agreeable.
The class of LSDG has the specific feature that the instantaneous payoff, salvage-value
function of player i, i ∈ I, and the state dynamics are linear in the state x(t). Further,
Jørgensen et al. (2005) show that there is also equivalence between time consistency and
agreeability in the class of homogenous linear-quadratic differential games (HLQDG). Such
games have the following two characteristics: (i) The instantaneous-payoff function gi(·)
and the salvage-value function Si(·) are quadratic with no linear terms in the state and
control variables for i ∈ I; (ii) the function f (·) that describes the state evolution is linear
in the state and control variables.

This paper has focused on deterministic differential cooperative games. There is a de-
veloping literature using stochastic models. Yeung and Petrosjan (2004, 2005) and Yeung
et al. (2007) deal with the consistency of cooperative solutions in stochastic differential
games with, and without, transferable payoffs. Yeung and Petrosjan (2006) establish con-
ditions to obtain dynamically stable joint ventures between firms in both deterministic and
stochastic settings. The theory and some applications of cooperative stochastic differential
games are developed in the book by Yeung and Petrosjan (2005).

7.2 Time Consistency in Noncooperative Games

The previous section dealt with time consistency in the context of a cooperative game. The
concept originates in optimal control and noncooperative differential games. In optimal
control applications it was particularly explored in the context of macroeconomic planning
(Kydland and Prescott (1977), Miller and Salmon (1985)). Time consistency here means
that, if a public decision-maker reconsiders her originally decided policy at time τ , when
the economic system has reached state x∗(τ) on its optimal trajectory, she will find no
reason to replace the continuation of the original policy with any other policy.
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In a noncooperative differential game, the idea of time consistency is the same. In
such a game we have an equilibrium strategy profile and its associated state trajectory. If
the players reconsider their strategy choices at any intermediate point on the equilibrium
trajectory, the equilibrium profile is time consistent if its restriction to the remaining time
interval (also) provides an equilibrium in the subgame. (Başar and Olsder (1995) use the
term “weakly time consistent”). A stronger notion is subgame, or Markov, perfectness. If
the game is reconsidered at any position, that is, also at all feasible points off the equi-
librium trajectory, an equilibrium profile is perfect if its restriction to the remaining time
interval induces an equilibrium in the subgame starting out at the intermediate position.
(Başar and Olsder (1995) use the term “strongly time consistent”). The requirement here
is that equilibrium strategies should induce optimal behavior not only along the equilib-
rium state trajectory, but also off this trajectory. The following results are well known
(see Dockner et al. (2000)):

1. Subgame perfectness implies time consistency.

2. Every Markovian (and hence every open-loop) Nash equilibrium of a noncooperative
game is time consistent.

3. Feedback Stackelberg equilibrium is time consistent, but open-loop Stackelberg equi-
librium is generally not. In the latter case, we have that (i) the leader is better off
revising the originally announced plan; and (ii) the follower should not believe the
leader’s announcement. Note that in games having some special structures, it hap-
pens that the open-loop Stackelberg equilibrium is time consistent. For an example,
see Mart́ın-Herrán et al. (2005).

7.3 Other Approaches to Sustainability

In the framework of time consistency (including agreeability), the players compare at inter-
mediate instants of time cooperative payoffs-to-go to their non cooperative counterparts.

Another line of research to enforce an efficient outcome is to design agreements which
enjoy the property of being an equilibrium. Since in an equilibrium no player can improve
her payoff by deviating unilaterally from the agreement, the latter is then sustained during
the whole period. There are (rare) cases in which a cooperative outcome “by construction”
is in equilibrium. This occurs if a game has a Nash equilibrium which is also efficient.
However, there are only very few differential games having this property. The fishery game
of Chiarella et al. (1984) is an example. Rincón-Zapatero et al. (2000) state conditions
for Markov perfect equilibria to be Pareto optimal in a special class of differential games.
Mart́ın-Herrán and Rincón-Zapatero (2005) characterize efficient Nash equilibria in fishery
differential games

The idea of constructing a cooperative equilibrium has been heavily studied in repeated
games. One “Folk Theorem” result states that any individually rational payoff vector
can be supported as a Nash equilibrium outcome in an infinitely repeated game if players
are sufficiently far-sighted (Friedman (1986)). The implication here is that cooperative
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outcomes may be supported by noncooperative equilibrium strategies, but it raises the
question if individually rational outcomes exist. In repeated games with complete infor-
mation and perfect monitoring, the answer is yes since the players face the same game at
every stage. In state-space games the situation is different. In a discrete-time setup, a
stochastic game includes a state variable that evolves over time, as a product of the initial
conditions, the players’ actions, and a transition law. The latter may be deterministic,
in which case the game sometimes is called a dynamic game (a difference game). A Folk
Theorem for stochastic games is given in Dutta (1995), but there seem to be no general
theorems for differential games. Particular results exist for situations in which Pareto-
optimal outcomes are supported by trigger strategies (Tolwinski, Haurie and Leitmann
(1986), Haurie and Pohjola (1987), Haurie et al. (1994), Dockner et al. (2000, Ch. 6)).
Such strategies embody (effective) punishments that deprive any player the benefits of a
defection, and the threats of punishments are credible which ensures that it is in the best
interest of the player(s) who did not defect to implement a punishment.

In two-player differential games, another option is to support the cooperative solution
by incentive strategies (see, e.g., Ehtamo and Hämäläinen (1986, 1989, 1993) and Jørgensen
and Zaccour (2002b, 2003), Breton et al. (2007), Mart́ın-Herrán and Zaccour (2005, 2008)).
Informally, incentive strategies are functions which depend on the possible deviation of
the other player relative to the coordinated solution. If this deviation is null, then the
incentive strategy will prescribe to the player to choose the cooperative control. Although
such strategies are relatively easy to construct, one concern is their credibility. By this
we mean that it is in the best interest of each player to implement her incentive strategy,
and not the coordinated solution, if she observes that the other one has deviated from the
coordinated solution.
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