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Montréal (Québec) Canada, H3C 3A7

el-kebir.boukas@polymtl.ca

September 2007

Les Cahiers du GERAD

G–2007–74

Copyright c© 2007 GERAD





Abstract

This paper deals with the class of continuous-time singular linear Markovian jump
systems with totally and partially known transition jump rates. The filtering prob-
lem of this class of systems is tackled. New sufficient conditions for H∞ filtering are
developed. A design procedure for the H∞ filter which guarantees that the dynam-
ics of the filter error will be piecewise regular, impulse-free and stochastically stable
with γ-disturbance rejection is proposed. It is shown that the addressed problem can
be solved if the corresponding developed linear matrix inequalities (LMIs) with some
constraints are feasible. A numerical example is employed to show the usefulness of
the proposed results.

Key Words: Singular systems, descriptor systems, continuous-time linear systems,
linear matrix inequality, stochastic stability, H∞ filtering, disturbance rejection.

Résumé

Cet article traite de la classe des systèmes continus singuliers à sauts markoviens
avec des taux de transitions, totalement ou partiellement, inconnus. Le problème
de filtrage de cette classe de système est étudié. De nouvelles conditions en forme
d’inégalités matricielles linéaires sont développées qui assurent que l’erreur de filtrage
est régulière, sans impulsion et stochastiquement stable et en même temps assure le
rejet de perturbation avec un niveau donné γ > 0. Un exemple numérique pour mon-
trer l’utilité des résultats développés est proposé.

Mots clés : Systèmes singuliers, systèmes linéaires continus, inégalités matricelles
linéaires, stabilité stochastique, filtrage, rejet de perturbations.
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1 Introduction

Singular continuous-time linear systems represent an important class of systems that has
attracted a lot of researchers from mathematics and control communities. Singular systems
are also referred to as descriptor systems, implicit systems, generalized state-space systems,
differential-algebraic systems or semi-state systems [1, 6, 10]. The class of singular systems
is more appropriate to describe the behavior of some practical systems like power systems
[6], electrical systems [1], chemical systems [12]. Many problems for this class of systems
either in the continuous-time and discrete-time have been tackled and interesting results
have been reported in the literature and the references therein. Among these contributions
we quote those of [4, 7, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20, 21] where the reader can found
the interesting results developed on the different tackled problems.

On the other hand the class of Markovian jump systems has been found more appropri-
ate to describe practical systems with random abrupt changes in their structures such as
components failures or repairs, sudden environment disturbance, interconnections chang-
ing and operating in different point of a nonlinear plant. This fact was the cause of the
tremendous interest to the Markovian jump systems. For more details of this class of sys-
tems or on what has been done of the different problems, we refer the reader to [2, 5] and
the references therein.

This paper deals with the class of singular systems with random abrupt changes and
which combines the two previous classes of systems. To the best of the author’s knowledge
this class of systems has not been fully investigated so far and only few references have
been reported in the literature on the subject [1, 4]. We have to mention that this class
of systems may have discontinuities in the states when the mode jumps from one value
to another that we can not avoid for autonomous systems and which makes them more
complicated compared to the singular deterministic systems. For more details on this
phenomena we refer the reader to [1].

The filtering has been applied for many years and continues to be used in many in-
dustrial applications ranging from aerospace to economics including engineering, biology,
geoscience, management, etc. This problem has attracted a lot of researcher from different
communities and interesting results have been reported in the literature. For more details
on the filtering we refer the reader to Boukas and Liu [2, 3] and the references therein for
the filtering of Markovian jump systems and to [1, 17] for the filtering of the class of linear
singular systems. For the class of systems we are considering, the filtering problem has
never been tackled before and this is our concern in this paper. Two cases will be addressed
in the paper. The first one considers that the transition jump rates of the Markov process
that describes the behavior of the system are totally known while the second relaxes this
assumption and considers them as partially known.

The goal of this paper consists of developing results on H∞ filtering for the class of
linear singular systems with random abrupt changes when the transition jump rates are
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totally and partially known. We are mainly interested by the results that are in the LMI
setting that make them more tractable using the tools in the marketplace.

The rest of this paper is organized as follows. In Section 2, the problem is stated and
the goal of the paper is given. In Section 3, the main results are developed and they include
results on the design of a H∞ filter that makes the error piecewise regular, impulse-free
and stochastically stable and at the same time guarantees the disturbance rejection of level
γ > 0. Section provides a numerical example to show the usefulness of the proposed results
either in completely and partially known transition jump rates.
Notation: Throughout this paper, R

n and R
n×m denote, respectively, the n dimensional

Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix
transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric
matrices, means that X − Y is positive semi-definite (respectively, positive definite). I is
the identity matrices with compatible dimensions. L2 is the space of integral vector over
[0,∞). ‖ · ‖ will refer to the Euclidean vector norm whereas ‖ · ‖ denotes the L2-norm over
[0,∞) defined as ‖f‖2 =

∫ ∞

0 fT (t)f(t) dt.

2 Problem statement

Let us assume that the system behavior be described by the following differential-algebraic
equations:











E(rt)ẋ(t) = A(rt)x(t) + B(rt)w(t), x(0) = x0,

y(t) = Cy(rt)x(t) + Dy(rt)w(t),

z(t) = Cz(rt)x(t) + Dz(rt)w(t),

(1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

k is the measurement, and z(t) ∈ R
p

is the signal to be estimated, w(t) ∈ R
m is the disturbance input which is assumed

belong to L2[0,∞), A(i), B(i), Cy(i), Cz(i), Dy(i) and Dz(i) are known real matri-
ces with appropriate dimensions, the matrix E(i) may be singular, and we assume that
rank(E(i)) = nE ≤ n.

The Markov process {rt, t ≥ 0} beside taking values in the finite set S , represents
the switching between the different modes and its behavior is described by the following
probability transitions:

P [rt+h = j|rt = i]

=

{

λijh + o(h) when rt jumps from i to j

1 + λiih + o(h) otherwise
(2)

where λij is the transition jump rate from mode i to mode j with λij ≥ 0 when i 6= j and

λii = −∑N
j=1,j 6=i λij and o(h) is such that limh→0

o(h)
h

= 0.
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The system disturbance, w(t), is assumed to belong to L2[0,∞) which means that the
following holds:

∫ ∞

0
w⊤(t)w(t)dt < ∞ (3)

This implies that the disturbance has finite energy.

The following definitions will be used in the rest of this paper. For more details on the
singular systems properties, we refer the reader to [6] and the references therein.

Definition 2.1 [6]

i. System (1) with w(t) = 0 for t ≥ 0 is said to be regular if the characteristic polyno-
mial, det(sE(i) − A(i)) is not identically zero.

ii. System (1) with w(t) = 0 for t ≥ 0 is said to be impulse free, i.e. the deg(det(sE(i)−
A(i))) = rank(E(i)).

For more details on other properties and the existence of the solution of system (1), we
refer the reader to [16, 18], and the references therein. In general, the regularity is often a
sufficient condition for the analysis and the synthesis of singular systems.

Definition 2.2 System (1) is said to be stochastically stable (SS) if there exists a constant
M(x0, r0) > 0 such that the following holds for any initial conditions (x0, r0):

E

[
∫ ∞

0
x⊤(t)x(t)|x0, r0

]

≤ M(x0, r0). (4)

The filtering problem consists of computing an estimate, ẑ(t), of the signal, z(t), via
a causal Markovian jump linear filter which provides a uniformly small estimation error,
z(t) − ẑ(t), for all ω satisfying some properties (finite energy or finite power). There exist
in the literature different approaches for designing a filter that estimates the system states.
In this paper we will restrict ourself to the H∞ filtering.

In order to put the H∞ filtering problem of the class of systems (1) we are considering
here in the stochastic setting, let us introduce the space L2 [Ω,F , P] of F-measurable
processes, z(t) − ẑ(t), for which the following holds:

‖z − ẑ‖2
∆
=

{

E

[
∫ ∞

0
[z(t) − ẑ(t)]⊤ [z(t) − ẑ(t)] dt

]}
1

2

< ∞. (5)

The goal of this paper is to design a linear n-order filter of the following form:
{

E(rt) ˙̂x(t) = KA(rt)x̂(t) + KB(rt)y(t), x̂(0) = 0,

ẑ(t) = KC(rt)x̂(t),
(6)
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which gives an estimate of the state vector, x̂(t) at time, t, and can ensure that the extended
system (x(t), x(t) − x̂(t)) is piecewise regular, impulse-free and stochastically stable and
the estimation error, z(t) − ẑ(t), is bounded for all noises ω(t) ∈ L2[0,∞). The matrices
KA(i), KB(i) and KC(i), i ∈ S are design parameters that should be determined in order
to estimate the state vector properly.

If we combine the dynamical system’s state equation (1) with the filter’s state equa-
tion (6), we get the following extended one:

Ẽ(rt) ˙̃x(t) = Ã(rt)x̃(t) + B̃(rt)ω(t), x̃(0) = (x⊤
0 , x⊤

0 )⊤, (7)

where

x̃(t) =

[

x(t)
x(t) − x̂(t)

]

, Ẽ(rt) =

[

E(rt) 0
0 E(rt)

]

,

Ã(rt) =

[

A(rt) 0
A(rt) − KB(rt)Cy(rt) − KA(rt) KA(rt)

]

,

B̃(rt) =

[

B(rt)
B(rt) − KB(rt)Dy(rt)

]

.

The estimation error, e(t) = z(t) − ẑ(t), satisfies the following:

e(t) = C̃(rt)x̃(t) + D̃(rt)ω(t) (8)

with

C̃(rt) =
[

Cz(rt) − KC(rt) KC(rt)
]

,

D̃(t) = Dz(rt).

More often the transition jump rates can not be easily accessible and an alternate to
overcome this case is required. The following assumption will be used in this paper to
develop new results for the case of partially known transition jump rates.

Assumption 2.1 The jump rates are assumed to satisfy the following:

0 < λi ≤ λij ≤ λ̄i,∀i, j ∈ S , j 6= i (9)

where λi and λ̄i are known parameters for each mode or may represent the lower and
upper bounds when all the jump rates are known, i.e.: 0 < λi = minj∈S {λij, i 6= j},
0 < λ̄i = maxj∈S {λij, i 6= j}, with λi ≤ λ̄i.

Remark 2.1 We have to mention that some alternatives have been proposed to handle
such case by considering uncertainties on the jump rates. Our approach is totally different
and requires only lower and upper bounds in each mode to establish the results we propose
in this paper.
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In the rest of the paper we will assume that system (1) is stochastically stable. Notice
that this is not a restriction since if our system not stochastically stable, we can firstly
design a controller that makes it stable.

The goal of this paper is to design an n-order filter of the form (6) for the cases of
completely and partially known transition jump rates that makes the system error piecewise
regular, impulse-free and stochastically stable and guarantees the H∞ performance

‖z(t) − ẑ(t)‖2 ≤ γ
[

‖ω‖2
2 + x⊤

0 Rx0

]
1

2

, (10)

where γ > 0 and R is a symmetric and positive-definite matrix.

3 Main results

Before presenting the procedure to design the filter (6) in the two cases, we recall in the
case of totally known transition jump rates the following result which gives the conditions
that the filter error should satisfy to guarantee to be piecewise regular, impulse-free and
stochastically stable and at the same time assures a desired disturbance rejection level.
For the proof of this lemma we refer the reader to Boukas [1].

Lemma 3.1 (see Boukas [1]) Let KA = (KA(1), · · · ,KA(N)), KA(i) ∈ R
n×n, KB =

(KB(1), · · · , KB(N)), KB(i) ∈ R
n×k, and KC = (KC(1), · · · ,KC(N))), KC(i) ∈ R

p×n,
be given sets of gains. Let γ be given positive constant and R is a given symmetric and
positive-definite matrix representing the weighting of the initial conditions. If there exists
a set of nonsingular matrices P = (P (1), · · · , P (N)), P (i) ∈ R

n×n, such that the following
set of the coupled LMIs holds:





J̃1(i) P⊤(i)B̃(i) C̃⊤(i)

B̃⊤(i)P (i) −γ2
I D̃⊤(i)

C̃(i) D̃(i) −I



 < 0, (11)

[

I I
]

Ẽ⊤(r0)P (r0)

[

I

I

]

≤ γ2R, (12)

where J̃1(i) = Ã⊤(i)P (i)+P⊤(i)Ã(i)+
∑N

j=1 λijE
⊤(j)P (j), with the following constraints:

E⊤(i)P (i) = P⊤(i)E(i) ≥ 0 (13)

then the extended system is piecewise regular, impulse-free and stochastically stable and,
moreover the estimation error satisfies the following:

‖z(t) − ẑ(t)‖2 ≤ γ
[

‖ω‖2
2 + x⊤

0 Rx0

]
1

2

. (14)
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For a given set of gains of the filter, we can compute the minimum disturbance rejection
by solving the following convex optimization problem:

P:



































































min v>0,
P=(P (1),··· ,P (N))

v

s.t:

E⊤(i)P (i) = P⊤(i)E(i) ≥ 0,






J̃1(i) P⊤(i)B̃(i) C̃⊤(i)

B̃⊤(i)P (i) −vI D̃⊤(i)

C̃(i) D̃(i) −I






< 0,

[

I I

]

Ẽ⊤(r0)P (r0)

[

I

I

]

≤ vR,

where v = γ2.

But since we don’t have yet developed a way to compute the filter gains, this opti-
mization problem is useless. The design of the filter’s gains should be included in an
optimization problem similar to this one that can help us to determine simultaneously the
filter’s gains and the minimum disturbance rejection.

Notice that the condition (11) is nonlinear in P (i) and the design filter parameters. To
cast the design of the H∞ filter in the LMI framework, let us transform this condition in
order to compute the gains KA(i), KB(i) and KC(i).

Let us first of all compute J̃1(i), P⊤(i)B̃(i), C̃⊤(i), and D̃⊤(i) in function of A(i), B(i),
Cy(i), Dy(i), Cz(i) and Dz(i). Using the expression of Ã(i), B̃(i), C̃(i) and D̃(i), and
assuming that P (i) = diag[X1(i),X2(i)] we get:

J̃1(i) = Ã⊤(i)P (i) + P⊤(i)Ã(i) +

N
∑

j=1

λijE
⊤(j)P (j)

=

















J̃X1
(i)





A⊤(i)X2(i)
−C⊤

y (i)K⊤
B (i)X2(i)

−K⊤
A (i)X2(i)









X⊤
2 (i)A(i)

−X⊤
2 (i)KB(i)Cy(i)
−X⊤

2 (i)KA(i)



 J̃X2
(i)

















,

P̃⊤(i)B̃(i) =

[

X⊤
1 (i) 0
0 X⊤

2 (i)

] [

B(i)
B(i) − KB(i)Dy(i)

]

=

[

X⊤
1 (i)B(i)

X⊤
2 (i)B(i) − X⊤

2 (i)KB(i)Dy(i)

]

,
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C̃(i) =
[

Cz(i) − KC(i) KC(i)
]

,

D̃(i) = Dz(i),

with

J̃X1
(i) = A⊤(i)X1(i) + X⊤

1 (i)A(i) +

N
∑

j=1

λijE
⊤(j)X1(j),

J̃X2
(i) = K⊤

A (i)X2(i) + X⊤
2 (i)KA(i) +

N
∑

j=1

λijE
⊤(j)X2(j).

Using these relations, (11) becomes:





























J̃X1
(i)





A⊤(i)X2(i)
−C⊤

y (i)K⊤
B (i)X2(i)

−K⊤
A (i)X2(i)









X⊤
2 (i)A(i)

−X⊤
2 (i)KB(i)Cy(i)
−X⊤

2 (i)KA(i)



 J̃X2
(i)

B⊤(i)X1(i)

[

B⊤(i)X2(i)
−D⊤

y (i)K⊤
B (i)X2(i)

]

Cz(i) − KC(i) KC(i)

X⊤
1 (i)B(i) C⊤

z (i) − K⊤
C (i)

[

X⊤
2 (i)B(i)

−X⊤
2 (i)KB(i)Dy(i)

]

K⊤
C (i)

−γ2
I D⊤

z (i)
Dz(i) −I













< 0.

Letting Y (i) = X⊤
2 (i)KA(i), Z(i) = X⊤

2 (i)KB(i), and W (i) = KC(i), we get:





























J̃X1
(i)





A⊤(i)X2(i)
−C⊤

y (i)Z⊤(i)

−Y ⊤(i)









X⊤
2 (i)A(i)

−Z(i)Cy(i)
−Y (i)



 JX2
(i)

B⊤(i)X1(i)

[

B⊤(i)X2(i)
−D⊤

y (i)Z⊤(i)

]

Cz(i) − W (i) W (i)
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X⊤
1 (i)B(i)

[

C⊤
z (i)

−W⊤(i)

]

[

X⊤
2 (i)B(i)

−Z(i)Dy(i)

]

W⊤(i)

−γ2
I D⊤

z (i)
Dz(i) −I

















< 0, (15)

with

JX2
(i) = Y ⊤(i) + Y (i) +

N
∑

j=1

λijE
⊤(j)X2(j).

Notice also that the condition, Ẽ⊤(i)P (i) = P⊤(i)Ẽ(i) ≥ 0, becomes:

E⊤(i)X1(i) = X⊤
1 (i)E(i) ≥ 0, (16)

E⊤(i)X2(i) = X⊤
2 (i)E(i) ≥ 0. (17)

For the last relation of the theorem, we have:

[

I I
]

[

E⊤(r0) 0
0 E⊤(r0)

] [

X1(r0) 0
0 X2(r0)

] [

I

I

]

= E⊤(r0)X1(r0) + E⊤(r0)X2(r0) < γ2R. (18)

The following theorem gives the results for the design of the gains of the H∞ filter.

Theorem 3.1 Let γ and R be respectively given positive constant and a symmetric and
positive-definite matrix representing the weighting of the initial conditions. If there ex-
ist sets of nonsingular matrices X1 = (X1(1), · · · ,X1(N)), X1(i) ∈ R

n×n and X2 =
(X2(1), · · · ,X2(N)), X2(i) ∈ R

n×n and matrices Y = (Y (1), · · · , Y (N)), Y (i) ∈ R
n×n

Z = (Z(1), · · · , Z(N)), Z(i) ∈ R
n×k and W = (W (1), · · · ,W (N)) W (i) ∈ R

p×n satisfying
the set of coupled LMIs (15) and (18) with the constraints (16)-(17), then there exists a
filter of the form (6) such that the estimation error is piecewise regular, impulse-free and
stochastically stable and bounded by:

‖z − ẑ‖2 ≤ γ
[

‖ω‖2
2 + x⊤

0 Rx0

]
1

2

. (19)

The filter’s gains are given by:











KA(i) = X−⊤
2 (i)Y (i),

KB(i) = X−⊤
2 (i)Z(i),

KC(i) = W (i).

(20)
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If the initial conditions are equal to zero, the previous results becomes easier and are
given by the following corollary.

Corollary 3.1 Let the initial conditions of system (7) be zero. Let γ be given positive
constant. If there exist sets of nonsingular matrices X1 = (X1(1), · · · ,X1(N)), X1(i) ∈
R

n×n and X2 = (X2(1), · · · ,X2(N)), X2(i) ∈ R
n×n and matrices Y = (Y (1), · · · , Y (N)),

Y (i) ∈ R
n×n Z = (Z(1), · · · , Z(N)), Z(i) ∈ R

n×k and W = (W (1), · · · ,W (N)) W (i) ∈
R

p×n satisfying the LMIs (15)-(18) for every i ∈ S , then there exists a filter of the form
(6) such that the estimation error is piecewise regular, impulse-free and stochastically stable
and bounded by:

‖z − ẑ‖2 ≤ γ‖ω‖2.

The filter’s gains are given by (20).

The minimal noise attenuation level, γ, that can be verified by the filter of the form of
(6) can be obtained by solving the following optimization problem:

P0 :



































































min v>0,
X1=(X1(1),··· ,X1(N)),
X2=(X2(1),··· ,X2(N)),

Y =(Y (1),··· ,Y (N)),
Z=(Z(1),··· ,Z(N)),

W=(W (1),··· ,W (N))

v

s.t.

E⊤(i)X1(i) = X⊤
1 (i)E(i) ≥ 0,

E⊤(i)X2(i) = X⊤
2 (i)E(i) ≥ 0,

Θv(i) < 0,

E⊤(r0)X1(r0) + E⊤(r0)X2(r0) < vR,

where Θv(i) is obtained from (15) by replacing γ2 by v. Thus, if the convex optimization
problem P0 has a solution, v, then by using Theorem 3.1, the corresponding error of the
filter (6) is stable with noise attenuation level

√
v.

We can also get other sufficient conditions that can be used to design the filter of the
form (6). Now if there exists a positive scalar ε(i) for i ∈ S , such that the following holds:

E⊤(i)P (i) ≤
[

1

4
ε(i)I + ε−1(i)E⊤(i)P (i)P⊤(i)E(i)

]

.

Notice that this condition is always true.

Proceeding as before and by using this inequality, we get the following theorem that
summarizes the results for the design of the gains of the H∞ filter.
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Theorem 3.2 Let γ and R be respectively given positive constants and a symmetric and
positive-definite matrix representing the weighting of the initial conditions. If there ex-
ist sets of nonsingular matrices X1 = (X1(1), · · · ,X1(N)), X1(i) ∈ R

n×n and X2 =
(X2(1), · · · ,X2(N)), X2(i) ∈ R

n×n and matrices Y = (Y (1), · · · , Y (N)), Y (i) ∈ R
n×n

Z = (Z(1), · · · , Z(N)), Z(i) ∈ R
n×k, W = (W (1), · · · ,W (N)) W (i) ∈ R

p×n and a set of
positive scalars ε = (ε(1), · · · , ε(N)) satisfying the following set of coupled LMIs:







































JX1
(i)





A⊤(i)X2(i)
−C⊤

y (i)Z⊤(i)

−Y ⊤(i)









X⊤
2 (i)A(i)

−Z(i)Cy(i)
−Y (i)



 JX2
(i)

B⊤(i)X1(i)

[

B⊤(i)X2(i)
−D⊤

y (i)Z⊤(i)

]

Cz(i) − W (i) W (i)
Si(X1) 0

0 Si(X2)

X⊤
1 (i)B(i)

[

C⊤
z (i)

−W⊤(i)

]

Si(X1) 0
[

X⊤
2 (i)B(i)

−Z(i)Dy(i)

]

W⊤(i) 0 Si(X2)

−γ2
I D⊤

z (i) 0 0
Dz(i) −I 0 0

0 0 −Xi(ε) 0
0 0 0 −Xi(ε)

























< 0, (21)

E⊤(r0)X1(r0) + E⊤(r0)X2(r0) < γ2R (22)

where

JX1
(i) = A⊤(i)X1(i) + X⊤

1 (i)A(i) + λiiE
⊤(i)X1(i)

+

N
∑

j=1,j 6=i

λij
1

4
ε(j)I,

JX2
(i) = Y ⊤(i) + Y (i) + λiiE

⊤(i)X2(i) +
N

∑

j=1,j 6=i

λij
1

4
ε(j)I,

Si(X1) =
(

√

λi1E
⊤(1)X1(1), · · · ,

√

λii−1E
⊤(i − 1)X1(i − 1),

√

λii+1E
⊤(i + 1)X1(i + 1), · · · ,

√

λiNE⊤(N)X1(N)
)

,
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Si(X2) =
(

√

λi1E
⊤(1)X2(1), · · · ,

√

λii−1E
⊤(i − 1)X2(i − 1),

√

λii+1E
⊤(i + 1)X2(i + 1), · · · ,

√

λiNE⊤(N)X2(N)
)

,

Xi(ε) = diag [ε(1)I, · · · , ε(i − 1)I, ε(i + 1)I, · · · , ε(N)I] ,

with the following constraints:

E⊤(i)X1(i) = X⊤
1 (i)E(i) ≥ 0, (23)

E⊤(i)X2(i) = X⊤
2 (i)E(i) ≥ 0, (24)

then there exists a filter of the form (6) such that the estimation error is piecewise regular,
impulse-free and stochastically stable and bounded by:

‖z − ẑ‖2 ≤ γ
[

‖ω‖2
2 + x⊤

0 Rx0

]
1

2

. (25)

The filter’s gains are given by (20).

Let us now focus on the case of partially known transition jump rates, which is the case of
almost all the practical systems, and develop results that allow us to design the filter of the
form (6). First of all notice that from Theorem 3.1, the term

∑N
j=1 λijE

⊤(j)Xk(j), k = 1, 2
can be rewritten as follows:

N
∑

j=1

λijE
⊤(j)Xk(j) = λiiE

⊤(i)Xk(i) +

N
∑

j=1,j 6=i

λijE
⊤(j)Xk(j)

Based now on the Assumption 2.1, we get:

N
∑

j=1,j 6=i

λijE
⊤(j)Xk(j) ≤ λ̄i

N
∑

j=1,j 6=i

E⊤(j)Xk(j)

λiiE
⊤(i)Xk(i) = −

N
∑

j=1,j 6=i

λijE
⊤(i)Xk(i) ≤ −(N − 1)λiE

⊤(i)Xk(i)

Using these relations and the results of Theorem 3.1, we get the following design pro-
cedure for the filter (6).

Theorem 3.3 Let γ and R be respectively given positive constant and a symmetric and
positive-definite matrix representing the weighting of the initial conditions. If there ex-
ist sets of nonsingular matrices X1 = (X1(1), · · · ,X1(N)), X1(i) ∈ R

n×n and X2 =
(X2(1), · · · ,X2(N)), X2(i) ∈ R

n×n and matrices Y = (Y (1), · · · , Y (N)), Y (i) ∈ R
n×n
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Z = (Z(1), · · · , Z(N)), Z(i) ∈ R
n×k and W = (W (1), · · · ,W (N)) W (i) ∈ R

p×n satisfying
the following set of coupled LMIs:





























JX1
(i)





A⊤(i)X2(i)
−C⊤

y (i)Z⊤(i)

−Y ⊤(i)









X⊤
2 (i)A(i)

−Z(i)Cy(i)
−Y (i)



 JX2
(i)

B⊤(i)X1(i)

[

B⊤(i)X2(i)
−D⊤

y (i)Z⊤(i)

]

Cz(i) − W (i) W (i)

X⊤
1 (i)B(i)

[

C⊤
z (i)

−W⊤(i)

]

[

X⊤
2 (i)B(i)

−Z(i)Dy(i)

]

W⊤(i)

−γ2
I D⊤

z (i)
Dz(i) −I

















< 0, (26)

E⊤(r0)X1(r0) + E⊤(r0)X2(r0) < γ2R (27)

where

JX1
(i) = A⊤(i)X1(i) + X⊤

1 (i)A(i) − (N − 1)λiE
⊤(i)X1(i) + λ̄i

N
∑

j=1,j 6=i

E⊤(j)X1(j)),

JX2
(i) = Y ⊤(i) + Y (i) − (N − 1)λiE

⊤(i)X2(i) + λ̄i

N
∑

j=1,j 6=i

E⊤(j)X2(j),

with the following constraints:

E⊤(i)X1(i) = X⊤
1 (i)E(i) ≥ 0, (28)

E⊤(i)X2(i) = X⊤
2 (i)E(i) ≥ 0, (29)

then there exists a filter of the form (6) such that the estimation error is piecewise regular,
impulse-free and stochastically stable and bounded by:

‖z − ẑ‖2 ≤ γ
[

‖ω‖2
2 + x⊤

0 Rx0

]
1

2

. (30)

The filter’s gains are given by (20).

Similarly we can the following results in case of partially known transition jump rates.
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Theorem 3.4 Let γ and R be respectively given positive constants and a symmetric and
positive-definite matrix representing the weighting of the initial conditions. If there ex-
ist sets of nonsingular matrices X1 = (X1(1), · · · ,X1(N)), X1(i) ∈ R

n×n and X2 =
(X2(1), · · · ,X2(N)), X2(i) ∈ R

n×n and matrices Y = (Y (1), · · · , Y (N)), Y (i) ∈ R
n×n

Z = (Z(1), · · · , Z(N)), Z(i) ∈ R
n×k, W = (W (1), · · · ,W (N)) W (i) ∈ R

p×n and a set of
positive scalars ε = (ε(1), · · · , ε(N)) satisfying the following set of coupled LMIs:







































JX1
(i)





A⊤(i)X2(i)
−C⊤

y (i)Z⊤(i)

−Y ⊤(i)









X⊤
2 (i)A(i)

−Z(i)Cy(i)
−Y (i)



 JX2
(i)

B⊤(i)X1(i)

[

B⊤(i)X2(i)
−D⊤

y (i)Z⊤(i)

]

Cz(i) − W (i) W (i)
Si(X1) 0

0 Si(X2)

X⊤
1 (i)B(i)

[

C⊤
z (i)

−W⊤(i)

]

Si(X1) 0
[

X⊤
2 (i)B(i)

−Z(i)Dy(i)

]

W⊤(i) 0 Si(X2)

−γ2
I D⊤

z (i) 0 0
Dz(i) −I 0 0

0 0 −Xi(ε) 0
0 0 0 −Xi(ε)

























< 0, (31)

E⊤(r0)X1(r0) + E⊤(r0)X2(r0) < γ2R (32)

where

JX1
(i) = A⊤(i)X1(i) + X⊤

1 (i)A(i) − (N − 1)λiE
⊤(i)X1(i)

+

N
∑

j=1,j 6=i

λ̄i
1

4
ε(j)I,

JX2
(i) = Y ⊤(i) + Y (i) − (N − 1)λiE

⊤(i)X2(i) +
N

∑

j=1,j 6=i

λ̄i
1

4
ε(j)I,

Si(X1) =
(

√

λ̄iE
⊤(1)X1(1), · · · ,

√

λ̄iE
⊤(i − 1)X1(i − 1),

√

λ̄iE
⊤(i + 1)X1(i + 1), · · · ,

√

λ̄iE
⊤(N)X1(N)

)

,
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Si(X2) =
(

√

λ̄iE
⊤(1)X2(1), · · · ,

√

λ̄iE
⊤(i − 1)X2(i − 1),

√

λ̄iE
⊤(i + 1)X2(i + 1), · · · ,

√

λ̄iE
⊤(N)X2(N)

)

,

Xi(ε) = diag [ε(1)I, · · · , ε(i − 1)I, ε(i + 1)I, · · · , ε(N)I] ,

with the following constraints:

E⊤(i)X1(i) = X⊤
1 (i)E(i) ≥ 0, (33)

E⊤(i)X2(i) = X⊤
2 (i)E(i) ≥ 0, (34)

then there exists a filter of the form (6) such that the estimation error is piecewise regular,
impulse-free and stochastically stable and bounded by:

‖z − ẑ‖2 ≤ γ
[

‖ω‖2
2 + x⊤

0 Rx0

]
1

2

. (35)

The filter’s gains are given by (20).

4 Numerical example

To show the validness of our results, let us consider a numerical example of a singular
system with state space in R

3. The data of this system are as follow:

A(1) =





−3.0 1.0 0.0
0.3 −2.5 1.0
−0.1 0.3 −3.8



 , A(2) =





−4.0 1.0 0.0
0.3 −3.0 1.0
−0.1 0.3 −4.8



 ,

B(1) =





0.0
0.0
1.0



 , B(2) =





0.0
0.0
1.0



 ,

Cy(1) =
[

0.1 0.2 0.0
]

, Cy(2) =
[

0.2 0.1 0.0
]

,

Cz(1) =
[

0.2 0.1 0.0
]

, Cz(2) =
[

0.1 0.2 0.0
]

,

Dy(1) =
[

0.1
]

,Dy(2) =
[

0.2
]

,

Dz(1) =
[

0.2
]

,Dz(2) =
[

0.1
]

.

The singular matrices E(1) and E(2) are given by:

E(1) = E(2) =





1 0 0
0 1 0
0 0 0



 .

The totally known transition jump rates are given by:

Λ =

[

−1 1
1.1 −1.1

]

.
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In case of partially known transition jump rates, we assume that we have the following
bounds:

mode # 1:λ1 = 0.8, λ̄1 = 1.2,

mode # 2:λ2 = 0.9, λ̄2 = 1.3.

Notice that these values represent well a lower and an upper bounds respectively for
the jump rates 1 and 1.1 of the considered transition jump rates matrix Λ.

Let us focus on the results of Theorems 3.1 and 3.3. When we assume that the transition
jump rates are totally known and given by the matrix Λ, solving the LMIs of Theorem 3.1,
we get:

KA(1) =





−1.6783 −0.0828 0.5228
−0.1146 −2.1891 0.7330
−2.8184 −3.5545 −3.6841



 ,

KB(1) =





1.0287
1.3702
13.7120



 ,KC(1) =
[

0.0624 0.0888 0.2113
]

,

KA(2) =





−3.3779 0.5256 −0.1336
0.3011 −1.6788 0.8553
−4.1267 −1.2989 −4.8583



 ,

KB(2) =





0.5077
−0.2788
11.0406



 ,KC(2) =
[

0.0413 0.1200 0.1345
]

.

Assuming now that the transition jump rates are partially known and solving the LMIs
of Theorem 3.3, we get:

KA(1) =





−2.2296 0.1517 0.0112
−0.4427 −2.9076 1.1675
−1.7309 −3.4890 −3.1064



 ,

KB(1) =





0.8524
1.9441
11.7931



 ,KC(1) =
[

0.1046 0.2198 0.1212
]

,

KA(2) =





−3.4264 0.4949 −0.1320
0.3794 −1.6943 0.8746
−4.5055 −1.3536 −4.8755



 ,

KB(2) =





0.5220
−0.3818
11.1904



 ,KC(2) =
[

0.0388 0.1250 0.1491
]

.
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As it can be seen both of the theorems assure the existence of the filter that makes
the system error piecewise, regular, impulse-free and stochastically stable and at the same
time guarantees the minimal disturbance rejection level. The gains of the filter in the two
cases are different while γ⋆ are almost the same.

Using now the other proposed approach and proceeding similarly as for the previous
one we obtain the following results when the transition jump rates are totally and partially
known. For the totally known case, solving the LMIs of Theorem 3.2, we get:

KA(1) =





−2.2633 −0.0079 −0.1875
−0.2408 −2.2899 0.6336
−2.3280 −3.3270 −4.7839



 ,

KB(1) =





2.4122
2.0643
16.5265



 ,KC(1) =
[

0.1304 0.1411 0.2686
]

,

KA(2) =





−3.5296 0.7743 −0.2269
0.1676 −2.4317 0.9026
−3.0803 −0.7313 −5.3676



 ,

KB(2) =





0.5847
−0.0898
11.3202



 ,KC(2) =
[

0.0478 0.1308 0.2036
]

.

Assuming now that the transition jump rates are partially known and solving the LMIs
of Theorem 3.4, we get:

KA(1) =





−2.4654 0.0504 −0.2486
−0.1981 −2.4448 0.6406
−2.0907 −3.4834 −4.8499



 ,

KB(1) =





2.4609
2.2744
16.8636



 ,KC(1) =
[

0.1245 0.1578 0.2810
]

,

KA(2) =





−3.3699 0.6812 −0.2708
0.1267 −2.0079 0.8530
−3.4466 −0.8205 −5.3582



 ,

KB(2) =





0.6863
−0.0445
11.3009



 ,KC(2) =
[

0.0451 0.1159 0.2034
]

.

For the purpose of comparison of the different procedure we proposed to design the H∞

filter we have computed the minimum disturbance rejection level, γ⋆, for each one in the
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Table 1: Comparison between the four procedures

Comparison
Minimum rejection level Theorem 3.1 Theorem 3.2 Theorem 3.3 Theorem 3.4

γ⋆ 0.2 0.2 0.2 0.2

case of totally and partially known transition jump rates. The results are given in Table 1.
As it can be seen from the results all the procedure give the same minimum disturbance
rejection level and the computed gains are almost the same which shows the efficiency of
the proposed methods.

5 Conclusion

In this paper we dealt with the class of continuous-time singular linear systems with random
abrupt changes. Under the complete and partial knowledge of the transition jump rates
a design procedure for the design of an H∞ filter is developed. The proposed H∞ filter
guarantees that the system error is piecewise regular, impulse-free, stochastically stable
and at the same time assures the disturbance rejection of a certain level γ > 0. The results
we developed can easily be solved using any LMI toolbox like the one of Matlab or the one
of Scilab. A numerical example is provided to show the usefulness of the developed results.
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