
Les Cahiers du GERAD ISSN: 0711–2440

What You Should Know

about the Vehicle

Routing Problem

G. Laporte

G–2007–59

August 2007
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Abstract

In the Vehicle Routing Problem (VRP), the aim is to design a set of m minimum
cost vehicle routes through n customer locations, so that each route starts and ends at
a common location and some side constraints are satisfied. Common application arise
in newspaper and food delivery, and in milk collection. This paper summarizes the
main known results for the classical VRP in which only vehicle capacity constraints
are present. The paper is structured around three main headings: exact algorithms,
classical heuristics, and metaheuristics.

Key Words: Vehicle routing problem, capacity constraints, integer linear program-
ming, heuristics, metaheuristics.

Résumé

Les problèmes de tournées de véhicules (PTV) consistent à construire un ensemble
de tournées pour m véhicules devant visiter n clients. Chaque tournée commence et
se termine à un dépôt et doit respecter des contraintes secondaires. Des applications
communes des PTV se retrouvent dans la livraison des journaux ou de la nourriture,
et dans la collecte du lait. Cet article résume les principaux résultats connus sur le
PTV classique dans lequel on impose une contrainte de capacité. Cet article est struc-
turé autour de trois thèmes principaux : algorithmes exacts, heuristiques classiques et
métaheuristiques.

Mots clés : Problème de tournées de véhicules, contraintes de capacité, program-
mation linéaire en nombres entiers, heuristiques, métaheuristiques.
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1 Introduction

The Vehicle Routing Problem (VRP) consists of designing optimal delivery or collection
routes from a central depot to a set of geographically scattered customers, subject to various
constraints, such as vehicle capacity, route length, time windows, precedence relations
between customers, etc. This problem is faced on a daily basis by thousands of distributors
worldwide and has significant economic importance. Common examples are the delivery of
newspapers to retailers, of food and beverages to grocery stores, and the collection of milk
products from dairy farmers (Golden, Assad and Wasil [29]). The problem was introduced
nearly fifty years ago by Dantzig and Ramser [15] and has since given rise to a rich body
of research.

Unlike what happens for several well-known combinatorial optimization problems, there
does not exist a single universally accepted definition of the VRP because of the diversity
of constraints encountered in practice. Most of the research effort has concentrated on a
standardized version of the problem, called the classical VRP, with the understanding that
many of the algorithms developed for this case, mostly heuristics, can be adapted to suit
the more complicated real-life situations. In fact, most heuristics presented in this paper
can easily handle an upper limit on route lengths.

The classical VRP is defined on an undirected graph G = (V,A) where V = {0, 1, . . . , n}
is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. Vertex 0 represents a
depot at which are located at most m identical vehicles of capacity Q. With each customer
i ∈ V \{0} is associated a non-negative demand qi ≤ Q. A cost matrix cij is defined on A.
When the cost matrix is symmetric, i.e., cij = cji for all i, j, it is common to define the
problem on an undirected graph G = (V,E), where E = {[i, j] : i, j ∈ V, i < j} is the edge
set. We use the terms travel cost, length and travel time interchangeably. The problem
consists of determining a set of m vehicle routes 1) starting and ending at the depot, and
such that 2) each customer is visited by exactly one vehicle, 3) the total demand of any
route does not exceed Q, and 4) the total routing cost is minimized. Figure 1 depicts a
classical VRP solution. Note that this solution contains two intersecting routes, as well as
a back and forth route between the depot and a single customer.

The VRP is NP-hard because it includes the Traveling Salesman Problem (TSP) as
a special case when m = 1 and Q = ∞. In practice, the VRP is considerably more
difficult to solve than a TSP of the same size. For example, TSPs involving hundreds
and even thousands of vertices can be solved routinely by means of advanced branch-and-
cut-and-price algorithms (Applegate et al. [2]). In contrast, the most sophisticated exact
algorithms for the VRP (see, for example, Baldacci, Christofides and Mingozzi [5]) can
only solve instances of up to about 100 customers, and with a variable success rate. This
explains to a large extent why most of the research effort has concentrated on heuristics.
Another reason is the fact that heuristics tend to be considerably more flexible than exact
algorithms and can be more readily adapted to deal with the diversity of variants arising
in practice.
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Figure 1: Solution of a classical VRP with 14 customers and four vehicles of capacity
Q = 10. Customer demands are shown next to the vertices.

In keeping with the spirit of these cover articles, our aim is not to provide a full survey
of the VRP, but rather to summarize the most important concepts, algorithms and results,
those that have withstood the test of time and that all researchers should know. For
general surveys of the VRP, see Cordeau et al. [12] and Toth and Vigo [59].

The remainder of this paper is organized as follows. Section 2 contains a description
of the main exact VRP algorithms. Heuristics are subdivided into classical heuristics,
presented in Section 3, and metaheuristics, presented in Section 4. Conclusions follow in
Section 5.

2 Exact algorithms

Several families of exact algorithms have been proposed for the VRP with a symmetric cost
structure. These are based on integer linear programming (ILP), dynamic programming,
and branch-and-bound. For reviews, see Laporte and Nobert [36] and Toth and Vigo [58].
Here we concentrate on three families of ILP based branch-and-cut algorithms which have
proved to be the only workable methodology. Unfortunately they all require a rather heavy
mathematical programming machinery and their success in solving realistic size instances
is limited.

2.1 Two-index vehicle flow formulations

Two-index vehicle flow formulations for the VRP are rooted in the work of Laporte, Nobert
and Desrochers [37] and are extensions of the classical TSP formulation of Dantzig, Fulk-
erson and Johnson [14]. Let xij be an integer variable representing the number of times
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edge [i, j] appears in the optimal solution. If i, j ∈ V \{0}, then xij is binary; if i = 0, then
xij can be equal to 0, 1 or 2, the latter case corresponding to a return trip between the
depot and customer j. The problem is then:

(VF) Minimize
∑

[i,j]∈E

cijxij (1)

subject to
∑

j∈V \{0}

x0j = 2m (2)

∑

i<k

xik +
∑

j>k

xkj = 2 (k ∈ V \{0}) (3)

∑

i∈S,j /∈S
or i /∈S, j∈S

xij ≥ 2b(S) (S ⊂ V \{0}) (4)

xij = 0 or 1 (i, j ∈ V \{0}) (5)

x0j = 0, 1 or 2 (j ∈ V \{0}). (6)

In this formulation, the objective function minimizes the total routing cost. Con-
straints (2) define the degree of vertex 0. Note that the right-hand side can be a constant
if m is known a priori, or a variable otherwise. In the latter case, a term fm can be added
to the objective function, where f is the vehicle fixed cost. Constraints (3) ensure that
two edges are incident to each customer vertex. In constraints (4), b(S) is a lower bound
on the number of vehicles required to serve all customers of S. These constraints play a
dual role: they prevent the formation of subtours by forcing any subset of customers to
be connected to the depot, and they ensure that capacity constraints are not violated. In

practice, it is common to define b(S) as

⌈

∑

i∈S

qi/Q

⌉

.

Because the number of connectivity constraints is exponential in n, it is common to solve
VF by branch-and-cut. Initially the connectivity and integrality constraints are relaxed.
Constraints (4) are dynamically generated during the solution process as they are found
to be violated, whereas integrality is reached by branching on fractional variables. Several
families of valid inequalities can also be used to strengthen the linear relaxation of the
problem. These include generalized capacity constraints, frame capacity constraints, and
any inequality valid for the TSP, such as comb inequalities, some inequalities combining
bin packing and the TSP, as well as inequalities based on the stable set problem. These
families of inequalities, and related separation procedures, are described in Naddef and
Rinaldi [44].

The best algorithm based on VF is due to Naddef and Rinaldi [44]. Using a branch-and-
cut algorithm, these authors have solved at the root node six instances with 22 ≤ n ≤ 45,
and nine other instances with 51 ≤ n ≤ 135 by using some branching.
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2.2 Two-index two-commodity flow formulations

Baldacci, Hadjiconstantinou and Mingozzi [6] have proposed a two-index two-commodity
flow formulation for the VRP, based on an earlier similar formulation by Finke, Claus and
Gunn [20] for the TSP. The formulation makes use of travel directions on edges and works
on an extended graph G = (V ,E) where the vertex set V = V ∪ {n + 1} includes a copy
n + 1 of the depot, and E = E ∪ {[i, n + 1] : i ∈ V }. With this graph representation, a
vehicle route is a directed path from 0 to n + 1. Binary variables xij are equal to 1 if and
only if edge [i, j] appears in the optimal solution. Binary variables yij and yji represent,
respectively, the vehicle load on edge [i, j] and the empty space on the vehicle traveling on
edge [i, j], i.e., yij + yji = Q provided xij = 1. The formulation is:

(CF) Minimize
∑

[i,j]∈E

cijxij (7)

subject to
∑

j∈V

(yji − yij) = 2qi (i ∈ V \{0}) (8)

∑

j∈V \{0}

y0j =
∑

i∈V \{0}

qi (9)

∑

j∈V \{0}

yj0 = mQ −
∑

i∈V \{0}

qi (10)

∑

j∈V \{0}

yn+1,j = mQ (11)

yij + yji = Qxij ([i, j] ∈ E) (12)
∑

i<k

xik +
∑

j>k

xkj = 2 (k ∈ V \{0}) (13)

yij ≥ 0, yji ≥ 0 ([i, j] ∈ E) (14)

xij = 0 or 1 ([i, j] ∈ E). (15)

In this formulation, constraints (8)–(11) and (14) define consistent flows from vertex 0
to vertex n + 1. Constraints (12) ensure that the yij and yji variables take feasible values,
while constraints (13) specify the degree of each customer vertex.

The authors have solved this formulation using a branch-and-cut algorithm in which
valid VRP inequalities expressed in terms of the xij variables are gradually introduced.
Several instances taken from the VRP literature, with 16 ≤ n ≤ 135, could be solved
to optimality. The algorithm can also solve, in a consistent fashion, randomly generated
instances with 30 ≤ n ≤ 60 and m = 3 or 5 and, less consistently, larger instances involving
up to 100 customers and eight vehicles.
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2.3 Set partitioning formulations

The VRP can also be formulated as a Set Partitioning Problem as follows (Balinski and
Quandt [7]). Let R be the set of all feasible routes, let dr be the cost of route r ∈ R, and
let zr be a binary variable equal to 1 if and only if route r belongs to the optimal solution.
In addition, let air be a binary coefficient equal to 1 if and only if customer i belongs to
route r. The formulation is then:

(SP) Minimize
∑

r∈R

drzr (16)

subject to
∑

r∈R

airzr = 1 (i ∈ V \{0}) (17)

∑

r∈R

zr = m (18)

zr = 0 or 1 (r ∈ R). (19)

As such, this formulation is impractical because of the large number of variables and of
the difficulty of computing the dr values (each requires solving a TSP over the vertices of
r). Column generation, which is a natural methodology for this type of formulation, has
proved mostly unsuccessful because the problem is not sufficiently constrained. However,
the optimal solution value z(LSP) of the linear relaxation of SP provides a tight lower
bound on the optimal VRP value. In addition, this formulation is rather flexible since it
can easily accommodate a variety of side constraints such as time windows or maximal
route lengths, hence reducing the cardinality of R.

As shown by Baldacci, Hadjiconstantinou and Mingozzi [6], the vehicle flow formulation
can be rewritten in terms of the zr variables by using the following identity:

xij =
∑

r∈R

µr
ijzr ([i, j] ∈ E), (20)

where if r is the route (0, h, 0), then µr
0h = 2 and µr

ij = 0 for all [i, j] ∈ E\{[0, h]}; if r
contains at least two customers, then µr

ij = 1 for each edge [i, j] of route r, and µr
ij = 0

otherwise.

The set partitioning formulation can be strengthened through the introduction of valid
inequalities. For S ⊂ V \{0}, let R(S) be the set of routes containing at least one customer
of S. Then the following capacity constraints are valid:

∑

r∈R(S)

zr ≥ b(S) (S ⊂ V \{0}). (21)
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In addition, any valid inequality for the VRP (see Naddef and Rinaldi [44]; Letchford,
Eglese and Lysgaard [39]) of the form

∑

[i,j]∈E

αijxij ≥ β (22)

can be reexpressed in terms of the zr variables using (20). Finally, inequalities valid for
the Set Partitioning Problem (Balas and Padberg [4]; Hoffman and Padberg [32]) can
be incorporated into SP. Thus, Baldacci, Christofides and Mingozzi [5] use the clique
inequalities. Let H be a graph whose vertices correspond to vehicle routes. Two vertices
are in conflict if the corresponding routes share at least one edge. For any clique C of H,
the following inequality is valid:

∑

r∈C

zr ≤ 1. (23)

Baldacci, Christofides and Mingozzi [5] work with the augmented SP formulation defined
by (16)–(19) and some constraints (21), (22) and (23). Since solving this problem remains
intractable in all but trivial cases, they use the dual of its linear relaxation to compute lower
bounds of the optimal primal value by means of three different heuristics. These procedures
are embedded within a branch-and-cut algorithm to yield optimal VRP solutions. Using
this approach the authors have solved to optimality several VRP instances with 37 ≤ n ≤
121. Their results are probably the best available.

In closing this section, we should mention the existence of another exact algorithm by
Fukasawa et al. [23] combining a set partitioning formulation and cutting planes. This
method seems to yield results almost as good as those of Baldacci, Christofides and Min-
gozzi.

3 Classical heuristics

Classical heuristics for the VRP are naturally divided into constructive heuristics and im-
provement heuristics. The qualificative “classical” refers to the fact that the improvement
steps of these heuristics perform descents, i.e., they always proceed from a solution to a
better one in its neighbourhood until no further gain is possible. In contrast, metaheuris-
tics (outlined in Section 4) allow the consideration of non-improving and even infeasible
intermediate solutions. It is common to test heuristics on the Christofides, Mingozzi and
Toth [8] instances, referred to as the CMT test-bed and consisting of 14 instances with
51 ≤ n ≤ 199, and on the Golden et al. [30] instances, referred to as the GWKC test-bed
and consisting of 20 larger instances with 200 ≤ n ≤ 480. Since optimal solution values are
unknown for most of these instances, comparisons are made with the best known values
produced by metaheuristics.
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3.1 Constructive heuristics

The most popular construction heuristic is the Clarke and Wright [9] savings algorithm.
Initially n back and forth routes (0, i, 0) (i = 1, . . . , n) are constructed, all of which are
feasible. A general iteration of the algorithm consists of merging a route ending at i with
another route starting at j by removing arcs (i, 0) and (0, j), and adding arc (i, j), provided
the saving sij = ci0 + c0j − cij is positive and the merged route is feasible. The best variant
of the algorithm is the parallel version in which the merge yielding the largest saving is
implemented at each iteration. The algorithm ends when no feasible and profitable merges
are possible. Since the savings do not change during the algorithm, they can be computed
and sorted within the initialization phase, the sorting step being the most time consuming
component of the algorithm. As described in Laporte and Semet [38], several variants of
the savings algorithm have been proposed, namely to speed up computations (Nelson et
al. [46]), to optimize route merges based on savings values (Altinkemer and Gavish [1];
Wark and Holt [62]), and to make the savings definition more flexible (Golden, Magnanti
and Nguyen [31]). While this algorithm is not the best available in terms of accuracy (on
benchmark instances it produces an average deviation of about 7% on the CMT test-bed),
it is rather fast and simple to implement, which explains its popularity.

Another important class of constructive heuristics is made up of petal heuristics which
consist of first generating a family R′ of feasible routes and then solving the SP formulation
over R′ rather than the full set R. The success of the algorithm depends on the quality of
the generated routes. The most elementary version of this type of heuristic is the sweep
algorithm of Gillett and Miller [27]. Starting with a half-line rooted at the depot, this
heuristic gradually constructs feasible routes by rotating another half-line. Customers are
gradually incorporated into the current route in increasing order of the angle they make
with the initial half-line. The route closes when the inclusion of a further customer becomes
infeasible (see Figure 2). This procedure only generates non-intersecting routes and is
rather rudimentary. More sophisticated route generation procedures, proposed by Foster
and Ryan [22], Ryan, Hjorring and Glover [52], and Renaud, Boctor and Laporte [50],
have been described. In particular, the latter authors allow the creation of intersecting
and embedded routes. Average deviations obtained with their heuristic on the CMT test-
bed are 2.38%.

Fisher and Jaikumar [21] have proposed yet a different type of heuristic based on a two-
phase decomposition procedure. In the first phase, a seed is located in the region where
each route is likely to lie and clusters of customers are created through the solution of a
Generalized Assignment Problem (GAP), that is, the sum of distances between customers
and the seed to which they are allocated is minimized, subject to the constraints that the
total demand of each cluster should not exceed Q. A TSP is then solved on each cluster.
There are a number of problems with this approach. One is the determination of seeds
which is not explicit in the original article, but some procedures are described in Baker and
Sheasby [3]. Another difficulty lies in the solution of the GAP which is itself an NP-hard
problem.
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Figure 2: Construction of feasible routes in the sweep algorithm. The vehicle capacity is
Q = 10. Customer demands are shown next to the vertices.

Given the strength of current improvement heuristics, particularly metaheuristics, there
is little point in fine tuning construction heuristics. A simple scheme, like the savings
method, is adequate for most purposes.

3.2 Improvement heuristics

Two types of improvement algorithms can be applied to VRP solutions. Intra-route heuris-
tics post-optimize each route separately by means of a TSP improvement heuristic, e.g.,
2-opt or 3-opt. Inter-route heuristics consist of moving vertices to different routes (La-
porte and Semet [38]). The most common moves are simple transfers from one route to an
other, transfers involving several routes, and vertex exchanges between two or more routes.
The general frameworks described by Thompson and Psaraftis [57], Van Breedam [61] and
Kindervater and Savelsbergh [34] encompass most available inter-route improvement proce-
dures. In particular, Thompson and Psaraftis describe a general b-cyclic, k-transfer scheme
in which a circular permutation of b routes is considered, and k vertices from each route are
shifted to the next route of the cyclic permutation. The combinations b = 2 or b variable,
and k = 1 or 2 yield interesting results. Van Breedam classifies improvement operations
as string cross, string exchange, string relocation and string mix, which can be viewed as
special cases of 2-cyclic exchanges. The author shows that string exchange moves are the
best. Kindervater and Savelsbergh have described similar operations and have performed
experiments mostly in the context of the VRP with time windows.

By and large, the performance of classical improvement heuristics is good but not
excellent. They are best used as building blocks within metaheuristics.
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4 Metaheuristics

Significant progress has been witnessed over the past 15 years in the development of meta-
heuristics for the VRP. All allow the exploration of the solution space beyond the first local
minimum encountered, and all embed procedures borrowed from classical construction and
improvement heuristics. A great variety of schemes have been put forward, but these can
be broadly classified into three categories: 1) local search, 2) population search, and 3)
learning mechanisms. For a survey and a bibliography on these topics, see Cordeau et
al. [10] and Gendreau et al. [26].

4.1 Local search

A local search heuristic starts from an initial solution s0 (which may be infeasible) and
moves at each iteration t from solution st of value f(st) to another solution located in the
neighbourhood N(st) of st. In most cases st is the current solution but some multi-start
mechanisms allow a reinitiation of the search from a solution that differs from the current
one. The neighbourhood N(st) consists of all solutions that can be reached from st by
applying a given type of transformation, for example relocating a vertex from its current
route into another route. The search ends with the best known solution s∗ after a stopping
criterion has been satisfied, usually a preset number of iterations, or a given number of
consecutive iterations without improvement in s∗.

Within this broad framework, several algorithms can be defined. Here are the local
search schemes that have proved the most successful for the VRP. In record-to-record travel
(Dueck [17]), a record is s∗. A solution s is randomly selected in N(st), and st+1 := s
if f(s) < σf(s∗), where σ is a user controlled parameter generally slightly larger than
1. In tabu search (Glover [28]), st+1 is the best solution in N(st)\T (st), where T (st)
is the set of tabu (forbidden) solutions at iteration t. Tabu solutions are necessary to
prevent the search from cycling. In the VRP, the tabu mechanism can be implemented
as follows (Cordeau, Laporte, and Mercier [13]): A set of attributes B(st) = {(i, k) : i ∈
V \{0}, k = 1, 2, . . . ,m} is associated with solution st. A neighbour solution consists of
removing a pair (i, k) from B(st) and of inserting another pair (i, k′) in its place. The
pair (i, k) is then declared tabu for θ iterations. In attribute based tabu search, a solution
s containing a tabu attribute (i, k) can be accepted if it corresponds to the best known
solution containing that attribute. This rule is usually called an aspiration criterion. Other
mechanisms are often used in tabu search, such as continuous diversification, a rule aimed
at penalizing solutions containing frequently encountered attributes, and intensification,
a process aimed at performing a more thorough search around good solutions. It is also
now common to allow intermediate infeasible solutions during the search through the use
of a penalized objective function and self-adjusting penalties, a mechanism put forward
by Gendreau, Hertz and Laporte [25]. In variable neighbourhood search (Mladenović and
Hansen [43]), several nested neighbourhoods are defined. The search is initiated with a
given neighbourhood. When a local minimum is encountered, it proceeds to the next
neighbourhood in the nested structure; the search restarts from the first neighbourhood
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whenever a new best solution s∗ is identified or all neighbourhoods have been explored.
In very large scale neighbourhood search (Ergun [18]), the size of N(st) is very large and
an optimization problem may have to be solved to determine the best neighbour of st.
In adaptive large neighbourhood search (Pisinger and Ropke [47]), several insertion and
removal heuristics are applied. Their selection is made randomly, by giving a higher weight
to heuristics that have performed well in the past.

4.2 Population search

Genetic algorithms (Holland [33]) evolve a population of solutions encoded as bitstrings, or
chromosomes, through a crossover and mutation process. The crossover takes two parents
from the population and combines them to generate one or two offspring solutions. A
mutation (typically random) is applied to each offspring, and the offspring replace the worst
elements of the population. In the context of the VRP, encoding solutions as bitstrings
is not the most natural way to proceed and more natural mechanisms are used instead.
For example, Prins [48] transforms the VRP solution into a TSP solution by removing the
route delimiters and reconstructs the VRP solution at the end of the process. Also, random
mutations are often replaced by the application of a standard improvement heuristic to the
offspring, yielding what is commonly known as a memetic algorithm. A principle similar to
genetic search, called an adaptive memory procedure, has been put forward by Rochat and
Taillard [51] for the VRP. These authors first execute a tabu search algorithm and keep
the best solutions in a memory. These solutions are then recombined through a crossover
and local search process in the hope of generating even better solutions. For another
implementation of this principle, see Tarantilis and Kiranoudis [56].

4.3 Learning mechanisms

Learning mechanisms include neural networks and ant colony optimization. Early attempts
to apply neural networks to the VRP have been rather unsuccessful (see, e.g., Ghaziri [24];
Schumann and Retzko [53]) and this line of research seems to have been abandoned. Ant
colony optimization heuristics attempt to mimic the behaviour of ants who detect paths
containing pheromone and strengthen them with their own pheromone. This leads to the
emergence of shortest paths on which pheromone accumulates faster. In metaheuristics
pheromone represents the memory of the system and corresponds to edges appearing often
in good solutions. Thus the algorithm remembers good edges and is more likely to include
them in a solution.

4.4 Summary and assessment

All metaheuristics just outlined, as well as some hybrid implementations, have been ap-
plied to the solution of the VRP. In the area of local search Li, Golden and Wasil [40]
have developed a simple yet efficient record-to-record heuristic. Several tabu search im-
plementations have been highly successful, starting with the algorithm of Taillard [54] and
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its enhancement consisting of the use of an adaptive memory (Rochat and Taillard [51]).
These two algorithms have yielded some of the best known solutions on standard test
instances. Other successful tabu search implementations are the Unified Tabu Search Al-
gorithm (UTSA) of Cordeau, Laporte and Mercier [13] which is highly flexible and applies
to a wide variety of routing problems, the general VRP heuristic of Pisinger and Ropke [47],
and the Derigs and Kaiser [16] attribute based hill climber heuristic. Recently, Kytöjoki et
al. [35] have developed a variable neighbourhood search heuristic capable of solving large
scale instances.

Good examples of genetic search are the adaptive memory procedure, the algorithm
of Prins [48], and the AGES algorithm of Mester and Bräysy [41, 42] combining genetic
search, very large neighbourhoods and granularity. The granularity principle, put forward
by Toth and Vigo [60], consists of removing a priori several unpromising arcs or edges
from the graph. Another very good memetic algorithm is that of Nagata [45] who initially
relaxes the capacity constraint and handles it through a penalty function when exploring
neighbourhoods.

The D-ants savings algorithm of Reimann, Doerner and Hartl [49] is probably the best
example of ant colony optimization applied to the VRP. It generates a pool of good solutions
by means of the Clarke and Wright [9] algorithm, where the savings sij are replaced by

tαijs
β
ij, α and β are two user-controlled parameters, and tij measures how good combining

i and j has been in previous solutions. The process is reiterated by adjusting the tαij
coefficients.

This short account cannot do justice to the wealth of metaheuristics put forward for
the solution of the VRP. We have purposefully concentrated on the most significant and
successful methods. Table 1 lists some of the best VRP metaheuristics, with an indi-
cation of their performance on the CMT and GWKC test-beds. The % column is the
average percentage deviation from the best known solution value computed over all in-
stances of the test-bed. Computing times are highly variable and not reported due to
the difficulty of comparing computer speeds. Detailed results are available on the website
www.diku.dk/∼sropke. Table 1 requires a word of warning: When reporting results, most
researchers (in the field of vehicle routing, but in other fields as well) concentrate on solu-
tion quality and computing time. While these two measures are undoubtedly important,
they do not tell the whole story. Other qualities such as simplicity of implementation and
flexibility are also important. In their quest for accuracy, researchers often introduce too
many minor features user-controlled parameters in their algorithms, thus making them
less appealing (see Cordeau et al. [11]). It is also important to design algorithms that can
easily handle the numerous side constraints that arise in practice. In this respect, UTSA
and the general VRP heuristic of Pisinger and Ropke [47] offer the advantage of lending
themselves to the solution of several VRP variants.
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Table 1: Comparison of several metaheuristics for the classical VRP

Reference Year Type of algorithm % CMT % GWKC

Taillard [54] 1993 Tabu search 0.05 na

Gendreau, Hertz and
Laporte [25]

1994 Tabu search 0.86 na

Rochat and Taillard [51] 1995 Tabu search + adaptive memory 0.00 na

Cordeau, Laporte and
Mercier [13]

2001 Tabu search 0.56 1.57

Tarantilis and
Kiranoudis [56]

2002 Tabu search + adaptive memory 0.23 0.761

Toth and Vigo [60] 2003 Tabu search + granularity 0.64 2.99

Prins [48] 2004 Memetic algorithm 0.24 1.03

Reimann, Doerner and
Hartl [49]

2004 Ant colony optimization na 0.71

Mester and Bräysy [41] 2005 Genetic algorithm + very large
neighbourhoods + granularity

Best version 0.03 0.11
Fast version 0.08 1.05

Tarantilis [55] 2005 Tabu search + adaptive memory
Best version 0.18 na

Standard version 0.20 0.71

Li, Golden and Wasil [40] 2005 Record-to-record travel 0.412 1.05

Ergun, Orlin and
Steele-Feldman [19]

2006 Very large neighbourhood search 0.23 3.88

Mester and Bräysy [42] 2007 Genetic algorithm + very large
neighbourhood search

Best version 0.03 0.11
Fast version 0.08 1.01

Derigs and Kaiser [16] 2007 Attribute based tabu search
Sav S 0.21 0.87
Sav P 0.28 0.79

Kytöjoki et al. [35] 2007 Guided very large scale
neighbourhood search

VNS na 5.63
GVNS na 0.79

Pisinger and Ropke [47] 2007 Adaptive large neighbourhood
search

Average of 10 runs 0.31 1.13
Best of 10 runs 0.11 0.60

Nagata [45] 2007 Memetic algorithm
Average of 10 runs 0.032 3.013

Best of 10 runs 0.002 2.833

1 Average on eight out of 20 instances.
2 Average on seven out of 14 instances.
3 Average on twelve out of 20 instances.
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5 Conclusions

The Vehicle Routing Problem is an important and difficult combinatorial optimization
problem arising in distribution management. We have outlined the main algorithmic results
for the classical VRP involving capacity constraints only. To this day, the VRP remains
very difficult to solve optimally. The best exact algorithms, all based on branch-and-cut,
can solve some instances involving up to about 100 customers but their performance is not
consistent even for such small sizes. In practice metaheuristics are the preferred solution
methodology. The best of these typically yield results within 1% of the best known solution
values. Most of the best methods make use of local search, genetic search, or combinations
of these two mechanisms.
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[54] É.D. Taillard, Parallel iterative search methods for vehicle routing problem, Networks 23
(1993), 661–673.

[55] C.-D. Tarantilis, Solving the vehicle routing problem with adaptive memory programming
methodology, Computers & Operrations Research 32 (2005), 2309–2327.

[56] C.-D. Tarantilis, and C.T. Kiranoudis, BoneRoute: An adaptive memory-based method for
effective fleet management, Annals of Operations Research 115 (2002), 227–241.

[57] P.M. Thompson, and H.M. Psaraftis, Cyclic transfer algorithms for multi-vehicle routing and
scheduling problems, Operations Research 41 (1993), 935–946.

[58] P. Toth, and D. Vigo, “Exact solution of the vehicle routing problem,” Fleet Management and
Logistics, T.G. Crainic, and G. Laporte (Editors), Kluwer, Boston, 1998, pp. 1–31.

[59] P. Toth, and D. Vigo (Editors), The Vehicle Routing Problem, SIAM Monographs on Discrete
mathematics and Applications, Philadelphia, 2002.

[60] P. Toth, and D. Vigo, The granular tabu search and its application to the vehicle routing
problem, INFORMS Journal on Computing 15 (2003), 333–346.

[61] A. Van Breedam, An Analysis of the Behavior of Heuristics for the Vehicle Routing Prob-
lem for a Selection of Problems with Vehicle-Related, Customer-Related, and Time-Related
Constraints, Ph.D. Dissertation, University of Antwerp, 1994.

[62] P. Wark, and J. Holt, A repeated matching heuristic for the vehicle routing problem, Journal
of the Operational Research Society 45 (1994), 1156–1167.


