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Abstract

In this paper the call admission control (CAC) and routing control (RC) problems
for loss network systems are studied as optimal stochastic control (OSC) problems.
The so-called pre-state process of the underlying system is a piecewise deterministic
Markov process (PDMP) evolving deterministically between (random) event instants
at which times the pre-state jumps to another value. The random events in the system
correspond to the arrival of call requests or the departure of (active) connections. In
the principal result the Hamilton-Jacobi-Bellman (HJB) equations are derived for the
underlying stochastic optimal control problems; Unlike the usual single HJB scalar
partial differential equation, we now have a finite collection of those, inducing coupling
within a finite family of integer indexed value functions. The number of such coupled
equations is equal to the number of admissible connection states within the network.
Analytical expressions of optimal controls are derived for some simple loss network
systems.

Key Words: Call admission control, Routing control, Loss network systems, HJB
equations.

Résumé

Un formalisme de commande stochastique optimale est développé en vue de spécifier
lorsqu’elles existent, des stratégies optimales d’admission et de routage dans un réseau
de télécommunications sans possibilité de mise en attente. Pour ce faire, une représen-
tation d’état du système, générale pour cette classe de réseaux, est d’abord développée.
Elle comporte un pré-état appartenant à la classe des processus déterministes par
morceaux et qui reste constant entre deux sauts aléatoires successifs. Les sauts aléa-
toires correspondent à l’arrivée de demandes d’appels ou la terminaison de connexions
actives. Lorsque l’on adjoint au pré-état continu un processus ponctuel correspon-
dant aux sauts aléatoires en question, on obtient le vecteur d’état. La représentation
markovienne ci-dessus est utilisée pour obtenir les équations H-J-B (Hamilton-Jacobi-
Bellman) associées. Contrairement au cas habituel pour lequel H-J-B est une équation
aux dérivées partielles scalaire, nous obtenons ici une famille d’équations scalaires
couplées. Le nombre d’équations ainsi couplées est égal au nombre différent d’états
de connexion discrets admissibles qui peuvent tre observés dans le système. Des ex-
pressions analytiques de stratégies de commande optimale sont obtenues pour des cas
particuliers de réseaux sans possibilité de mise en attente.

Mots clés : Admission d’appels, routage, réseaux sans possibilité de mise en attente,
équations de Hamilton-Jacobi-Bellman.
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1 Introduction

Call admission control (CAC) and routing control (RC) problems in telecommunication
networks have been topics of active research for decades (see e.g. [1, 5, 12, 13]). In
the 1960s, Benes [1] pioneered routing control in telephone networks, providing a general
mathematical structure and deriving fundamental properties for telephone systems. The
distinction between the work in this paper and that found in standard telecommunication
texts and papers (see e.g. [1, 5, 12, 13]) is that here a network system is represented within
a formal stochastic systems framework with a specified class of input stochastic processes
and a stochastic hybrid state space process with a controlled evolution equation. This
permits the formulation of an optimal stochastic control theory for loss network systems
in [3, 7, 8, 9].

In particular, in this paper, CAC and RC problems for loss network systems are modeled
as optimal stochastic control (OSC) problems.

Consider the loss network systems where the call request processes are general (not
necessarily Poisson) renewal processes and the sojourn times of active connections are
arbitrarily distributed, then the corresponding network state process has some particular
characteristics: (1). the state processes have three parts: the first part n will be called the
(active) connection state vector. It is non negative integer valued and can be expressed as
the difference of two vector counting processes [2]; the second part ζ is a variable dimension
real-valued piecewise deterministic process which will be called the age vector; while the
third part e is an impulsive point process which will be called the event vector; (2). For
any given such network system, the pre-state process, which is composed of n and ζ,
is a piecewise deterministic Markov process (PDMP) [4] subject to an admissible state
dependent control law, where the state value evolves deterministically between any two
adjacent random event instants and jumps to some other state value at random event
instants with some controlled state transition equation, i.e. the control law is measurable
with respect to the state process.

The random events in the underlying system correspond to the arrival of call requests
or the departure of active connections. However, there is a special aspect to this controlled
model which can be stated as follows: if current time t happens to be a call request
arrival instant, then the admission and routing controller has to instantaneously act on
this information; thus at t, the new call is either accepted, or rejected, following which
the state jumps to another deterministic phase ending at the next random event. As
a result, the state will contain a mixture of integer and real valued components with
right-continuous trajectories, as well as a vector point process component, where the only
non-zero entries are in correspondence with the current instantaneous call request arrivals
associated to origin destination pairs. Thus, what is usually considered driving exogenous
noise in stochastic models becomes a part of the state process.

This methodology is different from [4] where the (random) events are considered as a
pure disturbance process, the control law measurable with respect to the pre-state process
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is actually a policy and at any event instant the pre-state process is resampled by a past in-
formation (filtration) independent random variable with a controlled transition probability.
When call request processes are Poisson and connection sojourn times are exponentially
distributed, the latter framework is equivalent to that of Markov decision processes. In
this paper we give the explicit relationship between our HJB equations and the Bellman
equations for the Markov decision processes under a class of discounted infinite horizon
cost functions.

Loss network systems may also be viewed as stochastic hybrid systems generalizing the
class of deterministic hybrid systems as defined in [15] and the references therein; as in-
dicated above, the state process is composed of three components: a discrete component,
denoting the connections along the set of the routes in the loss network, and a continuous
component constituting the vector of ages of the call requests and active connections in
the loss network system; and an impulsive event process only in this case the state pro-
cess includes, in addition to a discrete and a continuous part, an impulsive point process
component.

Unlike infinite horizon discounted Markov decision processes where optimal controls are
characterized by sets of coupled algebraic equations, the above classes of optimal control
problems, the HJB equations for optimal CAC and RC control problems for loss network
systems correspond in the most general case to a collection of coupled scalar first order
partial differential equations relating a finite family of integer indexed value functions. The
HJB equations in the stochastic point process case for stochastic manufacturing systems
are studied in [14].

The paper is organized as follows. In Section 2, we formulate loss network systems and
the Markov property of the state process is proved; in Section 3, we formulate the CAC
and RC problems of loss network systems as optimal stochastic control (OSC) problems;
the HJB equations for some particular simple loss network system controls are studied in
Section 4; Section 5 contains the conclusions and outlines future work.

Symbols

• Z1 = {1, 2, 3, · · · };

• Ij j-dimension identity Matrix;

• 0h,j h × j-dimension zero Matrix;

• 1A Indicator function;

• 1i i-th unit vector in R
m with some proper value m ∈ Z1;

• 0n a zero vector with the dimension same as the vector n;

• 1ζ ≡ (1, · · · , 1) with the dimension same as the vector ζ.
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2 State Space Structure Dynamics of Loss Network Systems

2.1 Networks of Loss Network Systems

The loss network of a loss network system is a capacitated network Net(V, L, C) as formally
defined below. Based upon this notion, a loss network system is defined in Definition 2.11.

Definition 2.1 A network, or graph, Net(V, L) consists of a set of vertices V = {v1, · · · ,
vV }, V ∈ Z1, with Z1 , {1, 2, · · · }, and a set of links L = {l1, · · · , lL}, L ∈ Z1, where each
link l ∈ L is an ordered pair (v′, v′′) ∈ V × V of distinct vertices.
A network Net(V, L) with (link) capacities

C = {cs ≡ c(ls) : 1 ≤ s ≤ L, cs ∈ Z1}

shall be denoted by Net(V, L, C). �

Definition 2.2 A route, r in the network Net(V, L), connecting a vertex o ∈ V to a vertex
d ∈ V is a finite sequence of vertices r = (v′1, · · · , v′k), such that

v′1 = o, v′k = d,

v′i 6= v′j, for i 6= j,

(v′i, v
′
i+1) ∈ L, for i = 1, · · · , k − 1.

The set of routes in the network Net(V, L) is denoted by R, and we denote R as the
cardinality of R, i.e. R = |R|. And the subset of routes with respect to a pair of vertices
〈o, d〉, denoted by R〈o,d〉, is defined as

R〈o,d〉 ,

{
r = (v′1, · · · , v′k); such that r ∈ R and v′1 = o, v′k = d

}
(2.1)

�

Figure 2.1 is an illustration of three distinct routes between v1 and v8, which are
(v1, v2, v5, v4, v8), (v1, v4, v8) and (v1, v3, v7, v8) respectively in a network.

Definition 2.3 The feasible set of origin-destination vertex pairs, denoted by V
△, is de-

fined as

V
△ =

{
〈o, d〉 ∈ V × V; ∃ r ∈ R, s.t. r = (v′1, · · · , v′j), v

′
1 = o, v′j = d, o 6= d

}
.

�

We set, for each 〈o, d〉 ∈ V
△, a unique index number i, i ∈ {1, 2, · · · , |V△|}, and may

denote this 〈o, d〉 pair by 〈o, d〉i, i.e. for each i, i ∈ {1, 2, · · · , |V△|}, there is a unique
〈o, d〉 ∈ V

△ and 〈o, d〉i ≡ 〈o, d〉.
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Figure 2.1: Distinct Routes in a Network

Definition 2.4 The (admissible) set of connections, denoted by N , in R in the network
with capacities Net(V, L, C), is defined as

N =
{

n = (nr) ∈ Z
SR
+ :

∑

r∈R;lk∈r
s∈{1···S}

bsn
(s)
r ≤ ck, ∀ k, 1 ≤ k ≤ L

}
, (2.2)

where nr ≡ (n
(1)
r , · · · , n

(S)
r ), n

(s)
r denotes the number of s-class of connections at the route

r ∈ R and bs ∈ Z+, s ∈ {1 · · ·S}, denotes the number of units of link resource occupied by
each s-class of connection. �

In the definition of N , for each fixed lk, the set of r ∈ R appearing in the sum is the set
of routes each of which contains lk as a link.
Since the routes in R are in one-to-one correspondence with the index of the components
of a vector in Z

R
+ ⊂ R

R, we shall by abuse of notation let r ∈ R also denote the integer
indexing the corresponding vector component in R

R, i.e.

n = (n1, n2, · · · , nR) ≡ (nr1 , nr2, · · · , nrR
)

Remark: For notational simplicity, in the following sections we only consider S = 1
and b ≡ b1 = 1, i.e. we consider the loss network system where there only exists a single
class of connections with each connection occupying one unit of resource during its sojourn
in the system; while in [11], we study the sub-optimal CAC and RC control problems for
large integrated loss network system where there exists multi-class of connections.
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Figure 2.2: A Three-Vertex Capacitated Network

2.1.1 A Simple Example of a Capacitated Loss Network

Here we consider a simple network Net(V, L, C), see Figure 2.2, where

V = {v1, v2, v3}

L = {l1 = (v1, v2), l2 = (v1, v3), l3 = (v3, v2)}

C = {cl = 2; l ∈ L}.

Hence the set of routes, R, is defined as

R =
{
r1 = (v1, v3, v2), r2 = (v1, v2), r3 = (v1, v3), r4 = (v3, v2)

}

and the admissible connections set, N , is defined as

N =
{
n = (n1, n2, n3, n4) ∈ Z

4
+;

∑

ri∈R; l∈ri

ni ≤ 2, ∀l ∈ L
}
.

2.2 Loss Network Systems

2.2.1 Loss Network System Framework

We consider a class of loss network systems w.r.t. the loss network Net(V, L, C) specified in
Definition 2.1, such that all call request processes are renewal processes, connection sojourn
times are not necessarily exponentially distributed, and satisfies the following specifications:

(S1) The probability space (Ω,F , P) carries the family of independent random processes
and random variables

{Rq+
〈o,d〉, ηm; such that o, d ∈ V, o 6= d, m ∈ Z1} (2.3)

(S2) The call request process w.r.t. 〈o, d〉, for all o, d ∈ V, o 6= d, denoted by Rq+
〈o,d〉, such

that Rq+
〈o,d〉 : R+ × Ω → Z+, is an autonomous renewal process with the arrival rate

parameter of λ+
〈o,d〉(ζ

〈o,d〉), where ζ〈o,d〉 denotes the elapsed time from the last call

request event e+
〈o,d〉;
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(S3) The random sojourn time of m-th established connection in the network system,
denoted by ηm, ηm : Ω → R+, has a common arbitrary distribution F (ζc) with the
density function as f(ζc) assumed to exist, where ζc denotes the age of the m-th
connection.

Denote λ−(ζc) as the departure rate of a connection w.r.t. the age of this connection

of ζc, such that λ−(ζc) = f(ζc)
1−F (ζc) . Note that in case of exponential distribution of

connection sojourn time, λ−(ζc) is a constant. �

In Definition 2.5, the pre-state space is defined. Each pre-state value z, comprises 2
parts: the integer valued part n and the real valued part ζ with the variable dimension,
where

(1) n specifies the number of active connections on each route r ∈ R;

(2) ζ comprises the ages of all active connections and the elapsed time from the last call
request arrival instant for each origin-destination pair 〈o, d〉 ∈ V

△.

Definition 2.5 The sub-state space with respect to n ∈ N , denoted by Zn, is defined as
the collection of index and age pairs:

Zn = {z ≡ (n, ζ); ζ ∈ R
d
+}, where d ≡ d(n) , |V△| +

∑

ri∈R

ni,

ζ =

({
|V△|︷ ︸︸ ︷

ζ〈o,d〉1 , ζ〈o,d〉2 , · · · , ζ
〈o,d〉

|V△|
}
,
{

n1︷ ︸︸ ︷
ζc1,1, · · · , ζc1,n1

}
,

· · · ,
{

nR︷ ︸︸ ︷
ζcR,1, · · · , ζcR,nR

})
, if ni ≥ 1, ri ∈ R, (2.4)

with the constraints:

n ∈ N , i.e. n = (n1, · · · , nR), s.t.
∑

ri∈R; ls∈ri

ni ≤ cs, ∀s, 1 ≤ s ≤ L;

ζci,1 > ζci,2 > · · · > ζci,ni ≥ 0, for any i ∈ {1, 2, · · · , R}, l

and define Γn as

Γn = {ζ ∈ R
d
+; (n, ζ) ∈ Zn} (2.5)

The pre-state space Z is defined as: Z ,
⋃̇

n∈NZn, where
⋃̇

denotes the disjoint union of
the indicated entities . �

Remarks: (1) Since there are ni connections at the route ri, then each of these connec-
tions can be uniquely denoted by cij , j(i) ∈ {1, · · · , ni} and its age is denoted by ζcij ; (2)
Specifically, the sequence of ni connections at the route ri is indexed by their age or birth
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I II III

Figure 2.3: Pre-State Values with respect to Different Connection Allocations

time, such that ζci,1 > ζci,2 > · · · > ζci,ni , i.e. at the route ri ∈ R the earlier a connection
was established, the smaller is its index number.

Here we display the form of the pre-state value z ∈ Z with the network specified in
Subsection (2.1.1).

In Case I in Figure 2.3 where there is no connection in the network, the pre-state value
z takes the form:

z =

([
0
0
0
0

]
,

[
ζ〈v1,v2〉

ζ〈v1,v3〉

ζ〈v2,v3〉

])

In Case II in Figure 2.3 where there is only one active connection, which allocates on
r3 ≡ (v1, v3), in the network, the pre-state value z takes the form:

z =

([
0
0
1
0

]
,

[
ζ〈v1,v2〉

ζ〈v1,v3〉

ζ〈v2,v3〉

]
, [ζc3,1 ]

)

In Case III in Figure 2.3 where there are 1, 2, 1 and 0 connections on the route r1 ≡
(v1, v3, v2), r2 ≡ (v1, v2), r3 ≡ (v1, v3) and r4 ≡ (v3, v2) respectively, the pre-state value z

takes the form:

z =
([ 1

2
1
0

]
,

[
ζ〈v1,v2〉

ζ〈v1,v3〉

ζ〈v2,v3〉

]
,

[
ζ

c1,1

ζ
c2,1

ζ
c2,2

ζ
c3,1

])

Definition 2.6 The (call request and connection departure) event set induced by a given
connection state vector n ∈ N , denoted by En, is defined as:

En = e0
n

⋃̇
E+

n

⋃̇
E−

n , (2.6)

where E+
n =

⋃̇
〈o,d〉q∈V△e+

〈o,d〉q
, E−

n =
⋃̇

ri∈R

(⋃̇
j∈{1,··· ,ni}

e−cij

)
and

1) e0
n ≡ 0 denotes absence of a call request or a connection departure event, with 0

the zero vector in R
M and M ≡ M(n) = |V△| +

∑
ri∈R ni



8 G–2007–53 Les Cahiers du GERAD

2) e+
〈o,d〉q

≡ 1m ∈ R
M denotes the call request (event) of 〈o, d〉q and 1m is the m-th

unit vector in R
M , with m = q;

3) e−cij
≡ 1m′ ∈ R

M denotes the connection cij departure (event) and 1m′ is the m′-th

unit vector in R
M , with m′ = |V△| +

∑i−1
k=1 nk + j.

The (total) event set E is defined as E ,
⋃̇

n∈NEn. �

Definition 2.7 The sub-state space with respect to an index vector n ∈ N , denoted by
Xn, is: Xn = Zn × En.

The state space X is: X =
⋃̇

n∈NXn. �

Definition 2.8 The (admissible) control (value) set, with respect to a state value x =
(z, e) = (n, ζ, e) ∈ X, denoted by U(x), is specified as:

U(x) = 0〈o,d〉(x)
⋃̇

1〈o,d〉
r (x)

⋃̇
1−

c (x), where (2.7)

0〈o,d〉(x) =
⋃̇

〈o,d〉q∈V△
0〈o,d〉q (x),

1〈o,d〉
r (x) =

⋃̇
〈o,d〉q∈V△

( ⋃̇
r∈R〈o,d〉q

n+1r∈N

1
〈o,d〉q
r (x)

)
,

1−
c (x) =

⋃̇
r∈R

( ⋃̇
j∈{1,··· ,nr}

1−crj
(x)

)
, with 1−crj

(x) ≡ 1−
crj(x)(x),

where

1) 0〈o,d〉q (x) ≡ 0 ∈ R
R denotes that the call request e+

〈o,d〉q
is rejected and 0 is the zero

vector in R
R;

2) 1
〈o,d〉q
r (x) ≡ 1r ∈ R

R denotes that the call request e+
〈o,d〉q

is accepted and a connec-

tion is established on the route r ∈ R〈o,d〉q under the link capacity constraints, i.e.

n + 1r ∈ N with 1r is the r-th unit vector in R
R;

3) 1−crj
(x) ≡ −1r ∈ R

R denotes the departure of the j-th active connection on the
route r.

The control (value) set U is defined as U =
⋃̇

x∈XU(x). �

Here we give an example to display an admissible control with respect to a state value
x ∈ X. See Figure 2.4, which is the loss network specified in Subsection (2.1.1).

Suppose that z =
(
n, ζ
)
∈ Z, with n = (0, 1, 0, 0), i.e. there is an active connection

on the route r2 = (v1, v2), and e = (1, 0, 0, 0, 0), i.e. a call request 〈v1, v2〉 occurs, see

Definition (2.6), an admissible control, u ∈ U(z, e), can be 1
〈v1,v2〉
r1 (x) = (1, 0, 0, 0), i.e. the

call request e+
〈v1,v2〉

is accepted and a connection is established on the route r1 ≡ (v1, v3, v2).
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Figure 2.4: An Admissible Control with respect to A State Value

Definition 2.9 When z and e depend in a progressively measurable way on (Ω,F , P), we
refer to z = {z(t, ω); t ∈ [0, T ], ω ∈ Ω}, and e = {e(t, ω); t ∈ [0, T ], ω ∈ Ω} as pre-state and
event processes; and refer to x as the state process, such that

x =
{
x(t, ω) ,

(
z(t−, ω), e(t, ω)

)
, t ∈ [0, T ], ω ∈ Ω

}
, (2.8)

with z(t−, ω) = lims↑t z(s, ω). �

Define Ft ,
∨

s∈[0,t] σ(xs) ∈ F , i.e. F. is the natural filtration extended by the process x. �

Definition 2.10 The set of admissible state dependent, or Markov control laws with re-
spect to the interval [0, T ], T ∈ R+, is denoted by U [0, T ], and is given by,

U [0, T ] =
{
u : [0, T ] × X → U ; s.t. ut is σ(xt) measurable, t ∈ [0, T ]

}
(2.9)

U [0,∞) = ∪T≥0 U [0, T ] (2.10)

�

Definition 2.11 A family of state processes {xt , (zt− , et), t ∈ [0, T ]}, taking values
in X in a capacitated loss network Net(V, L, C), subject to a family of admissible state
dependent control laws U [0, T ], is called a loss network system. �

Definition 2.12 For any instant t ∈ R+, we term a sequence of event instants {tj(ω)} in
[t,∞)

t ≤ t1(ω) < · · · < tj(ω) < tj+1(ω) < · · · , (Ω,F , P), ω ∈ Ω, (2.11)

at which random call request or active connection departure event occurs as a sequence of
event instants t. : Z+ × Ω → R+. The sequence τ. : Z1 × Ω → R+, such that

τk+1(ω) , tk+1(ω) − tk(ω), with t0(ω) ≡ t, (2.12)

is defined as the sequence of event intervals (associated to t.(ω)). �

Definition 2.13 Consider a loss network system subject to an admissible state dependent
control law u ∈ U [0, T ], and the evolution of the state process as

xu : [0, T ] × Ω → X, (2.13)
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with the pre-state value at 0 as (n, ζ) ∈ Z. The event and pre-state transition equations
are given by

eu
t (ω) =

{
0 ∈ En, if ti−1(ω) < t < ti(ω)

e ∈ En, if t = ti(ω)
, where n(ω) ≡ nu

ti−1
(ω) (2.14)

zu
t (ω) =





zu
ti−1

(ω) +
∫ t

ti−1(ω)(0n,1ζti−1
) ds

=
(
nti−1(ω), ζti−1(ω) + [t − ti−1(ω)]1ζti−1

)
, if t ∈ (ti−1(ω), ti(ω))(

nu
t−

(ω) + ut, A(ω)[IM (ω) − et(ω)e′t(ω)] ζt−(ω)
)

≡ zu
t−

(ω) ◦ ut ≡ (nu
t−

(ω) + ut, ζ
u
t−

(ω) ◦ ut), if t = ti(ω)

,

(2.15)

where the random matrix A will be defined in (2.17).

Hence by (2.14) and (2.15), the event process eu is a point process; the pre-state process
zu is a piecewise deterministic process and the state transition equation is specified as

xu
t (ω) , (zu

t−(ω), eu
t (ω)) =

{
(zu

t (ω), 0), if ti−1(ω) < t < ti(ω),

(zu
t−i

(ω), eu
ti
(ω)), if t = ti(ω),

(2.16)

where e′ denotes the transposition of vector e; u ≡ ut(x
u
t ); 0n ≡ (0, · · · , 0)′ ∈ Z

R
+ and 1ζ ≡

(1, · · · , 1)′, where the dimension of ζ varies in accordance with the following specification
of A.

A ≡ A(xu
t , ut(x

u
t )) =





A+ ≡ A+
(M+1)×M

, if ut(x
u
t ) > 0

A− ≡ A−
(M−1)×M

, if ut(x
u
t ) < 0

IM , otherwise

, with t = ti, i = 1, 2, · · ·

(2.17)

A+ =

[
Im 0(m+1)×(M−m)

0(M−m+1)×m I(M−m)

]
,

where m = |V△| +
l∑

j=1

n
(j)

t−i
and l is such that u = 1rl

〈o,d〉q

A− =

[
Im 0m×(M−m)

0(M−m−1)×(m+1) I(M−m−1)

]
,

where m = |V△| +
l−1∑

j=1

n
(j)
t−

+ [k − 1] and l, k are such that u = 1−clk
,

where M is the dimension of ζt− ; Ij and 0h×j, h, j ∈ Z1, denote the j-dimensional identity
matrix and h × j-dimensional zero matrix respectively. �
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In Definition 2.13, ut = 1rl

〈o,d〉q
denotes that the call request 〈o, d〉q is accepted to the

route rl at t, while ut = 1−clk
denotes that the k-th active connection on the route rl

terminates at t. And what the A+ operator is doing, more specifically, is to increment the
number of active connections on the chosen route, introduce a new age variable back of all
others on the same route; the A− operator is to decrease the number of active connections
on the chosen route and delete the associated age value.

Remark: In the following sections, we may denote xu and zu by x and z respectively.

2.2.2 A State Process Realization of A Loss Network System

Consider a capacitated loss network specified in Section 2.1.1, we specify a realization of
the controlled state process x during [0, t2).

Suppose that z0 =

([
0
0
0
0

]
,
[

a
b
c

])
, a, b, c ∈ R+, then for 0 < t ≤ t1,

zt− =

([
0
0
0
0

]
,
[

t+a
t+b
t+c

])
, zt−1

=

([
0
0
0
0

]
,
[ t1+a

t1+b
t1+c

])
,

Remarks: during [t0, t1), the dimension of the vector ζt is 3, since there is no active
connection in the network during this interval.

Suppose at t1, et1 =
[

1
0
0

]
and ut1(xt1) =

[
0
1
0
0

]
, i.e. a call request e+

〈v1,v2〉
occurs at t1 and

this call request is accepted and a connection is established on the route r2, then by the
state transition equation specified in (2.15)

zt1 =
(
nt−1

+ ut1(xt1), A[I3 − et1e
T
t1

]ζt−1

)

=
([ 0

0
0
0

]
+

[
0
1
0
0

]
,AB

[ t1+a
t1+b
t1+c

])
, where A = A+

4×3 =

[
1 0 0
0 1 0
0 0 1
0 0 0

]
, B =

[
1 0 0
0 1 0
0 0 1

]
−
[

1
0
0

][
1 0 0

]

=

([
0
1
0
0

]
,

[ 0
t1+b
t1+c
−−−

0

])

Then we obtain that, for any t1 < t ≤ t2,

zt− = zt1 +

∫ t−t1

0
(0n,1ζ)dr =

([ 0
1
0
0

]
,

[ t−t1
t+b
t+c
−−−
t−t1

])
,

and

z
t−2

=
([ 0

1
0
0

]
,

[ t2−t1
t2+b
t2+c
−−−
t2−t1

])
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Remark: Here a connection is established in the network at t1, then Dim(ζt1) = Dim(ζ
t−1

)+

1 = 4. Hence during [t1, t2) the dimension of the vector of system ages ζt is 4. �

We consider the following notations,

• Denote τm+1(ω) as the (m + 1)-th event interval, for any m ∈ Z+, i.e.

τm+1(ω) = tm+1(ω) − tm(ω)

• xtm(ω)(ω) and Ftm are denoted by xm(ω) and Fm, respectively;

• Ωm denotes a measurable set that exactly m events occur during [t, t + s], i.e.

Ωm = {ω ∈ Ω; tm(ω) ≤ t + s < tm+1(ω)},

where tm denotes the m-th event instant after the instant t. �

Lemmas 2.1 - 2.4, and Theorem 2.1 are dedicated to proving the Markov property of
the state process xu subject to any admissible state dependent control law u ∈ U [0, T ],
under Assumptions (S1) - (S3). More specifically,

• Lemma 2.1. Each event instant tj, j ∈ Z1, is a stopping time of the filtration F.;

• Lemma 2.2. Given the state value at the m-th event instant tm, the probability
distribution of the (m + 1)-th event interval is independent of the information before
t;

• Lemma 2.3. Given the state value at the m-th event instant tm, the probability
distribution of the state value at the (m + 1)-th event instant is independent of the
information before t;

• Lemma 2.4. Given the state value at the instant t, the expected value of f(xt+s)1Ωm is
independent of the information before t, where f : X → R is any bounded measurable
function;

• Theorem 2.1. Subject to an admissible state dependent control law u ∈ U [0, T ], the
state process xu is a Markov process. �

Lemma 2.1 For any s ∈ R+, denote tj , j ∈ Z1, as the j-th event instant after s, then
{ω; tj(ω) ≤ t} ∈ Ft, for any t ∈ R+, i.e. tj is a stopping time of the filtration F.

Proof. Denote {Nt; t ∈ [s,∞)} a point process counting the number of events occurring
during [s, t], then, by the state transition equation, we have

Nt =
∑

ν∈[s,t]

1{z
ν− 6=zν}, where 1A is an indicator function,

i.e. Nt is a ∨ν∈[s,t]σ(zν) measurable. Hence Nt is Ft measurable and by the definition of
Nt, we have

{ω; tj(ω) ≤ t} = {ω;Nt(ω) ≥ j} ∈ Ft, ∀ j ∈ Z+, ∀ t ∈ R+,

which implies that each event instant tj, j ∈ Z1, is a stopping time of the filtration F. �
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Lemma 2.2 Denote τm+1(ω) as the (m + 1)-th event interval, i.e. τm+1(ω) = tm+1(ω) −
tm(ω), for any m ∈ Z+. We have

P(ω; τm+1(ω) ≤ t
∣∣Fm) = P(ω; τm+1(ω) ≤ t

∣∣σ(xm)), ∀ t ∈ R+, (2.18)

where, for notational simplicity, xtm(ω)(ω) and Ftm are denoted by xm(ω) and Fm respec-
tively.

Proof. By the state transition equation specified in Definition 2.13, we obtain that

xm+(ω) = (nm(ω), ζm(ω), em+(ω)) = (nm(ω), ζm(ω), 0), a.s., (2.19)

where m denotes tm(ω), the m-th event instant after s, and

nm(ω) = nm−(ω) + um(nm−(ω), ζm−(ω), em(ω)) (2.20)

ζm(ω) = ζm−(ω) ◦ um(nm−(ω), ζm−(ω), em(ω)) (2.21)

By the definition of τm+1(ω), we have

τm+1(ω) = min
e∈Enm(ω)

{
ηe(ω)

}
, (2.22)

where, in case of e = e+
〈o,d〉, for some 〈o, d〉 ∈ V

△, ηe(ω) is the length of interval from tm(ω)

to the next 〈o, d〉 call request arrival instant tm(ω) + ηe(ω) after tm(ω); in case of e = e−c ,
for some active connection c, ηe(ω) is the length of time from tm(ω) to the connection c

departure instant tm(ω) + ηe(ω) after tm(ω).

Then by Assumptions (S1,S2), and (2.19) - (2.21), for any t ∈ R+, we obtain that

P(ω; ηc(ω) ≤ t | σ(ζc
m)) =

{
P(ω; ηc(ω) ≤ t | σ(xm))

P(ω; ηc(ω) ≤ t | Fm)
, (2.23)

where ζc
m(ω) is the age of connection c at the instant tm(ω) and is a component of xm+(ω).

Thus we obtain that

P(ω; ηc(ω) ≤ t | Fm) = P(ω; ηc(ω) ≤ t | σ(xm)) (2.24)

Similarly, by Assumptions (S1,S3), and (2.19) - (2.21), for any 〈o, d〉 ∈ V
△ and t ∈ R+, we

have

P(ω; η〈o,d〉(ω) ≤ t | σ(ζ〈o,d〉
m )) =

{
P(ω; η〈o,d〉(ω) ≤ t | σ(xm))

P(ω; η〈o,d〉(ω) ≤ t′ | Fm)
(2.25)

where ζ
〈o,d〉
m (ω) is the length of interval [t〈o,d〉(ω), tm(ω)], where t〈o,d〉(ω) is the last 〈o, d〉

call request event instant before the instant tm(ω), and ζ
〈o,d〉
m (ω) is a component of xm+(ω).
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Thus we obtain that

P(ω; η〈o,d〉(ω) ≤ t | Fm) = P(ω; η〈o,d〉(ω) ≤ t | σ(xm)) (2.26)

Then by (2.22), i.e. τm+1(ω) is a measurable function of set of functions {ηe(ω); e ∈ Enm},
and (2.24), (2.26), we have

P(ω; τm+1(ω) ≤ t | Fm) = P(ω; τm+1(ω) ≤ t | σ(xm)), (2.27)

which is the conclusion. �

Lemma 2.3 For any bounded measurable function f : X → R, given the state value at
tm(ω), subject to an admissible state dependent control law u ∈ U , the expected value of
f at the (m + 1)-th event instant tm+1, is independent of the past information before tm,
Fm, i.e.,

E{f(xm+1) |Fm} = E{f(xm+1) |σ(xm)}, a.s. (2.28)

Proof. For any e′ ∈ En, with n = ntm(ω), we have

P
(
ω; em+1(ω) = e′

∣∣ Fm

)

= P
(
ω; ηe′(ω) = min

e∈En

{ηe(ω)}
∣∣ Fm

)

= P
(
ω; ηe′(ω) = min

e∈En

{ηe(ω)}
∣∣ σ(xm)

)
, by (2.24), (2.26) in Lemma 2.2

= P
(
ω; em+1(ω) = e′

∣∣ σ(xm)
)
, (2.29)

where in case that e is a call request and connection departure event, ηe(ω) denotes the
length of the interval between two adjacent call request and the sojourn time of an active
connection, respectively. Also, by the state transition equation, we have

n(m+1)−(ω) ≡ n
t−m+1

(ω) = nm(ω), a.s. (2.30)

ζ(m+1)−(ω) ≡ ζt−m+1
(ω) = ζm(ω) + τm+1(ω)1ζm(ω), a.s. (2.31)

Hence, by Lemma 2.2, (2.19)–(2.21), and (2.29)–(2.31), we obtain that

P(ω; xm+1(ω) ∈ C
∣∣ Fm) = P(ω; xm+1(ω) ∈ C

∣∣ σ(xm)), ∀ C ∈ σ(X), (2.32)

where xm+1(ω) ≡ (nm+1−(ω), ζm+1−(ω), em+1(ω)).

Then, for any bounded measurable function f : X → R, subject to an admissible state
dependent control law u ∈ U , we have

E{f(xm+1) |Fm} = E{f(xm+1) |σ(xm)}

�
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Lemma 2.4 For all t, s, t + s ∈ [0, T ], and any bounded measurable function f : X → R,

E
{
f(xt+s)1Ωm |Ft

}
= E

{
f(xt+s)1Ωm |σ(xt)

}
, (2.33)

where Ωm = {ω ∈ Ω; tm(ω) ≤ t + s < tm+1(ω)}, i.e. Ωm denotes a measurable set that
exactly m ∈ Z+ events occur during [t, t + s].

Proof. By the definition of Ωm, we have

Ωm = {ω;

m∑

i=1

τi(ω) ≤ s <

m+1∑

i=1

τi(ω)}, (2.34)

where τi denotes the i-th event interval. Then

f(xt+s(ω))1Ωm = f(xt+s(ω))1{ω;
Pm

i=1 τi(ω) ≤s <
Pm+1

i=1 τi(ω)}, a.s. (2.35)

Also by the state transition equation and the definition of Ωm, we have

zt+s1Ωm =
[
zm + (0n, [t + s − tm]1ζm

)
]
1Ωm =

[
zm + (0n, [s −

m∑

i=1

τi]1ζm
)
]
1Ωm a.s.

(2.36)

et+s1Ωm = em(ω)1{tm(ω)=t+s}1Ωm = em(ω)1{
Pm

i=1 τi(ω)=s}1Ωm , a.s. (2.37)

Hence, by (2.35), (2.36) and (2.37), we obtain that f(xt+s(ω))IΩm is a measurable
function of xm(ω), xm+(ω), τ1(ω), · · · , τm+1(ω), i.e. there exists a measurable function h,
such that

f(xt+s(ω))1Ωm = h(xm(ω), xm+(ω), τ1(ω), · · · , τm+1(ω)), a.s. (2.38)

Then we have

E
{
f(xt+s)1Ωm |Fm

}

= E
{
h(xm, xm+ , τ1, · · · , τm+1) |Fm

}
, by (2.38)

= E
{
h(xm, xm+ , τ1, · · · , τm+1) | σ(xm, τ1, · · · , τm)

}
, by Lemma 2.2

, hm(xm, τ1, · · · , τm) (2.39)

Similarly, we have

E
{
hm(xm, τ1, · · · , τm) |Fm−1

}

= E
{
hm(xm, τ1, · · · , τm) |σ(xm−1, τ1, · · · , τm−1)

}
, by Lemma 2.2 and 2.3

, hm−1(xm−1, τ1, · · · , τm−1) (2.40)
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Hence for k = 0, 1, · · · ,m − 1, we have

E
{
hm−k(xm−k, τ1, · · · , τm−k) |Fm−k−1

}

= E
{
hm−k(xm−k, τ1, · · · , τm−k) | σ(xm−k−1, τ1, · · · , τm−k−1)

}
, by Lemma 2.2 and 2.3

, hm−k−1(xm−k−1, τ1, · · · , τm−k−1) (2.41)

Then we obtain that

E
{
f(xt+s)1Ωm |Ft

}

= E

{
E

{
· · ·E

{
f(xt+s)1Ωm |Fm

}
· · · |F1

}
|Ft

}
, by the smoothing property

= E

{
E

{
· · ·E

{
f(xt+s)1Ωm |σ(xm, τ1, · · · , τm)

}
|σ(xm−1, τ1, · · · , τm−1)

· · · |σ(x1, τ1)
}
|σ(xt)

}
, by (2.39), (2.40) and (2.41)

= E

{
E

{
· · ·E

{
f(xt+s)1Ωm |Fm

}
· · · |F1

}
|σ(xt)

}
, by (2.39), (2.40) and (2.41)

= E
{
f(xt+s)1Ωm |σ(xt)

}
, by the smoothing property,

which is the conclusion. �

Theorem 2.1 For all t, s, t+ s ∈ [0, T ] and any bounded measurable function f : X → R,
subject to any state dependent control law u ∈ U [0, T ], we obtain that

E
{
f(xt+s) |Ft

}
= E

{
f(xt+s) |σ(xt)

}
, (2.42)

i.e. state feedback causes the overall closed loop loss network system to generate a Markov
state process.

Furthermore, in case that the state dependent control law u is time shift invariant,

E
{
f(xt+s) |Ft

}
= E

{
f(x′

s) |σ(x′
0)
}
, with x′

0(ω) = xt(ω), a.s., (2.43)

i.e. the state process x is a homogeneous Markov process when x is subject to a time shift
invariant state dependent control law.

Proof. For any fixed instants t, t + s ∈ [0, T ], s ≥ 0, we denote the measurable set that
exactly m, m ∈ Z+ events occur during [t, t + s] by Ωm.

We observe that

Ω =
⋃

m∈Z+

Ωm, and Ωm

⋂
Ωn = ∅, ∀ m 6= n, m, n ∈ Z+,
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i.e. Ω is the disjoint union of {Ωm;m ∈ Z+}.

Then we have

E
{
f(xt+s) |Ft

}
= E

{
f(xt+s)

∑

m∈Z+

1Ωm |Ft

}
= E

{ ∑

m∈Z+

f(xt+s)1Ωm |Ft

}
,

=
∑

m∈Z+

E
{
f(xt+s)1Ωm |Ft

}
(2.44)

Similarly

E
{
f(xt+s) |σ(xt)

}
=
∑

m∈Z+

E
{
f(xt+s)1Ωm |σ(xt)

}
(2.45)

Then by (2.44), (2.45) and Lemma 2.4, we get

E
{
f(xt+s) |Ft

}
= E

{
f(xt+s) |σ(xt)

}
,

which is the conclusion.

In the case that the state dependent control law u is time shift invariant, the probability
distribution of sequence of event intervals after t given the state value xt, is independent
of the information before t and the value of t, then parallel with the proof procedure of
(2.47), one may prove that, subject to a time shift invariant state dependent control law
u, the following holds

E
{
f(xt+s) |Ft

}
= E

{
f(x′

s) |σ(x′
0)
}
, with x′

0 = xt, a.s. (2.46)

i.e. the state process is a homogeneous Markov process subject to a time shift invariant
state dependent control law. �

Lemma 2.5 For all t, s, t + s ∈ [0, T ] and any bounded measurable function f : Z → R,
subject to any state dependent control law u ∈ U [0, T ], we obtain that

E
{
f(zt+s) |Ft

}
= E

{
f(zt+s) |σ(zt)

}
(2.47)

Proof. The proof is parallel with that of Theorem 2.1. �

3 Optimal Control for Loss Network Systems

3.1 CAC and RC Problems for Loss Network Systems

The CAC and RC problems for the loss network systems can be formulated as optimal
stochastic control problems, which require the specifications of i) the state dynamics and
then ii) a (system) loss function covering a given interval.
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Definition 3.1 The (State Dependent) Optimal Stochastic Control (OSC) Problem for
finite horizon loss network systems is defined as follows:
For any instant s ∈ [0, T ) and the pre-state value at s as zs : Ω → Z, consider a finite loss
network system in the state transition equation specified in Definition (2.13), subject to
an admissible state dependent control law u ∈ U [s, T ]:

zt = zt(zs, u
t
s), s ≤ t ≤ T, (3.48)

with zt(zs, u
t
s) denotes the pre-state value at t subject to the control law u with the pre-state

value at s as zs. And consider the cost function as

J(s, zs;u) = E
{∫ T

s

g(t, zt)dt
∣∣Fs

}
, (3.49)

where the loss function g : [s, T ]×Z → R is bounded and measurable with respect to (t, z).

Then the optimal stochastic control (OSC) problem (subject to admissible state depen-
dent control laws) is given by the infimization:

Vns(s, ζs) ≡ V (s, zs) = inf
u∈U [s,T ]

J(s, ξ;u), with zs = (ns, ζs), (3.50)

where the function V ≡ {Vn : [s, T ] × Γn → R;n ∈ N} is called the value function of the
OSC problems. In case an infimizing function u0 ∈ U [s, T ] exists, u0 shall be called an
optimal control law for OSC problems.

The Optimal Stochastic Control (OSC) Problem for infinite loss network systems is
defined same as the above with respect to the interval [s,∞). �

Theorem 3.1 [6] Consider a loss network system in the state transition equation subject
to admissible state dependent control laws with the initial pre-state value at s as zs : Ω →
Z, s ∈ [0, T ); then the value function V satisfies

Vns(s, ζs) = inf
u∈U [s,t]

E
{∫ t

s

g(ν, zν)dν + Vnt(t, ζt)
∣∣Fs

}
,

where nt ≡ nt(zs, u
t
s) and ζt ≡ ζt(zs, u

t
s). �

3.2 Dynamic Programming and the HJB Equation

3.2.1 The Strong Generator

Definition 3.2 For any measurable function F : [0, T ] × Z → R and any t ∈ [0, T ], if the
following exists

lim
ε↓0

1

ε
E
{
F (t + ε, zt+ε) − F (t, zt)|zt

}
, (3.51)
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we call (3.51), denoted by A, the Strong Generator of F at an instant t, i.e.

AF (t, zt) , lim
ε↓0

1

ε
E
{
F (t + ε, zt+ε) − F (t, zt)|zt

}
. (3.52)

And for any measurable function F , if (3.51) exists, it belongs to the Domain of the Strong
Generator, denoted by D(A). �

Remark: the measurable function F : [0, T ] × Z → R may be considered as a group of
measurable functions, such that F = {Fn : [0, T ] × Γn → R; n ∈ N}.

For any n ∈ N , we consider the following assumptions:

(S4) For any event e ∈ En, denote λe(ζ) as the arrival rate of e w.r.t. an age vector value
of ζ, such that λe(ζ) : Γn → R+, is bounded and continuous from right;

(S5) The loss function gn(t, ζ) : [0, T ] × Γn → R is bounded and continuous from right
with respect to (t, ζ). �

Remark: In Assumption (S4), by Assumptions (S2,S3), we have

λe(ζ) = λe(ζe), for all ζ ∈ Γn,

where ζe, the sojourn time of the event e, is a component of the age vector value ζ.

Recall: From Definition 2.13, we have, for any state value x = (n, ζ, e) ∈ X and an
admissible state dependent control u ∈ U(x), denote

(
n + u,A[IM − ee′]ζ

)
by z ◦ u.

Theorem 3.2 Suppose that a measurable function F = {Fn : [0, T ] × Γn → R; n ∈ N}
is such that Fn ∈ C1([0, T ] × Γn), for all n ∈ N , then F ∈ D(A), i.e. F belongs to the
domain of the strong generator A, and

AF (t, zt) =
[ ∂

∂t
+

d(ζt)∑

i=1

∂

∂ζi
t

]
F (t, zt) +

∑

e∈Ent

λe(ζt)
[
F
(
t, zt ◦ ut(zt, e)

)
− F (t, zt)

]
, (3.53)

where t ∈ [0, T ], zt ≡ (nt, ζt), d(ζt) and ζi
t denote the dimension and ith component of the

vector ζt, respectively.

Proof. For all sufficient small positive value ε > 0, an event e ∈ Ent occurs in [t, t + ε]
with probability λe(ζt)ε + o(ε); while by Assumptions (S1) - (S3), no event occurs during
[t, t + ε] with probability (1−

∑
e∈Ent

λe(ζt)ε + o(ε)) and with probability o(ε), more than
2 events occurs.

We denote Ωe, Ω0, Ω2 as the measurable set that single event e, non event and more
than two events occurs during [t, t + ε] respectively, then by the fact that Ω is the disjoint
union of Ω0, Ω2, and Ωe, for all e ∈ Ent , we have

zt+ε = zt+ε1Ω0∪e∈Ent
Ωe∪Ω2 = zt+ε1Ω0 + zt+ε1Ω2 +

∑

e∈Ent

zt+ε1Ωe (3.54)
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Suppose that single event e which occurs during [t, t + ε] occurs at t + ε′ ∈ [t, t + ε], and
an admissible state dependent control law u ∈ U [0, T ] is implemented at the instant t + ε′.
Then, by the state transition equation, we have

zt+ε1Ωe =
(
zt+ε′ + (0n, [ε − ε′]1ζt+ε′

)
)
1Ωe =

(
z(t+ε′)− ◦ u

)
1Ωe + (0n, [ε − ε′]1ζt+ε′

) 1Ωe ,

(3.55)

where z(t+ε′)− = zt + (0n, ε′1ζ), and u ≡ ut+ε′(z(t+ε′)− , e).

In case that no event occurs during [t, t+ ε], by the state transition equation, we obtain
that

zt+ε1Ω0 =
(
zt + (0n, ε1ζ)

)
1Ω0 (3.56)

Hence, by (3.54), (3.55) and (3.56), we have

E
{
F (t + ε, zt+ε)|zt

}

=
[
1 −

∑

e∈Ent

λe(ζt)ε + o(ε)
]

F
(
t + ε, zt + (0n, ε1ζ)

)

+
∑

e∈Ent

[
λe(ζt) ε + o(ε)

]
F
(
t + ε, z′

)

=
[
1 −

∑

e∈Ent

λe(ζt)ε
]

F
(
t + ε, zt + (0n, ε1ζ)

)

+
∑

e∈Ent

λe(ζt) ε F
(
t + ε, z′

)
+ o(ε), since F is bounded,

where z′ =
(
z(t+ε′)− ◦ u

)
1Ωe + (0n, [ε − ε′]1ζt+ε′

). Thus we obtain

1

ε
E
{
F (t + ε, zt+ε) − F (t, zt)|zt

}

=
1

ε

[
F (t + ε, zt + (0n, ε1ζ)) − F (t, zt)

]
−
∑

e∈Ent

λe(ζt)F
(
t + ε, zt + (0n, ε1ζ)

)

+
∑

e∈Ent

λe(ζt)F
(
t + ε, z′

)
+ o(1)

≡ α(F, t, zt, ε) + β(F, t, zt, ε) + γ(F, t, zt, ε, e, u) + o(1) (3.57)

Then in the case that ε converges to 0, we obtain that

lim
ε↓0

α(F, t, zt, ε)

= lim
ε↓0

1

ε

[
F (t + ε, zt + (0n, ε1ζ)) − F (t, zt)

]
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= lim
ε↓0

1

ε

[
F (t + ε, zt + (0n, ε1ζ)) − F (t, zt + (0n, ε1ζ))

]

+ lim
ε↓0

1

ε

[
F (t, zt + (0n, ε1ζ)) − F (t, zt)

]

=
∂+

∂t
F (t, zt+) +

d(ζt)∑

i=1

∂+

∂ζi
t

F (t, zt)

=
[ ∂

∂t
+

d(ζt)∑

i=1

∂

∂ζi
t

]
F (t, zt), since F ∈ C1([0, T ] × Z), (3.58)

where zt ≡ (nt, ζt) and d(ζt) denotes the dimension of ζt.

And, by Assumption (S4) and the continuity of the function F

lim
ε↓0

β(F, t, zt, ε) = − lim
ε↓0

∑

e∈Ent

λe(ζt)F
(
t + ε, zt + (0n, ε1ζ)

)
= −

∑

e∈Ent

λe(ζt)F (t, zt)

(3.59)

Also we have

lim
ε↓0

z′(t, zt, ε
′, e, ε)

= lim
ε↓0

(
z(t+ε′)− ◦ ut+ε′(z(t+ε′)− , e)

)
+ (0n, [ε − ε′]1ζt+ε′

), with z(t+ε′)− = zt + (0n, ε′1ζt
)

= zt ◦ ut(zt, e), since zt + (0n, ε′1ζt
)

ε↓0
−−→ zt and [ε − ε′]1ζt+ε′

ε↓0
−−→ 0ζt

(3.60)

Hence, by (3.60), we obtain that

lim
ε↓0

γ(F, t, zt, ε, e, u) = lim
ε↓0

∑

e∈Ent

λe(ζt)F
(
t + ε, z′

)
=

∑

e∈Ent

λe(ζt)F
(
t, zt ◦ ut(zt, e)

)

(3.61)

Then, by (3.57) − (3.61), we obtain that

AF (t, zt) = lim
ε↓0

1

ε
E
{
F (t + ε, zt+ε) − F (t, zt)|zt

}

=
[ ∂

∂t
+

d(ζt)∑

i=1

∂

∂ζi
t

]
F (t, zt) +

∑

e∈Ent

λe(ζt)
[
F (t, zt ◦ ut(zt, e)) − F (t, zt)

]
,

which is the conclusion. �
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Theorem 3.3 (The Martingale Property)

Consider a measurable function F ∈ D(A) and Ct, for all t ∈ [0, T ], is specified as

Ct , F (t, zt) − F (0, z) −

∫ t

0
AF (ν, zν)dν (3.62)

Then {Ct} is a (Ω,F ,Ft, P)-Martingale, i.e. E{Ct|Fs} = Cs, for any s ∈ [0, t].

Proof. From (3.62) and Lemma 2.5,

E{(Ct − Cs)|Fs} = E{F (t, zt)|zs} − F (s, zs) − E{

∫ t

s

AF (r, zr)dr|zs} (3.63)

Hence, to show {Ct} is a (Ω,F ,Ft, P)-Martingale, it is sufficient to prove that

E{F (t, zt)|zs} − F (s, zs) − E{

∫ t

s

AF (r, zr)dr|zs} = 0 (3.64)

For any sequence of random variables, {Xε(ω)} and X(ω) in (Ω,F , P ), such that Xε
ε↓0
−−→ X

a.s., E{Xε|G}
ε↓0
−−→ E{X|G} a.s., where the σ-field G ⊂ F . Hence,

E
{
AF (t, zt)|zs

}

= E

{
lim
ε↓0

1

ε
E
{
F (t + ε, zt+ε) − F (t, zt)|zt

}
|zs

}

= lim
ε↓0

1

ε
E

{
E
{
F (t + ε, zt+ε) − F (t, zt)|zt

}
|zs

}

= lim
ε↓0

1

ε
E
{
F (t + ε, zt+ε) − F (t, zt)|zs

}
, by Lemma 2.5

= lim
ε↓0

1

ε

[
E{F (t + ε, zt+ε)|zs} − E{F (t, zt)|zs}

]

=
d+

dt
E{F (t, zt)|zs}, where

d+

dt
denotes the right derivative. (3.65)

Similarly, E
{
AF (t, zt)|zs

}
= d−

dt
E{F (t, zt)|zs}, where d−

dt
denotes the left derivative.

So, for any t ∈ [0, T ],

E
{
AF (t, zt)|zs

}
=

d−

dt
E{F (t, zt)|zs} =

d+

dt
E{F (t, zt)|zs} =

d

dt
E{F (t, zt)|zs}, a.s.
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Hence we obtain that

E{F (t, zt)|zs} − F (s, zs)

=

∫ t

s

d

dν
E{F (ν, zν)|zs}dν =

∫ t

s

E
{
AF (ν, zν)|zs

}
dν (3.66)

For an integrable random process {yt, t ∈ [0, T ]} in (Ω,F , P) and any A ∈ F , we have

1A

∫ t

s

yνdν =

∫ t

s

1Ayνdν, a.s., (3.67)

where 1A denotes an indicate function.

But, for any A ∈ σ(zs), and for any t, such that 0 ≤ s ≤ t ≤ T ,

E

{
1A

∫ t

s

E{yν |zs}dν
}

= E

{∫ t

s

1AE{yν|zs}dν
}

=

∫ t

s

E

{
1AE{yν|zs}

}
dν

=

∫ t

s

E
{
1Ayν

}
dν, since 1A is σ(zs) measurable

= E

{∫ t

s

1Ayνdν
}

= E

{
1A

∫ t

s

yνdν
}

, a.s. (3.68)

By the definition of conditional expectation, (3.68) implies that

∫ t

s

E{yν |zs}dν = E
{∫ t

s

yνdν|zs

}
, a.s. (3.69)

Hence consider yν = AF (ν, zν), by (3.69), we obtain that

∫ t

s

E{AF (ν, zν)|zs}dν = E
{∫ t

s

AF (ν, zν)dν|zs

}
, a.s. (3.70)

By (3.66) and (3.70), we obtain (3.64) which implies the conclusion. �

Remark: In case that the function F is time independent, the Martingale property shall
be proved by applying the time-homogeneity property of the operator E|(0,z){F (z.)}, see
Proposition 14.13 in [4].
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Corollary 3.1 (The Dynkin Formula)

For any measurable function F ∈ D(A) and fixed initial pair (s, z), with s ∈ [0, T ],
zs = z ∈ Z,

E|(s,z){F (t, zt)} = F (s, z) + E|(s,z)

{∫ t

s

AF (r, zr)dr
}

(3.71)

Proof. (3.71) is a special form of (3.64) with a deterministic pre-state value z at the
initial instant s. �

3.2.2 HJB Equations for Loss Network System Control

Consider a class of OSC problems defined in Definition 3.1 with the hypothesis of the
smoothness of the value function V = {Vn : [0, T ]×Γn;n ∈ N} such that Vn ∈ C1([0, T ]×
Γn), for all n ∈ N , then the value function is a classical solution of the first order PDEs
which are indexed by the integer value n ∈ N .

In Theorem 3.4, we consider the OSC problems for the loss network system such that
the random call request processes are renewal processes which are not necessarily Pois-
son processes and the random sojourn times of the active connections are not necessarily
exponentially distributed.

Theorem 3.4 (The HJB Equation for Finite Horizon OSC Problems)

Consider the OSC problems defined in Definition (3.1) with the finite horizon [0, T ].
Consider that the value function V = {Vn ∈ C1([0, T ] × Γn), for all n ∈ N}. Then V is
a classical solution of the array of coupled first order PDEs with as many PDE’s as the
cardinality of the admissible connections space::

0 =
[ ∂

∂t
+

d(ζ)∑

i=1

∂

∂ζi

]
Vn(t, ζ) + g(t, z)

+
∑

e∈En

λe(ζ)
[

min
ut∈U(z,e)

Vn+ut(z,e)(t, ζ ◦ ut(z, e)) − Vn(t, ζ)
]
, (3.72)

with the boundary condition Vn(T, ζ) = 0, for any z = (n, ζ) ∈ Z, and ζi denotes the i-th
component of the vector ζ.

Proof. Consider the pre-state at instant s as zs = z ∈ Z. Denote {zt; t ∈ [s, T ]} as the
controlled pre-state process subject to the control law u ∈ U [s, T ] with the initial pre-state
value at s as z.

(i) By Theorem 3.2, in case the value function V is such that Vn ∈ C1([0, T ]× Γn), for
all n ∈ N , then V ∈ D(A). Also by the Dynkin formula, for any t ∈ [s, T ], we have

E|(s,z){Vnt(t, ζt)} = Vn(s, ζ) + E|(s,z)

{∫ t

s

AVnν (ν, ζν)dν
}
, (3.73)
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where, for notational simplicity, we consider E{.} ≡ E|(s,z){.}.

By the Principle of Optimality, we obtain

Vn(s, ζ) ≤ E|(s,z)

{∫ t

s

g
(
ν, zν

)
dν + Vnt(t, ζt)

}
, ∀ t ∈ (s, T ] (3.74)

Thus, by (3.73) and (3.74), for any admissible state dependent control law u ∈ U [s, t],

0 ≤
1

t − s
E|(s,z){Vnt(t, ζt) − Vn(s, ζ)} +

1

t − s
E|(s,z)

{∫ t

s

g
(
ν, zν

)
dν
}

=
1

t − s
E|(s,z)

{∫ t

s

AVnν (ν, ζν) + g
(
ν, zν

)
dν
}

=
1

t − s
E|(s,z)

{∫ t

s

[[ ∂

∂ν
+

d(ζν)∑

i=1

∂

∂ζi
ν

]
Vnν (ν, ζν) + g

(
ν, zν

)

+
∑

e∈Enν

λe(ζν)
[
Vnν+uν(zν ,e)(ν, ζν ◦ uν(zν , e)) − Vnν (ν, zν)

]]
dν

}

t↓s
−−→

[ ∂

∂s
+

d(ζ)∑

i=1

∂

∂ζi

]
Vn(s, ζ) + g(s, z)

+
∑

e∈En

λe(ζ)
[

min
us∈U(z,e)

Vn+us(z,e)(s, ζ ◦ us(z, e)) − Vn(s, ζ)
]
,

where the last convergence holds by the hypothesis of Vn ∈ C1([0, T ] × Γn), for all n ∈ N ,
and Assumptions (S4) and (S5), i.e. λe(.) and g(.) is bounded and right continuous. Hence
we obtain that

0 ≤
[ ∂

∂s
+

d(ζ)∑

i=1

∂

∂ζi

]
Vn(s, ζ) + g

(
s, z
)

+
∑

e∈En

λe(ζ)
[

min
us∈U(z,e)

[
Vn+us(z,e)(s, ζ ◦ us(z, e)) − Vn(s, ζ)

]
(3.75)

(ii) For any ε > 0, s < t ≤ T , with t− s small enough, there exists an admissible state
dependent control law uε,t ∈ U([s, t]), such that

Vn(s, ζ) + ε[t − s] ≥ E|(s,z)

{∫ t

s

g
(
ν, zν

)
dt + Vnt(t, ζt)

}

Thus by the Dynkin Formula, we obtain that

−ε ≤ −
1

t − s
E|(s,z)

{
Vnt(t, ζt) − Vn(s, ζ)

}
−

1

t − s
E|(s,z)

{∫ t

s

g
(
ν, zν

)
dν
}
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= −
1

t − s
E|(s,z)

{∫ t

s

AVnν (ν, ζν) + g
(
ν, zν

)
dν
}

=
1

t − s

∫ t

s

[
−
[ ∂

∂ν
+

d(ζν)∑

i=1

∂

∂ζi
ν

]
Vnν (ν, ζν) − g

(
ν, zν

)

−
∑

e∈Enν

λe(ζν)
[
V

nν+u
ε,t
ν (zν ,e)

(
ν, ζν ◦ uε,t

ν (zν , e)
)

− Vnν (ν, ζν)
]]

dν

t↓s
−−→ −

[ ∂

∂s
+

d(ζ)∑

i=1

∂

∂ζi

]
Vn(s, ζ) − g

(
s, z
)

−
∑

e∈En

λe(ζ)
[
V

n+u
ε,t
s (z,e)

(
s, ζ ◦ uε,t

s (z, e)
)
− Vn(s, ζ)

]
, (3.76)

where the last convergence holds by the hypothesis of Vn ∈ C1([0, T ] × Γn), for all n ∈ N ,
and Assumptions (S4) and (S5). Hence by (3.76), for any ε > 0, we have

−ε ≤ −
[ ∂

∂s
+

d(ζ)∑

i=1

∂

∂ζi

]
Vn(s, ζ) − g

(
s, z
)

−
∑

e∈En

λe(ζ)
[

min
us∈U(z,e)

Vn+us(z,e)

(
s, ζ ◦ us(z, e)

)
− Vn(s, ζ)

]
,

which implies that

0 ≥
[ ∂

∂s
+

d(ζ)∑

i=1

∂

∂ζi

]
Vn(s, ζ) + g

(
s, z
)

+
∑

e∈En

λe(ζ)
[

min
us∈U(z,e)

Vn+us(z,e)

(
s, ζ ◦ us(z, e)

)
− Vn(s, ζ)

]
(3.77)

Then by (3.75) and (3.77), for any pair of values (s, z) ∈ [0, T ] × Z, we obtain that

0 =
[ ∂

∂s
+

d(ζ)∑

i=1

∂

∂ζi

]
Vn(s, ζ) + g

(
s, z
)

+
∑

e∈En

λe(ζ)
[

min
us∈U(z,e)

Vn+us(z,e)

(
s, ζ ◦ us(z, e)

)
− Vn(s, ζ)

]
,

which is the conclusion. �

With the assumption of the uniqueness of the solution for the HJB equation developed
in Theorem 3.4, if we obtain the value function by solving the HJB equation, then we could
construct an optimal pair (z0, u0) for the underlying OSC problems.
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But in general the smoothness of the value function V or uniqueness of the classical
solutions to the HJB PDEs may not hold. Consequently, in [10] we develop the viscosity
solutions to the HJB PDEs and show that, under some mild conditions, the continuous
value function V is the unique viscosity solution to the collection of HJB PDEs.

In Corollary 3.2, we consider the OSC problems for the loss network system with Poisson
call request processes and exponential distributed connection sojourn times. In this case,
the pre-state value degenerates into z = n ∈ N , i.e. the real valued part ζ disappears since
the system is memoryless with Poisson call request processes and exponential distributed
connection sojourn times; then the underlying HJB equation collapses into a group of
coupled first order ODEs.

Corollary 3.2 If the value function V = {Vn : [0, T ] → R} is such that Vn ∈ C1([0, T ]),
for all n ∈ N , then V is a classical solution of the first order ODE system,

0 =
d

dt
Vn(t) + g(t, n) +

∑

e∈En

λe(n)
[

min
ut∈U(n,e)

Vn+ut(n,e)(t) − Vn(t)
]
, (3.78)

with the boundary condition as Vn(T ) = 0, for all n ∈ N .

Proof. This is the special form of the HJB equation in Theorem 3.4 with Z = N . �

Lemma 3.1 Consider the OSC problems with a class of infinite horizon integral cost
functions with the loss function g : [0, T ] × Z → R, such that g(t, zt) = e−βtg(zt), hence,
for any admissible state dependent control law u ∈ U [t,∞), we have

J(t, z;u) = E|(t,z)

{∫ ∞

t

g(ν, zν)dν
}

= E|(t,z)

{∫ ∞

t

e−βνg(zν)dν
}
,

with the pair of values (t, z) ∈ [0,∞) × Z. Then the value function V satisfies

Vn(t, ζ) = inf
u∈U [t,∞)

J(t, z;u) = e−βtVn(0, ζ)

Proof. Given any pre-state value z ∈ Z, denote xu
(0) : [0,∞) × Ω → X as the state

process with the initial pre-state value at 0 as z subject to the admissible state dependent
control law u ∈ U [0,∞); and xeu

(t) : [t,∞) × Ω → X as the state process with the initial

pre-state value at t as z subject to the admissible state dependent control law ũ ∈ U [t,∞).

Hence, by the state transition equations specified in (2.14, 2.15), together with Assump-
tions (S1)–(S3), i.e. the rates of the point processes are time shift invariant, subject to
ũ(t + s) = u(s), for any s ∈ R+, the following holds

Family of ũ controlled F.D.D.s of xeu
(t) = Family of u controlled F.D.D.s of xu

(0), (3.79)

where F.D.D.s of x denote the finite dimensional distributions of process x.
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By (3.79) and the specification of the loss function g(t, z) = e−βtg(z), for any t ∈ [0,∞),
z ∈ Z, we obtain that

J(t, z; ũ) = e−βtJ(0, z;u) (3.80)

Then by (3.80), we have Vn(t, ζ) = e−βtVn(0, ζ) ≡ e−βtVn(ζ), which is the conclusion. �

In the proof of the following theorem the proof strategy of establishing the two inequal-
ities in parts (i) and (ii) follows that used in [16].

Theorem 3.5 (The HJB Equation for Discounted Infinite Horizon OSC Problems)

Suppose that the value function V = {Vn : Γn → R} is such that Vn ∈ C1(Γn), for all
n ∈ N . Then V is a solution of the group of coupled first-order PDEs:

0 = βVn(ζ) −

d(ζ)∑

i=1

∂

∂ζi
Vn(ζ) − g(z)

−
∑

e∈En

λe(ζ)
[

min
u∈U(z,e)

Vn+u(z,e)

(
ζ ◦ u(z, e)

)
− Vn(ζ)

]
, (3.81)

with the condition |Vn(ζ)| ≤
∫∞
0 e−βsLds = L

β
, for any z = (n, ζ) ∈ Z, and ζi denotes the

i-th component of the vector ζ.

Proof. For any instant t ∈ R+, z = (n, ζ) ∈ Z, let {zt; t ∈ [0,∞)} be the pre-state
trajectory subject to and a state dependent control law u ∈ U [t,∞), with the initial state
value at t as z. By Theorem 3.2 and Lemma 3.1, we have

AVnt(t, ζt)

=
[ ∂

∂t
+

d(ζt)∑

i=1

∂

∂ζi
t

]
Vnt(t, ζt) +

∑

e∈Ent

λe(ζt)
[
Vnt+ut(zt,e)

(
t, ζt ◦ ut(zt, e)

)
− Vnt(t, ζt)

]

=
[ ∂

∂t
+

d(ζt)∑

i=1

∂

∂ζi
t

]
e−βtVnt(ζt) +

∑

e∈Ent

λe(ζt)
[
e−βtVnt+ut(zt,e)(ζt ◦ ut(zt, e)

)
− e−βtVnt(ζt)

]

= e−βt

[
− βVnt(ζt) +

d(ζt)∑

i=1

∂

∂ζi
t

Vnt(ζt)

+
∑

e∈Ent

λe(ζt)
[
Vnt+ut(zt,e)

(
ζt ◦ ut(zt, e)

)
− Vnt(ζt)

]]
(3.82)

(i). By the Principle of Optimality, for any t, t ∈ (0,∞), we obtain that

Vn(ζ) ≡ Vn(0, ζ) ≤ E|(0,z)

{∫ t

0
e−βνg(zν)dν + Vnt(t, ζt)

}
, (3.83)



Les Cahiers du GERAD G–2007–53 29

Thus by (3.83), for any admissible state dependent control law u ∈ U [0, t], we obtain that

0 ≥ −
1

t
E|(0,z){Vnt(t, ζt) − Vn(ζ)} −

1

t
E|(0,z)

{∫ t

0
e−βνg(zν)dν

}

= −
1

t
E|(0,z)

{∫ t

0

[
AVnν (ν, ζν) + e−βνg(zν)

]
dν
}

=
1

t
E|(0,z)

{∫ t

0
e−βν

[
βVnν (ζν) −

d(ζν)∑

i=1

∂

∂ζi
ν

Vnν (ζν) − g(zν)

−
∑

e∈Enν

λe(ζν)
[
Vnν+uν(zν ,e)

(
ζν ◦ uν(zν , e)

)
− Vnν (ζν)

]]
dν

}

t↓0
−−→ β Vn(ζ) −

d(ζν)∑

i=1

∂

∂ζi
ν

Vnν (ζν) − g(z) −
∑

e∈En

λe(ζ)
[
Vn+u(z,e)

(
ζ ◦ u(z, e)

)
− Vn(ζ)

]
,

where the last convergence holds by the hypothesis of the value function Vn ∈ C1(Γn),
for all n ∈ N and Assumptions (S4) and (S5), i.e. λe(.) and g(.) is bounded and right
continuous. Hence for any z ∈ Z, we obtain that

0 ≥ β Vn(ζ) −

d(ζ)∑

i=1

∂

∂ζi
Vn(ζ) − g(z) −

∑

e∈En

λe(ζ)
[

min
u∈U(z,e)

Vn+u(z,e)

(
ζ ◦ u(z, e)

)
− Vn(ζ)

]
.

(ii). For any ε > 0, 0 < t < ∞ with t > 0 small enough, there exists an admissible
state dependent control uε,t ∈ U [0, t] such that,

Vn(0, ζ) + ε(t) ≥ E|(0,z)

{∫ t

0
e−βνg(zν)dν + Vnt(t, ζt)

}

Thus from Theorem 3.2, we obtain that

−ε ≤ −
1

t
E|(0,z)

{
Vnt(t, ζt) − Vn(0, ζ)

}
−

1

t
E|(0,z)

{∫ t

s

g
(
ν, zν

)
dν
}

= −
1

t
E|(0,z)

{∫ t

s

AVnν (ν, ζν) + g
(
ν, zν

)
dν
}

=
1

t
E|(0,z)

{∫ r

s

te−βν
[
βVnν (ζν) −

d(ζν )∑

i=1

∂

∂ζi
ν

Vnν (ζν) − g(zν)

−
∑

e∈Enν

λe(ζν)
[
Vnν+uν(zν ,e)

(
ζν ◦ uν(zν , e)

)
− Vnν (ζν)

]]
dν

}
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t↓0
−−→ βV (z) −

d(ζ)∑

i=1

∂

∂ζi
Vn(ζ) − g(z) −

∑

e∈En

λe(ζ)
[
Vn+u(z,e)

(
ζ ◦ u(z, e)

)
− Vn(ζ)

]
,

where the last convergence holds by the hypothesis of the value function Vn ∈ C1(Γn), for
all n ∈ N and Assumptions (S4) and (S5). Hence for any z ∈ Z, we have

−ε ≤ βVn(ζ) −

d(ζ)∑

i=1

∂

∂ζi
Vn(ζ) − g(z) −

∑

e∈En

λe(ζ)
[

min
u∈U(z,e)

Vn+u(z,e)

(
ζ ◦ u(z, e)

)
− Vn(ζ)

]
,

which holds for any ε > 0, so

0 ≤ βVn(ζ) −

d(ζ)∑

i=1

∂

∂ζi
Vn(ζ) − g(z) −

∑

e∈En

λe(ζ)
[

min
u∈U(z,e)

Vn+u(z,e)

(
ζ ◦ u(z, e)

)
− Vn(ζ)

]
,

Since the conclusions from (i) and (ii) hold for any fixed z = (n, ζ) ∈ Z, hence,

βVn(ζ) =

d(ζ)∑

i=1

∂

∂ζi
Vn(ζ) + g(z) +

∑

e∈En

λe(ζ)
[

min
u∈U(z,e)

Vn+u(z,e)

(
ζ ◦ u(z, e)

)
− Vn(ζ)

]
,

which is the conclusion. �

Consider the OSC problems in Theorem 3.5, with the Poisson call request processes
and exponentially distributed connection sojourn times, the first order PDE HJB equation
degenerates into the group of integer indexed piecewise linear equations.

Corollary 3.3 The value function V : N → R is a solution of the following equations:

βVn = gn +
∑

e∈En

λe(n)
[

min
u∈U(n,e)

{
Vn+u(n,e)

}
− Vn

]
, for all n ∈ N (3.84)

Proof. It is a special form of the HJB equation of (3.81) without the partial derivative
parts. �

Definition 3.3 (Policy Value Set)

The policy (value) u(z) with respect to the pre-state value z ≡ (n, ζ) ∈ Z is defined as

u(z) =
{
u(z, e) ∈ U(z, e); e ∈ En

}
(3.85)

We denote the policy set {u(z)}, with respect to z ∈ Z, by U(z).

U(z) =
{
u(z); e ∈ En, u(z, e) ∈ U(z, e)

}
(3.86)

�
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Corollary 3.4 The HJB equation, in Corollary 3.3, for discounted infinite horizon OSC
Problems with Poisson call request processes and exponentially distributed connection
sojourn times, is equivalent to the Bellman Equation for discrete-time discounted infinite
horizon OSC Problems with the discounted factor α, controlled transition probability P̃

and loss function g̃

Vn = g̃(n) + α min
u∈U(n)

{∑

n′∈N

P̃(n, n′;u)Vn′

}
, n ∈ N ,

where

α =
λ

λ + β
, λ ∈ R+, such that λ > λ(n) ≡

∑

e∈En

λe(n), for any n

g̃(n) =
g(n)

λ + β

P̃(n, n′;u) =

{
λ(n)

λ
P(n, n′;u), if n′ 6= n

λ(n)
λ

P(n, n;u) + 1 − λ(n)
λ

, if n′ = n

where P(n, n′;u) denotes the controlled transition probability.

Proof.

0 = β Vn − g(n) +
∑

e∈En

λe(n)Vn −
∑

e∈En

λe(n) min
u∈U(n,e)

Vn+u(n,e)

= g(n) +
[ ∑

e∈En

λe(n) min
u∈U(n,e)

Vn+u(n,e)

]
−
[
β +

∑

e∈En

λe(n)
]
Vn

Hence

0 =
g(n)

λ + β
+

[ ∑

e∈En

λe(n)

λ(n)

λ(n)

λ

λ

λ + β
min

u∈U(n,e)
Vn+u(n,e)

]
− Vn +

λ − λ(n)

λ + β
Vn,

= g̃(n) + α

[
λ(n)

λ

[ ∑

e∈En

λe(n)

λ(n)
min
u∈U

Vn+u(n,e)

]
+ [1 −

λ(n)

λ
]Vn

]
− Vn,

Then, for any n ∈ N , with the controlled transition probability P(n, n′;u) satisfying

∑

e∈En

λe(n)

λ(n)
Vn+u(n,e) =

∑

n′∈N

P(n, n′;u) Vn′ ,

we obtain that

Vn = g̃(n) + α

[
λ(n)

λ

[
min

u∈U(n)

∑

n′∈N

P(n, n′;u)Vn′

]
+ [1 −

λ(n)

λ
]Vn

]

= g̃(n) + α min
u∈U(n)

∑

n′∈N

P̃(n, n′;u)Vn′ ,

which is the conclusion. �
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4 Examples of Loss Network System Control

4.1 A Single-Link Network with One Unit Capacity

In this section, we study a class of OSC problems for a loss network system with a single
link network with one unit capacity.

(i) Consider a class of OSC problems where the call request processes are renewal pro-
cesses which are not necessarily Poisson processes, the sojourn times of active connec-
tions are not necessarily exponentially distributed, and a discounted infinite horizon
integral cost function as E{

∫∞
0 e−βtg(nt, ζt)dt}, with N = {0, 1}. Then the corre-

sponding HJB equation is specified as:

In case n = 0: Suppose that the age of system is ζ ≡ ζ〈o,d〉, and we know that
the event set with respect to n = 0 is E0 = {e+ ≡ e+

〈o,d〉 }, then the HJB equation

attached to n = 0 is:

β V0(ζ) =
∂

∂ζ
V0(ζ) + g(0, ζ) + λe+

[
min

u∈U(z,e+)
Vn+u(z,e+)

(
ζ ◦ u(z, e+)

)
− V0(ζ)

]
,

where

min
u∈U(z,e+)

Vn+u(z,e+)

(
ζ ◦ u(z, e+)

)
= min

{
V0(0), V1((0, 0))

}
.

In case n = 1: Suppose that the age of system is ζ = (ζ+, ζ−) ≡ (ζ〈o,d〉, ζc1), and we
have E1 = {e+, e− ≡ e−c1 }, then the HJB equation attached to n = 1 is:

β V1(ζ) =
( ∂

∂ζ+
+

∂

∂ζ−

)
V1(ζ) + g(1, ζ)

+ λe+
[

min
u∈U(z,e+)

Vn+u(z,e+)

(
ζ ◦ u(z, e+)

)
− V1(ζ)

]
+ λe−

[
V0(ζ

+) − V1(ζ)
]
,

where

min
u∈U(z,e+)

Vn+u(z,e+)

(
ζ ◦ u(z, e+)

)
= min

{
V1(0, ζ

c1)
}

= V1(0, ζ
−),

since, under the link capacity constraint, the call request e+ ≡ e+
〈o,d〉 has to be rejected

at the state value n = 1, i.e. there already exists an active connection in the link.

o d

Figure 4.5: A Single-Link Network with One Unit Capacity
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In summary, the HJB equation is:





[β + λ+(ζ+)]V0(ζ
+) = ∂

∂ζ+ V0(ζ
+) + λ+(ζ+)min{V0(0), V1(0, 0)},

[β + λ+(ζ+) + λ−(ζ−)]V1(ζ) = ∂
∂ζ+ V1(ζ) + ∂

∂ζ−
V1(ζ) + g(1, ζ)

+λ+(ζ+)V1(0, ζ
−) + λ−(ζ−)V0(ζ

+),

with the condition |V0(ζ
+)|, |V1(ζ

+, ζ−)| ≤ L
β
, for all ζ+, ζ− ∈ R+.

(ii) Consider a class of OSC problems where the call request process is a Poisson process

with the rate parameter as λ+ ≡ λ
e+
〈o,d〉 and the active connection sojourn times have

the departure rate as λ−(ζ) ≡ λe−c1 (ζ), ∀ζ ∈ R+, and the discounted infinite horizon
cost function is specified as

E{

∫ ∞

0
e−βtg(nt, ζt)dt}, with g(n, ζ) =

{
0, n = 0

−1, n = 1
, for all ζ ∈ R+

Then the HJB equation is:

{
βV0 = λ+

[
min{V0, V1(0)} − V0

]
,

βV1(ζ) = ∂
∂ζ

V1(ζ) − 1 + λ+[V1(ζ) − V1(ζ)] + λ−(ζ)[V0 − V1(ζ)],
(4.87)

with the condition |V0|, |V1(ζ
−)| ≤ L

β
, for all ζ− ∈ R+.

Lemma 4.1 V1(0) < V0, i.e. the optimal control is to accept a coming call request
whenever the network system is empty.

Proof.
1) Suppose that V1(0) > V0 then one obtains that [β + λ+]V0 = λ+V0, hence V0 = 0
and V1(0) > 0, but we observe that V1(0) ≤ 0;
2) Suppose that V1(0) = V0 then one obtains that V0 = V1(0) = 0, hence

d

dζ
V1(ζ) = [β + λ−(ζ)]V1(ζ) + 1,

with the initial value as V1(0) = 0. Then we obtain that V1(ζ) ≥ 0,∀ζ ∈ R+, but from
the definition of cost function, we observe that V1(ζ) ≤ 0, which is the contradiction.

Then from 1) and 2) we obtain the conclusion, V1(0) < V0. �

Then by (4.87) and Lemma 4.1, the HJB equation is specified as

{
[β + λ+]V0 = λ+V1(0),

d
dζ

V1(ζ) = [β + λ−(ζ)]V1(ζ) + [1 − λ−(ζ)V0],

with the boundary condition limζ→∞ V1(ζ) < ∞.
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The solution is

V1(0) = [1 +
β

λ+
]V0 (4.88)

V1(ζ) = exp(

∫ ζ

0
[β + λ−(r)]dr)V1(0)

+

∫ ζ

0
exp(

∫ ζ

s

[β + λ−(r)]dr)[1 − λ−(s)V0]ds (4.89)

Hence by (4.88) and (4.89), we obtain that

V0 =
V1(ζ) − eβζe

R ζ

0
λ−(s)ds

∫ ζ

0 e−βs−
R s

0
λ−(r)drds

eβζe
R ζ

0
λ−(s)ds[1 + β

λ+ ] − eβte
R ζ

0
λ−(s)ds

∫ ζ

0 e−βs−
R s

0
λ−(r)drλ−(s)ds

=
e−βζe−

R ζ

0 λ−(s)dsV1(ζ) −
∫ ζ

0 e−βs−
R s

0 λ−(r)drds

1 + β
λ+ −

∫ ζ

0 e−βsf(s)ds
, for all ζ ∈ R+, (4.90)

with f as the density function of connection sojourn times

Hence by (4.90), the boundary condition of limζ→∞ |V1(ζ)| < ∞, and the fact of

limζ→∞

∫ ζ

0 e−βsf(s)ds = E{e−βτ}, we obtain that

V0 = −
limζ→∞

∫ ζ

0 e−βs−
R s

0 λ−(r)drds

1 + β
λ+ − limζ→∞

∫ ζ

0 e−βsf(s)ds
= −

∫∞
0 e−βs−

R s

0 λ−(r)drds

1 + β
λ+ − E{e−βτ}

, (4.91)

where τ denotes the sojourn time of connections.

Then (4.91) together with (4.88) and (4.89) is a solution of the associated HJB
equation. �

(iii) Consider a class of OSC problems with a Poisson call request process and exponen-
tially distributed connection sojourn time, and a discounted infinite horizon integral
cost function as E{

∫∞
0 e−βtg(nt)dt}, with the loss function same as that in case ii).

Then the HJB equation is:

{
βV0 = λ+ min{V0, V1} − λ+V0

βV1 = −1 + λ+[V1 − V1] + λ−[V0 − V1]
,

where min{V0, V1} = V1, then the solution is

{
V0 = − λ+

β[λ++λ−+β]

V1 = −λ++λ−+β[λ++λ−+β]
β[λ−+β][λ++λ−+β]



Les Cahiers du GERAD G–2007–53 35

(iv) Consider a class of OSC problems with Poisson call request process and exponentially
distributed connection sojourn time, and a finite horizon integral cost function as

E{
∫ T

0 g(nt)dt}, with the loss function same as that in ii). Then the HJB equation is:
{

d
dt

V0(t) = λ+V0(t) − λ+V1(t)
d
dt

V1(t) = λ−V1(t) − λ−V0(t) + 1
, (4.92)

with the boundary condition V0(T ) = V1(T ) = 0.

Then the solution to the HJB equation (4.92) is
{

V0(t) = λ+

λ
[t − T ] − λ+

λ2 [eλ[t−T ] − 1]

V1(t) = λ+

λ
[t − T ] + λ−

λ2 [eλ[t−T ] − 1]
, for any t ∈ [0, T ],

where λ = λ+ + λ−.

4.2 A Single-Link Network with Finite Unit Capacity

Consider a class of OSC problems, with respect to a single link network with M -unit capac-
ity, which possesses Poisson call request process and exponentially distributed connection
sojourn times with the rates as λ+ and λ− respectively, and a discounted infinite horizon
cost function as

∫∞
0 e−βtg(nt)dt, such that g(n) = −n, for all n ∈ N = {0, 1, · · · ,M}.

Then the HJB equation is a group of integer indexed piecewise linear equations,




βV0 = λ+ min{V0, V1} − λ+V0

βV1 = −1 + λ+ min{V1, V2} + λ−V0 − [λ+ + λ−]V1

· · · · · ·

βVM−1 = −[M − 1] + λ+ min{VM−1, VM}

+[M − 1]λ−VM−2 − [λ+ + [M − 1]λ−]VM−1

βVM = −M + λ+VM + Mλ−VM−1 − [λ+ + Mλ−]VM

(4.93)

Corollary 4.1 The optimal control is to accept the call request to the network whenever
the system is not fully occupied, i.e.

Vi+1 < Vi, for all i ∈ {0, · · · ,M − 1} (4.94)

Proof.

1) V1 < V0

Suppose that V1 ≥ V0, then by (4.93), we have βV0 = λ+V0 − λ+V0, hence V0 = 0.
Also

βV1 = −1 + λ+ min{V1, V2} + λ−V0 − [λ+ + λ−]V1 ≤ −1 + λ+V1 − [λ+ + λ−]V1,

which implies V1 < 0, which is a contradiction. So we get the conclusion that V1 < V0

and also V0 = λ+

β+λ+ V1.
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2) V2 < V1

Suppose that V2 ≥ V1, then by (4.93), we have

βV1 = −1 + λ+V1 + λ−V0 − [λ+ + λ−]V1 = −1 + λ−[V0 − V1],

which implies that V1 ≥ − 1
β
. Also we have

βV2 = −2 + λ+ min{V2, V3} + 2λ−V1 − [λ+ + 2λ−]V2

≤ −2 + λ+V2 + 2λ−V1 − [λ+ + 2λ−]V2 = −2 + 2λ−[V1 − V2] ≤ −2

which implies V2 ≤ − 2
β
. So we obtain − 1

β
≤ V1 ≤ V2 ≤ − 2

β
which is a contradiction.

Hence V2 < V1.

Suppose that V0 > V1 > V2 > · · · > Vk−1, for any k ∈ {1, · · · ,M − 1}.

3) Vk < Vk−1

Suppose that Vk ≥ Vk−1, then we have

βVk = −k + λ+ min{Vk+1, Vk} + kλ−Vk−1 − [λ+ + kλ−]Vk

≤ −k + λ+Vk + kλ−Vk−1 − [λ+ + kλ−]Vk

= −k + kλ−[Vk−1 − Vk] ≤ −k

which implies that Vk ≤ − k
β
. But, by Vk ≥ Vk−1, we obtain that

βVk−1 = −[k − 1] + λ+ min{Vk, Vk−1} + [k − 1]λ−Vk−2 − [λ+ + [k − 1]λ−]Vk−1

= −[k − 1] + λ+Vk−1 + [k − 1]λ−Vk−2 − [λ+ + [k − 1]λ−]Vk−1

= −[k − 1] + [k − 1]λ−[Vk−2 − Vk−1]

≥ −[k − 1], since Vk−2 ≥ Vk−1,

which implies that Vk−1 ≥ − k
β

+ 1
β
. Hence we have

−
k

β
+

1

β
≤ Vk−1 ≤ Vk ≤ −

k

β
,

which is a contradiction. Hence Vk < Vk−1. �

Hence, by Corollary 4.1, The HJB equation (4.93) is equivalent to the group of linear
equations:




βV0 = λ+V1 − λ+V0

βV1 = −1 + λ+V2 + λ−V0 − [λ+ + λ−]V1

· · · · · ·

βVM−1 = −[M − 1] + λ+VM + [M − 1]λ−VM−2 − [λ+ + [M − 1]λ−]VM−1

βVM = −M + λ+VM + Mλ−VM−1 − [λ+ + Mλ−]VM

(4.95)
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Figure 4.6: A Three-Vertex Network with One-Unit Link Capacity

4.3 A Triangle Network with One Unit Capacity

Consider a network Net(V, L, C), see Figure (4.6), with

V = {v1, v2, v3}

L = {l1 = (v1, v2), l2 = (v1, v3), l3 = (v3, v2)} (4.96)

C = {cl = 1; l ∈ L}

Then the route set R and admissible connection set N are

R = {r1 = (v1, v2), r2 = (v1, v3, v2), r3 = (v1, v3), r4 = (v3, v2)}

N = {n = ((n1, n2, n3, n4) ∈ Z
4
+;

∑

ri∈R; l∈ri

ni ≤ 1, ∀l ∈ L}

=

{[
0
0
0
0

]
,

[
0
0
0
1

]
,

[
0
0
1
0

]
,

[
0
0
1
1

]
,

[
0
1
0
0

]
,

[
1
0
0
0

]
,

[
1
0
0
1

]
,

[
1
0
1
0

]
,

[
1
0
1
1

]
,

[
1
1
0
0

]}

For notational simplicity, the value n is considered as a 4-bit binary number, i.e.

N = {0, 1, 2, 3, 4, 8, 9, 10, 11, 12}.

Consider a loss network system, with the loss network Net(V, L, C) as (4.96), which pos-
sesses Poisson call request processes and exponential distributed connection sojourn times,
and a discounted infinite horizon cost function as E{

∫∞
0 e−βtg(nt)dt} with the loss function

specified as

g(n) = −
4∑

i=1

ni, for all n = (n1, n2, n3, n4) ∈ N ,

i.e.

g(0) = 0; g(1) = g(2) = g(4) = g(8) = −1; g(3) = g(9) = g(10) = g(12) = −2; g(11) = −3,
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The corresponding HJB equation is specified as:

Firstly we develop the HJB equation attached to n = 0.

The event set with n = 0 is E0 = {e+
〈1,2〉, e

+
〈1,3〉, e

+
〈3,2〉}, then, by Corollary (3.3), the HJB

equation with respect to n = 0 is specified as:

β V0 = g(0) +
∑

e∈E0

λe min
u∈U(0,e)

{V0+u(0,e)} −
∑

e∈E0

λeV0, where

min
u∈U(0,e+

〈1,2〉
)
{V0+u(0,e+

〈1,2〉
)} = min

{
V0, V4, V8

}
, with U(0, e+

〈1,2〉) = {0, 4, 8};

min
u∈U(0,e+

〈1,3〉
)
{V0+u(0,e+

〈1,3〉
)} = min

{
V0, V2

}
, with U(0, e+

〈1,3〉) = {0, 2};

min
u∈U(0,e+

〈3,2〉
)
{V0+u(0,e+

〈3,2〉
)} = min

{
V0, V1

}
, with U(0, e+

〈3,2〉) = {0, 1},

which is equivalent to the following

[β +
∑

e∈E0

λe]V0 = λ
e+
〈1,2〉 min

{
V0, V4, V8

}
+ λ

e+
〈1,3〉 min

{
V0, V2

}
+ λ

e+
〈3,2〉 min

{
V0, V1

}

The HJB equation attached to other index numbers can be developed parallel with the
HJB equation attached to n = 0. Hence the HJB equation for the underlying OSC problem
is the group of indexed coupled piecewise linear equations,

[
β +

∑

e∈E0

λe
]
V0 = λ

e+
〈1,2〉 min

{
V0, V4, V8

}

+ λ
e+
〈1,3〉 min

{
V0, V2

}
+ λ

e+
〈3,2〉 min

{
V0, V1

}
(4.97a)

[
β +

∑

e∈E1

λe
]
V1 = −1 + λ

e+
〈1,2〉 min

{
V1, V9

}

+ λ
e+
〈1,3〉 min

{
V1, V3

}
+ λ

e+
〈3,2〉V1 + λ−V0 (4.97b)

[
β +

∑

e∈E2

λe
]
V2 = −1 + λ

e+
〈1,2〉 min

{
V2, V10

}

+ λ
e+
〈1,3〉V2 + λ

e+
〈3,2〉 min

{
V2, V3

}
+ λ−V0 (4.97c)

[
β +

∑

e∈E3

λe
]
V3 = −2 + λ

e+
〈1,2〉 min

{
V3, V11

}

+ λ
e+
〈1,3〉V3 + λ

e+
〈3,2〉V3 + λ−V1 + λ−V2 (4.97d)

[
β +

∑

e∈E4

λe
]
V4 = −1 + λ

e+
〈1,2〉 min

{
V4, V12

}

+ λ
e+
〈1,3〉V4 + λ

e+
〈3,2〉V4 + λ−V0 (4.97e)
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[
β +

∑

e∈E8

λe
]
V8 = −1 + λ

e+
〈1,2〉 min

{
V8, V12

}

+ λ
e+
〈1,3〉 min

{
V8, V10

}
+ λ

e+
〈3,2〉 min

{
V8, V9

}
+ λ−V0 (4.97f)

[
β +

∑

e∈E9

λe
]
V9 = −2 + λ

e+
〈1,2〉V9 + λ

e+
〈1,3〉 min

{
V9, V11

}

+ λ
e+
〈3,2〉V9 + λ−V1 + λ−V8 (4.97g)

[
β +

∑

e∈E10

λe
]
V10 = −2 + λ

e+
〈1,2〉V10 + λ

e+
〈1,3〉V10

+ λ
e+
〈3,2〉 min

{
V10, V11

}
+ λ−V2 + λ−V8 (4.97h)

[
β +

∑

e∈E11

λe
]
V11 = −3 + λ

e+
〈1,2〉V11 + λ

e+
〈1,3〉V11

+ λ
e+
〈3,2〉V11 + λ−V3 + λ−V9 + λ−V10 (4.97i)

[
β +

∑

e∈E12

λe
]
V12 = −2 + λ

e+
〈1,2〉V12 + λ

e+
〈1,3〉V12

+ λ
e+
〈3,2〉V12 + λ−V4 + λ−V8 (4.97j)

Lemma 4.2 For the control problem for the loss network specified in (4.96), V8 < V4, i.e.
with respect to the state value (n, e+

1,2), it is better to accept the call request e+
1,2 to the

direct route r1 = (v1, v2) than to the two-hop route r2 = (v1, v3, v2).

Proof. By the HJB equation, we obtain that

[β +
∑

e∈E4

λe]V4 = −1 + λ
e+
〈1,2〉 min

{
V4, V12

}
+ λ

e+
〈1,3〉V4 + λ

e+
〈3,2〉V4 + λ−V0

[β +
∑

e∈E8

λe]V8 = −1 + λ
e+
〈1,2〉 min

{
V8, V12

}

+ λ
e+
〈1,3〉 min

{
V8, V10

}
+ λ

e+
〈3,2〉 min

{
V8, V9

}
+ λ−V0

≤ −1 + λ
e+
〈1,2〉 min

{
V8, V12

}
+ λ

e+
〈1,3〉V8 + λ

e+
〈3,2〉V8 + λ−V0

=⇒

{
[β + λ

e+
〈1,2〉 + λ−]V4 = −1 + λ

e+
〈1,2〉 min

{
V4, V12

}
+ λ−V0

[β + λ
e+
〈1,2〉 + λ−]V8 ≤ −1 + λ

e+
〈1,2〉 min

{
V8, V12

}
+ λ−V0

,

which implies V8 < V4. �

In Lemma 4.3, we display that, in case that the direct route r1 is occupied, the accep-
tance, of the coming call request e+

〈1,2〉 to the two-hop route (v1, v3, v2), depends upon the

values of λ
e+
〈1,3〉 , λ

e+
〈3,2〉 and λ−.
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Lemma 4.3 When the direct route r1 is occupied, the optimal control value with respect

to the call request e+
〈1,2〉 depends upon the values of λ

e+
〈1,3〉 , λ

e+
〈3,2〉 and λ−.

Proof.

1) In case of λ
e+
〈1,3〉 = λ

e+
〈3,2〉 = 0, i.e. there is no e+

〈1,3〉, e+
〈3,2〉 call requests, then we

have

[β + λ+ + λ−]V8 = −1 + λ+ min{V8, V12} + λ−V0, with λ+ ≡ λ+
〈1,2〉 (4.98)

[β + λ−]V12 = −1 +
[
λ−[V4 + V8] − 1

]
(4.99)

Suppose that V8 ≤ V12, then [β + λ−]V8 = −1 + λ−V0. Hence we have

λ−V0 ≤ λ−[V4 + V8] − 1 or V0 ≤ −
1

λ−
+ V4 + V8.

Also we observe that V0 > V8, since

[β + λ+]V0 = λ+ min{V0, V4, V8} = λ+ min{V0, V8}

So V8 < V0 ≤ V8 −
1

λ− + V4, which is a contradiction.

Hence V12 < V8 in the case of λ
e+
〈1,3〉 = λ

e+
〈3,2〉 = 0. i.e. when the direct route r1 is

occupied, it is better to accept the call request e+
1,2 to the multi-link route r2 than to

reject it in the case that there is no e+
〈1,3〉, e+

〈3,2〉 call requests arrival in the future.

2) In case of λ+ ≡ λ
e+
〈1,2〉 = λ

e+
〈1,3〉 = λ

e+
〈3,2〉 → ∞

[β + 3λ+ + λ−]V8 = −1 + λ+ min{V8, V12} + λ+ min{V8, V10} + λ+ min{V8, V9} + λ−V0,

[β + λ−]V12 = −2 + λ−[V4 + V8].

Hence [β + λ+ + λ−]V8 ≤ −1 + λ+V12 + λ−V0, then we obtain that

V8 ≤
λ+

β + λ+ + λ−
V12 +

−1 + λ−V0

β + λ+ + λ−
→ V12, with λ+ → ∞,

which implies V8 ≤ V12, when λ+ → ∞. �

5 Conclusion and future work

In this paper the CAC and RC problems for loss network systems have been formulated
as OSC problems. A feature of the resulting controlled loss network systems is that they
are hybrid stochastic systems with variable dimension state processes; for these processes
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certain properties, such as the Markov property under state feedback control laws and
piecewise continuity, have been established.

The HJB equation for the underlying OSC problems is derived. In the case that the
value function V = {Vn : [0, T ] × Γn); n ∈ N} is continuously differentiable, i.e. Vn ∈
C1([0, T ] × Γn), for all n ∈ N , V is a classical solution of the HJB equation; however
such smoothness requirements may be too restrictive and the uniqueness of the classical
solution of the HJB equation may also not be satisfied. So viscosity solutions, [10], of
the HJB equation need to be considered. For Poisson call request processes, exponentially
distributed sojourn times, and discounted infinite horizon cost functions, the network HJB
equations have been shown to be equivalent to those associated with Markov decision
processes, and the numerical techniques developed for the latter can be employed for
obtaining numerical solutions.

Furthermore, the optimal control framework in this paper, provides the foundation
for currently ongoing work [11], on computational more viable decentralized sub-optimal
control of the large loss network systems based upon on a combination of game theory with
the ideas of statistical mechanics.
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