
Les Cahiers du GERAD ISSN: 0711–2440

New Results on Stability and

Stabilizability of Linear Systems

with Random Abrupt Changes

E.K. Boukas

G–2007–51

July 2007
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Abstract

This paper deals with the class of linear systems with random abrupt changes. The
stochastic stability and the stochastic stabilization problems of this class of systems
are revisited and new conditions are developed in the LMI setting to either check the
stochastic stability or to design the state feedback controller that stochastically sta-
bilizes the system under consideration. The corresponding robust problems are also
considered. It is shown that all the addressed problems can be solved if the correspond-
ing developed linear matrix inequalities (LMIs) are feasible. Two numerical examples
are employed to show the usefulness of the proposed results.

Key Words: Markovian jump systems, Stochastic systems, Systems with random
abrupt changes, Continuous-time and Discrete-time linear systems, Linear matrix in-
equality, Stability, Stabilizability, State feedback.

Résumé

Cet article traite de la classe des systèmes des changements aléatoires brusques.
Les problèmes de stochastique stabilité et stochastique stabilisation sont révisités et
de nouvelles conditions en forme d’inégalités matricielles sont développées que ce soit
pour l’analyse de la stabilité ou le design du correcteur par retour d’état stabilisant
le système considéré. Les problèmes de robustesse de ces problèmes sont aussi traités
dans cet article. Des exemples numériques sont donnés pour montrer la validité des
résultats développés.
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1 Introduction

In the last decades Markovian jump systems have attracted a lot of researchers from control
and operations research communities. This is due to the fact that this class of systems
is more appropriate to model some practical systems that we can found in manufacturing
systems, power systems, network control systems, etc. More efforts have been done on
different subjects related to this class of systems. Almost all the control problems for these
systems have been tackled and interesting results have been reported in the literature. For
more details on subject we refer the reader to Boukas [2] for the continuous-time case and
Costa et al. [5] for the discrete-time case and the references these volumes.

All the results reported in the literature assumed the complete knowledge of the dy-
namics of the Markov process that describes the switching between the system modes. But
practically this is not valid since it is very hard and more expensive to get all the jump
rates for the continuous-time case or all the transition probabilities for the discrete-time
case, and therefore the results developed earlier can not be applied to practical systems.

More often in the continuous-time case for instance, we have partial knowledge of the
jump rates of the transition probabilities with some bounds for few transitions of the
system that we can get by doing some experiment on the practical system that we would
like to study (stability or stabilization). In this paper we will assume that we have partial
knowledge of the transitions and since that all the jump rates or the transition probabilities
for a practical system are bounded with finite values which is the case in practice, we
will require only the knowledge of a lower and upper bounds for the jump rates and the
transition probabilities in each mode. The aim of this paper is to revise the stochastic
stability and stochastic stabilization of the class of systems with random abrupt changes
and develop new conditions for such problems that require only partial knowledge of the
transition rates or the transition probabilities of the Markov process that describes the
switching modes of the systems.

The rest of this paper is organized as follows. In Section 2, the problem is stated and
the goal of the paper is presented. In Section 3, the main results are given and they
include results on stochastic stability, stochastic stabilizability and their robustness. A
state feedback controller is used in this paper and a design algorithm in terms of the
solutions to linear matrix inequalities is proposed to synthesize the controller gains of the
state feedback controller we are using.

Notation: Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional
Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix
transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric
matrices, means that X − Y is positive semi-definite (respectively, positive definite). I is
the identity matrices with compatible dimensions.
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2 Problem statement

The goal of this paper is to revise the stochastic stability and stochastic stabilizability of
the class of linear systems with random abrupt changes. Both the continuous-time and the
discrete-time cases are considered.

Let us consider the class of uncertain continuous-time systems under study be described
by the following dynamics:

{

ẋ(t) = A(rt, t)x(t) + B(rt, t)u(t),

x(0) = x0

(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, A(rt, t) and A(rt, t) are defined
by:

A(rt, t) = DA(rt)FA(rt)EA(rt)

B(rt, t) = DB(rt)FB(rt)EB(rt)

with A(i), B(i), DA(i), EA(i), DB(i) and EB(i) are known matrices with appropriate
dimensions and FA(i) and FB(i) satisfy:

F⊤
A (i)FA(i) ≤ I

F⊤
B (i)FB(i) ≤ I

The Markov process {rt, t ≥ 0} beside taking values in the finite set S = {1, 2, · · · , N},
represents the switching between the different modes and its dynamics is described by the
following probability transitions:

P [rt+h = j|rt = i]

=

{

λijh + o(h) when rt jumps from i to j

1 + λiih + o(h) otherwise
(2)

where λij is the transition rate from mode i to mode j with λij ≥ 0 when i 6= j and

λii = −∑N
j=1,j 6=i λij and o(h) is such that limh→0

o(h)
h

= 0.

For the discrete-time case let {rk, k ≥ 0} be a Markov chain with state space S =
{1, · · · , N} and state transition matrix P = [pij]i,j∈S

, i.e. the transition probabilities of

{rk, k ≥ 0} are as follows:

P[rk+1 = j|rk = i] = pij,∀i, j ∈ S . (3)

Consider a discrete-time hybrid system with N modes and suppose that the system
mode switching is governed by {rt, t ≥ 0}. The system dynamics is



Les Cahiers du GERAD G–2007–51 3

{

xt+1 = A(rt, t)xt + B(rt, t)ut,

xs=0 = x0

(4)

where xt and ut, A(rt, t) and B(rt, t) are as for the continuous-time case.

In the rest of the paper we will denote by x(t;x0, r0), shortened to x(t), the solution of
system (1) or (4) when the initial conditions are respectively x0 and r0.

For the continuous-time Markovian jump systems for instance, the jump rates are in
general hard to measure for practical systems and therefore the results developed on stabil-
ity or stabilization in the literature are in some sense useless. Some alternates that consider
uncertainties on the jump rates have been proposed. Among them we quote the work done
by Benjelloun and Boukas [1] where uncertainties on the jump rates are considered and
El-Ghaoui and Ait-Rami [6] where they consider polytopic uncertainties on the transition
matrix. In this paper we will assume that we have partial knowledge of the transitions and
all the jump rates are bounded with finite values which is a practical assumption. For the
continuous-time case we have the following assumption.

Assumption 2.1 The jump rates are assumed to satisfy the following:

0 < λi ≤ λij ≤ λ̄i,∀i, j ∈ S , j 6= i (5)

where λi and λ̄i are known parameters for each mode or may represent the lower and upper
bounds when all the jump rates are known, i.e.:

0 < λi = min
j∈S

{λij , i 6= j} (6)

0 < λ̄i = max
j∈S

{λij, i 6= j} (7)

with λi ≤ λ̄i.

For the discrete-time case we will have the following assumption:

Assumption 2.2 The transition probabilities are assumed to satisfy the following:

0 < p
i
≤ pij ≤ p̄i,∀i, j ∈ S , j 6= i (8)

where p
i
and p̄i are known parameters for each mode or may represent the lower and upper

bounds when all the jump rates are known, i.e.:

0 < p
i
= min (pi1, · · · , piN ) (9)

0 < p̄i = max (pi1, · · · , piN ) (10)

with p
i
≤ p̄i.

Remark 2.1 The results we are planning to develop in this paper do not require the knowl-
edge of:
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• the transition jump rates of the continuous-time system but only two bounds, λi and
λ̄i representing respectively the minimum lower and the maximum upper bounds for
all the jump rates in each mode,

• the transition probabilities of the discrete-time system but only the bound p̄i repre-
senting respectively the maximum upper bound for all the transition probabilities in
each mode.

The following definitions will be used in the rest of this paper. For more details on the
class of systems with random abrupt changes properties, we refer the reader to [2] and the
references therein.

Definition 2.1 Nominal system (1) is said to be stochastically stable (SS) if there exists
a constant M(x0, r0) > 0 such that the following holds for any initial conditions (x0, r0):

E

[
∫ ∞

0
x⊤(t)x(t)|x0, r0

]

≤ M(x0, r0). (11)

Definition 2.2 Nominal system (4) is said to be stochastically stable (SS) if the following
holds:

E

[

∞
∑

k=0

‖xk‖2|x0, r0

]

≤ Γ(x0, r0),

where Γ(x0, r0) is a non-negative function of the system initial values.

Definition 2.3 Nominal system (1) or (4) is said to be stochastically stabilizable if there
exists a control

u(t) = K(rt)x(t), (12)

with K(i) ∈ R
m×n, i ∈ S , a constant matrix such that the closed-loop system is stochasti-

cally stable.

The definitions of robust stochastic stability and robust stochastic stabilizability are
given by the following definitions.

Definition 2.4 System (1) or (4) with u(t) ≡ 0 is said to be robustly stochastically stable
if it is stochastically stable for all admissible uncertainties.

Definition 2.5 System (1) or (4) is said to be robust stochastically stabilizable if there
exists a control of the form (12) such that the closed-loop system is stochastically stable for
all admissible uncertainties.

Combining the systems dynamics and the controller expression, we get the following
closed-loop dynamics:

{

ẋ(t) = Acl(rt)x(t)

x(t + 1) = Acl(rt)x(t)
(13)
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where Acl(rt) = A(tt) + B(rt)K(rt) with K(rt) is the controller gain that we have to
compute.

The goal of this paper is to develop new conditions to check the stochastic stability
and to design a state feedback controller that makes the closed-loop system stochastically
stable. The robustness of these problems is also tackled. In the rest of this paper, we will
assume the complete access to the system state and mode for feedback. Our methodology
in this paper will be mainly based on the Lyapunov theory and some algebraic results. The
conditions we will develop here will be in terms of the solutions to linear matrix inequalities
that can be easily obtained using LMI control toolbox.

Before closing this section, let us give some lemmas that we will use in our development.
The proofs of these lemmas can be found in the cited references.

Lemma 2.1 [4] Let H, F and G be real matrices of appropriate dimensions then, for any
scalar ε > 0 for all matrices F satisfying F⊤F ≤ I, we have:

HFG + G⊤F⊤H⊤ ≤ εHH⊤ + ε−1G⊤G (14)

Lemma 2.2 [4] The linear matrix inequality
[

H S⊤

S R

]

> 0

is equivalent to

R > 0,H − S⊤R−1S > 0

where H = H⊤, R = R⊤ and S is a constant matrix.

3 Main results

In this section, we will firstly develop results that assure that the free system (i.e. u(t) = 0
for all t ≥ 0) is stochastically stable. Then using these results, we will design a state
feedback controller of the form (12) that guarantees the same goal. The continuous-time
and discrete-time cases will be both treated.

4 Continuous-time case

Based on the known results on stochastic stability of the class of continuous-time linear
systems (see [2]), the system will be stochastically stable if and only if there exists a set
of symmetric and positive-definite matrices P = (P (1), · · · , P (N)) such that the following
coupled set of LMIs holds:

A⊤(i)P (i) + P (i)A(i) +
N

∑

j=1

λijP (j) < 0.
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This condition can be rewritten as follows:

A⊤(i)P (i) + P (i)A(i) + λiiP (i) +
N

∑

j=1,j 6=i

λijP (j) < 0

Based now on the Assumption 2.1, we get:

N
∑

j=1,j 6=i

λijP (j) ≤ λ̄i

N
∑

j=1,j 6=i

P (j)

λiiP (i) = −
N

∑

j=1,j 6=i

λijP (i) ≤ −(N − 1)λiP (i)

Using these relations, we obtain the following condition that we should satisfy to guar-
antee that the system is stochastically stable:

A⊤(i)P (i) + P (i)A(i) − (N − 1)λiP (i) + λ̄i

N
∑

j=1,j 6=i

P (j) < 0

The following theorem summarizes the results of this development.

Theorem 4.1 Nominal system (1) is stochastically stable if there exists a set of symmetric
and positive-definite matrices P = (P (1), · · · , P (N)) such that the following set of coupled
LMIs holds:

A⊤(i)P (i) + P (i)A(i) − (N − 1)λiP (i) + λ̄i

N
∑

j=1,j 6=i

P (j) < 0,∀i ∈ S . (15)

Remark 4.1 Notice that when the system has only one mode, the results of Theorem 4.1
reduce to the ones of linear time-invariant systems.

Let us now concentrate on the design of the state feedback controller of the form (12)
that makes the closed-loop system stochastically stable. Using the results of Theorem 4.1,
the closed-loop dynamics will be stochastically stable if there exists a set of symmetric
and positive-definite matrices P = (P (1), · · · , P (N)) such that the following coupled set
of LMIs holds:

A⊤
cl(i)P (i) + P (i)Acl(i) − (N − 1)λiP (i) + λ̄i

N
∑

j=1,j 6=i

P (j) < 0.
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Pre- and post-multiply this inequality by X(i) = P−1(i) and using the expression of
Acl(i), we get:

J(i) − (N − 1)λiX(i) + λ̄i

N
∑

j=1,j 6=i

X(i)X−1(j)X(i) < 0.

where J(i) = X(i)A⊤(i) + A(i)X(i) + B(i)K(i)X(i) + X(i)K⊤(i)B⊤(i).

Letting Y (i), Si(X) and Xi(X) be defined as follows:

Y (i) = K(i)X(i)

Si(X) =
[

√

λ̄iX(i), · · ·
√

λ̄iX(i),
√

λ̄iX(i), · · · ,
√

λ̄iX(i)
]

Xi(X) = diag [X(1), · · · ,X(i − 1),X(i + 1), · · · ,X(N)]

we get:

J(i) − (N − 1)λiX(i) + Si(X)X−1
i (X)S⊤

i (X) < 0.

where J(i) = X(i)A⊤(i) + A(i)X(i) + B(i)Y (i) + Y ⊤(i)B⊤(i).

The following theorem gives the results that allow the design of the stabilizing controller.

Theorem 4.2 There exists a state feedback controller of the form (12) such that the closed-
loop state equation of the nominal system (1) is stochastically stable if there exist a set of
symmetric and positive-definite matrices X = (X(1), · · · ,X(N)) and a set of matrices
Y = (Y (1), · · · , Y (N)) such that the following set of coupled LMIs holds:

[

J(i) − (N − 1)λiX(i) Si(X)
S⊤

i (X) −Xi(X)

]

< 0, (16)

where J(i) = X(i)A⊤(i) + A(i)X(i) + B(i)Y (i) + Y ⊤(i)B⊤(i). The gain of the controller
is given by K(i) = Y (i)X−1(i).

Remark 4.2 When the number of modes is reduced to one, our results become those of
linear time-invariant systems.

Remark 4.3 Notice that we can get more conservative results either for stochastic stability
or stochastic stabilizability by letting λi and λ̄i be mode independent. This is obtained by
choosing λ as the smallest λi and λ̄ as the largest λ̄i respectively.

For the uncertain system, based on Theorem 4.1, the free uncertain system (1) will be
stochastically stable if there exists a set of symmetric and positive-definite matrices such
that the following set of coupled matrix inequalities holds for all admissible uncertainties:

A⊤(i, t)P (i) + P (i)A(i, t) − (N − 1)λiP (i) + λ̄i

N
∑

j=1,j 6=i

P (j) < 0.
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Using the expression of A(i, t) and Lemma 2.1, the uncertain system will be robust
stochastically stable if the following holds:

A⊤(i)P (i) + P (i)A(i) − (N − 1)λiP (i) + εA(i)P (i)DA(i)D⊤
A(i)P (i)

+ε−1
A (i)E⊤

A (i)EA(i) + λ̄i

N
∑

j=1,j 6=i

P (j) < 0.

for εA(i) > 0.

The following theorem gives the results for the uncertain case.

Theorem 4.3 System (1) is robust stochastically stable if there exist a set of symmetric
and positive-definite matrices P = (P (1), · · · , P (N)) and a set of positive scalars εA =
(εA(1), · · · , εA(N)) such that the following set of coupled matrix inequalities holds:

A⊤(i)P (i) + P (i)A(i) − (N − 1)λiP (i) + εA(i)P (i)DA(i)D⊤
A(i)P (i)

+ε−1
A (i)E⊤

A (i)EA(i) + λ̄i

N
∑

j=1,j 6=i

P (j) < 0. (17)

Remark 4.4 Notice that the conditions of Theorem 4.3 can be put in the LMI setting and
solved by the existing tools in the marketplace.

For the robust stochastic stabilization we can follow the same steps as before and get
the following results.

Theorem 4.4 System (1) is stochastically stable if there exist a set of symmetric and
positive-definite matrices X = (X(1), · · · ,X(N)) and a set of matrices Y = (Y (1),
· · · , Y (N)) such that the following set of coupled LMIs holds:









J(i) − (N − 1)λiX(i) X(i)E⊤
A (i) Y ⊤(i)E⊤

B (i) Si(X)
EA(i)X(i) −εA(i)I 0 0
EB(i)Y (i) 0 −εB(i)I 0
S⊤

i (X) 0 0 −Xi(X)









< 0, (18)

where

J(i) = X(i)A⊤(i) + A(i)X(i) + B(i)Y (i) + Y ⊤(i)B⊤(i)

+εA(i)DA(i)D⊤
A(i) + εB(i)DB(i)D⊤

B(i).

The gain of the controller is given by K(i) = Y (i)X−1(i).

Remark 4.5 As we did for the nominal case we can also establish conservative results by
considering the mode-independent lowest and the largest bounds of the jump rates.
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5 Discrete-time case

As we did for the continuous-time, let us extend the results to the discrete-time case. Both
the stochastic stability and the stochastic stabilizability are considered in this section and
corresponding LMI conditions are developed.

Based on the stochastic stability results for this class of systems [3], the free nominal
system (4) will be stable if there exists a set of symmetric and positive-definite matrices
P = (P (1), · · · , P (N)) such that the following hold:

A⊤(i)

N
∑

j=1

pijP (j)A(i) − P (i) < 0,∀i ∈ S

Using now the Assumption 2.2, the previous inequality will hold if the following one
does:

A⊤(i)
N

∑

j=1

p̄P (j)A(i) − P (i) < 0,∀i ∈ S

Let P̄ and Wi be defined as follows:

P̄ = diag [P (1), · · · , P (N)] ,

Wi =
[√

p̄iI, · · · ,
√

p̄iI
]

we get the following results.

Theorem 5.1 Nominal system (4) is stochastically stable if there exists a set of symmetric
and positive-definite matrices P = (P (1), · · · , P (N)) such that the following set of coupled
matrix inequalities holds:

A⊤(i)WiP̄W⊤
i A(i) − P (i) < 0,∀i ∈ S . (19)

Let us now design a state feedback controller with the following form:

ut = K(rt)xt (20)

where K(i) is a gain to be determined.

Combining the system’s dynamics (4) with the controller (20) expression and using
Theorem 5.1, the closed-loop dynamics will be stochastically stable if there exists a set of
symmetric and positive-definite matrices P = (P (1), · · · , P (N)) such that the following
set of coupled LMIs holds:
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A⊤
cl(i)WiP̄W⊤

i Acl(i) − P (i) < 0,∀i ∈ S

with Acl(i) = A(i) + B(i)K(i).

Using Lemma 2.2, we obtain:

[

−P (i) A⊤
cl(i)Wi

W⊤
i Acl(i) −P̄−1

]

< 0,∀i ∈ S .

Let X(i) = P−1(i) and define X and Y (i) as follows:

X = diag [X(1), · · · ,X(N)]

Y (i) = K(i)X(i)

Pre- and post-multiply the previous inequality by diag [X(i), I], we get the results of
the following theorem.

Theorem 5.2 There exists a state feedback controller of the form (20) such that the closed-
loop state equation of the nominal system (4) is stochastically stable if there exist a set of
symmetric and positive-definite matrices X = (X(1), · · · ,X(N)) and a set of matrices
Y = (Y (1), · · · , Y (N)) such that the following set of coupled LMIs holds:

[

−X(i) [A(i)X(i) + B(i)Y (i)]⊤ Wi

W⊤
i [A(i)X(i) + B(i)Y (i)] −X

]

< 0. (21)

The gain of the controller is given by K(i) = Y (i)X−1(i).

Based on Theorem 5.2, there exists a state feedback controller of the form (20) such
that the closed-loop state equation of the uncertain system (4) is stochastically stable if
there exist a set of symmetric and positive-definite matrices X = (X(1), · · · ,X(N)) and
a set of matrices Y = (Y (1), · · · , Y (N)) such that the following set of coupled LMIs holds
for all admissible uncertainties:

[

−X(i) V ⊤(i)Wi

W⊤
i V (i) −X

]

< 0.

with V (i) = A(i)X(i) + DA(i)FA(i)EA(i)X(i) + B(i)Y (i) + DB(i)FB(i)EB(i)Y (i).

Notice that:
[

0 0
W⊤(i)DA(i)FA(i)EA(i)X(i) 0

]

=

[

0
W⊤(i)DA(i)

]

FA(i)
[

EA(i)X(i) 0
]

,

[

0 0
W⊤(i)DB(i)FB(i)EB(i)Y (i) 0

]

=

[

0
W⊤(i)DB(i)

]

FB(i)
[

EB(i)Y (i) 0
]
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Using Lemma 2.1, we get:

[

0 0
W⊤(i)DA(i)FA(i)EA(i)X(i) 0

]

+

[

0 0
W⊤(i)DA(i)FA(i)EA(i)X(i) 0

]⊤

≤
[

ε−1
A (i)X(i)E⊤

A (i)EA(i)X(i) 0
0 εA(i)W⊤(i)DA(i)D⊤

A(i)W (i)

]

,

[

0 0
W⊤(i)DB(i)FB(i)EB(i)Y (i) 0

]

+

[

0 0
W⊤(i)DB(i)FB(i)EB(i)Y (i) 0

]⊤

≤
[

ε−1
B (i)Y ⊤(i)E⊤

B (i)EB(i)Y (i) 0
0 εB(i)W⊤(i)DB(i)D⊤

B(i)W (i)

]

,

for εA > 0 and εB > 0.

Using Lemma 2.2, we get the results of the following theorem.

Theorem 5.3 There exists a state feedback controller of the form (20) such that the closed-
loop state equation of the uncertain system (4) is stochastically stable if there exist a set
of symmetric and positive-definite matrices X = (X(1), · · · ,X(N)) and a set of matrices
Y = (Y (1), · · · , Y (N)) and sets of positive scalars εA = (εA(1), · · · , εA(N)) and εB =
(εB(1), · · · , εB(N)) such that the following set of coupled LMIs holds:

2

6

6

4

−X(i) [A(i)X(i) + B(i)Y (i)]⊤ Wi X(i)E⊤

A (i) Y
⊤(i)E⊤

B (i)
W

⊤

i [A(i)X(i) + B(i)Y (i)] Wi 0 0
EA(i)X(i) 0 −εA(i)I 0
EB(i)Y (i) 0 0 −εB(i)I

3

7

7

5

< 0. (22)

with Wi = −X + εA(i)W⊤(i)DA(i)D⊤
A(i)W (i) + εB(i)W⊤(i)DB(i)D⊤

B(i)W (i). The gain
of the controller is given by K(i) = Y (i)X−1(i).

Remark 5.1 As we did for the continuous-time case, we can also here use an upper and
lower bounds on the transitions probabilities that are mode-independent and develop similar
conservative results on stochastic stability and stochastic stabilization.

6 Numerical examples

In this section, we will give numerical examples to show that the results we developed
either on stochastic stability or stochastic stabilizability are valid. As it was stated on the
theory we will assume that we have partial knowledge of the Markov process {rt, t ≥ 0}
that describes the switching between the different modes of the systems.

Example 6.1 To show the validness of stability results, let us consider a two modes Marko-
vian system with states in R

2. The data of this system are as follows:
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• mode 1:

A(1) =

[

0.0 1.0
−1.0 −2.0

]

,DA(1) =

[

0.0
0.1

]

, EA(1) =
[

0.1 0.1
]

,

• mode 2:

A(2) =

[

0.0 1.0
−2.0 −1.0

]

,DA(2) =

[

0.0
−0.1

]

, EA(2) =
[

0.1 −0.1
]

.

The switching between the two modes is described by the following:

Λ =

[

−1 1
1.1 −1.1

]

,

Solving the coupled set of LMIs (15), we get:

P (1) =

[

2.1673 0.8761
0.8761 0.8672

]

,

P (2) =

[

2.2470 0.7346
0.7346 1.3377

]

.

The two matrices P (1) and P (2) are both symmetric and positive-definite matrices and
based on Theorem 4.1, we conclude that the system is stochastically stable.

Simulation results of this system shows that the system is stochastically stable as illus-
trated in Figure 1.

Solving the coupled set of LMIs (17), we get:

εA(1) = 0.9759, εA(2) = 1.0230,

P (1) =

[

2.1771 0.8896
0.8896 0.8816

]

,

P (2) =

[

2.2507 0.7365
0.7365 1.3541

]

.

The two matrices P (1) and P (2) are both symmetric and positive-definite matrices and
based on Theorem 4.3, we conclude that the system is stochastically stable.

Example 6.2 To show the validness of the stabilizability results, let us consider a two
modes Markovian system with states in R

2. The data of this system are as follows:
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Figure 1: The behaviors of the system states in function of time t

• mode 1:

A(1) =

[

0.0 1.0
1.0 2.0

]

, DA(1) =

[

0.0
0.1

]

, EA(1) =
[

0.1 0.1
]

,

B(1) =

[

0.0
1.0

]

, DB(1) =

[

0.0
0.1

]

, EB(1) =
[

0.1
]

,

• mode 2:

A(2) =

[

0.0 1.0
2.0 1.0

]

, DA(2) =

[

0.0
−0.1

]

, EA(2) =
[

0.1 −0.1
]

,

B(2) =

[

0.0
2.0

]

, DB(2) =

[

0.0
0.1

]

, EB(2) =
[

−0.1
]

.

The switching between the two modes is described by the following:

Λ =

[

−1 1
1.1 −1.1

]

,

First of all notice that the system in each mode is not stable since the eigenvalues of A(1)
and A(2) are all positive real part. It can be checked even the all system is stochastically
unstable.
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Solving the coupled set of LMIs (16), we get:

X(1) =

[

0.5302 −0.3693
−0.3693 0.8544

]

,

X(2) =

[

0.4865 −0.3819
−0.3819 0.8940

]

,

Y (1) =
[

−0.4570 −2.0634
]

,

Y (2) =
[

−0.5017 −0.5989
]

which gives the following gains for the state-feedback controller:

K(1) =
[

−3.6401 −3.9883
]

,

K(2) =
[

−2.3427 −1.6707
]

.

The two matrices X(1) and X(2) are both symmetric and positive-definite matrices and
based on Theorem 4.2, we conclude that the closed-loop system is stochastically stable under
the state-feedback controller with the set of gains we computed.

Simulation results of this system shows that the system is stochastically stable as illus-
trated in Figure 2.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3
 Markov process

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
1st state variable

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

2nd state variable

Figure 2: The behaviors of the system states in function of time t
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Solving the coupled set of LMIs (16), we get:

εA(1) = 1.0018, εA(2) = 1.0251,

εB(1) = 1.0665, εB (2) = 1.0000,

X(1) =

[

0.5246 −0.3679
−0.3679 0.8047

]

,

X(2) =

[

0.4771 −0.3772
−0.3772 0.8594

]

,

Y (1) =
[

−0.4136 −1.9682
]

,

Y (2) =
[

−0.4767 −0.5878
]

which gives the following gains for the state-feedback controller:

K(1) =
[

−3.6861 −4.1312
]

,

K(2) =
[

−2.3589 −1.7194
]

.

The two matrices X(1) and X(2) are both symmetric and positive-definite matrices and
based on Theorem 4.2, we conclude that the closed-loop system is robust stochastically stable
under the state-feedback controller with the set of gains we computed.

Example 6.3 To show the validness of the stabilizability results for the discrete-time case,
let us consider the two modes Markovian system with states in R

2 of the previous example.
The data of this system are the same as for the continuous-time case and the transition
probabilities are as follows:

Λ =

[

0.4 0.6
0.5 0.5

]

,

It can be seen that p̄1 and p̄2 are respectively 0.6 and 0.5.

First of all notice that the system in each mode is not stable since at least one of the
eigenvalues of A(1) and A(2) are outside the unit circle. It can be checked even the all
system is stochastically unstable.

Solving the coupled set of LMIs (22), we get:

X(1) =

[

1.3169 −0.0000
−0.0000 0.6831

]

,

X(2) =

[

1.3169 −0.0000
−0.0000 0.6831

]

,
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Y (1) =
[

−1.3169 −1.3661
]

,

Y (2) =
[

−1.3169 −0.3415
]

which gives the following gains for the state-feedback controller:

K(1) =
[

−1.0000 −2.0000
]

,

K(2) =
[

−1.0000 −0.5000
]

.

The two matrices X(1) and X(2) are both symmetric and positive-definite matrices and
based on Theorem 5.2, we conclude that the closed-loop system is stochastically stable under
the state-feedback controller with the set of gains we computed.

Solving the coupled set of LMIs (22), we get:

εA(1) = 1.0160, εA(2) = 1.0116,

εB(1) = 1.1081, εB (2) = 1.0074,

X(1) =

[

1.1822 −0.0288
−0.0288 0.5347

]

,

X(2) =

[

1.1901 0.0070
0.0070 0.6540

]

,

Y (1) =
[

−1.1056 −1.0301
]

,

Y (2) =
[

−1.1911 −0.3330
]

which gives the following gains for the state-feedback controller:

K(1) =
[

−0.9834 −1.9796
]

,

K(2) =
[

−0.9979 −0.4985
]

.

The two matrices X(1) and X(2) are both symmetric and positive-definite matrices and
based on Theorem 5.3, we conclude that the closed-loop system is robust stochastically stable
under the state-feedback controller with the set of gains we computed.

7 Conclusions

This paper dealt with the stochastic stability and stochastic stabilization of the class of
linear systems with random abrupt changes and their robustness. Under partial knowledge
of the transitions between the system’s modes, LMI conditions for stochastic stability and
stochastic stabilization and their robustness have been developed. The results we developed
can be extended easily for other classes of systems like systems with time-delay and for
other type of controllers.
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