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Abstract

Circle packing problems were recently solved via reformulation descent (RD) by
switching between a cartesian and a polar formulation. Mixed formulations, with
circle parameters individually formulated in either coordinate system, leads to local
search methods in a formulation space. Computational results with up to 100 circles
are included.

Résumé

Les problèmes d’arrangement compact de cercles ont récemment été abordés par
une approche de descente par reformulations (RD) obtenues en alternant entre des
coordonnées cartésiennes et polaires. La considération de formulations mixtes où les
paramètres des cercles sont individuellement formulés dans l’un ou l’autre système,
amène à des méthodes de recherche locale dans un espace de formulations. Des résultats
d’expérimentations jusqu’à 100 cercles sont inclus.
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1 Introduction

Traditional ways to tackle an optimization problem consider a given formulation

min{f(x)|x ∈ S} and search in some way through its feasible set S. The consideration

that a same problem may often be formulated in different ways allows to extend search

paradigms to include jumps from one formulation to another. Each formulation should

lend itself to some traditional search method, its ‘local search’ that works totally within

this formulation, and yields a final solution when started from some initial solution. Any

solution found in one formulation should easily be translatable to its equivalent formula-

tion in any other formulation. We may then move from one formulation to another using

the solution resulting from the former’s local search as initial solution for the latter’s local

search. Such a strategy will of course only be useful in case local searches in different

formulations behave differently.

This idea was recently investigated in [6] using an approach that systematically changes

formulations for solving circle packing problems (CPP). There it is shown that a station-

ary point of a non-linear programming formulation of CPP in Cartesian coordinates is not

necessarily stationary so in a polar coordinate system. The method Reformulation descent

(RD) that alternates between these two formulations until the final solution is stationary

with respect to both is suggested. Results obtained were comparable with the best known

values, but they were achieved some 150 times faster than by an alternative single for-

mulation approach. In that same paper we also introduced the idea suggested above of

Formulation space search (FSS), using more than two formulations. Some research in that

direction has been reported in [4, 8, 7, 1]. In this paper the FSS idea is tested on the CPP

problem

2 Packing equal circles in the unit circle

The problem of packing equal circles in the unit circle problem (PCC for short), introduced

by Kravitz in [2], asks to position a given number of circular disks of equal radius without

any overlap within a unit circle, and to maximize this radius. Extensive bibliography, pa-

pers and test instances may be found for example at http://hydra.nat.uni-magdeburg.

de/packing/cci/cci.html.

2.1 Mixed coordinate formulation

Let the set of disks to be packed be denoted by I = {1, . . . , n}. A mixed formulation

φ of the CPP problem is defined by splitting I into two (possibly empty) parts Cφ and

Pφ (Pφ = I \ Cφ) and to give each disk’s center by its cartesian coordinates when in Cφ
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and polar coordinates when in Pφ. Here the unit disk is centered at the origin of both

coordinate systems. Formulation φ is then the following nonlinear program with 2n + 1

real variables:






















































max r
(xi − xj)

2 + (yi − yj)
2 − 4r2 ≥ 0 ∀ i, j ∈ Cφ(i ≤ j)

x2
i + y2

i ≤ (1− r)2 ∀ i ∈ Cφ

ρ2
i + ρ2

j − 4ρiρj cos(αi − αj)− 4r2 ≥ 0 ∀ i, j ∈ Pφ(i ≤ j)

ρi + r ≤ 1 ∀ i ∈ Pφ

(xi − ρj cos(αj))
2 + (yi − ρj sin(αj))

2 − 4r2 ≥ 0 ∀ i ∈ Cφ,∀ j ∈ Pφ

r ≥ 0
xi, yi ∈ R ∀i ∈ Cφ

ρi ≥ 0, αi ∈ [0, 2π] ∀ i ∈ Pφ

(1)

The first two constraints express that no two disks in Cφ may overlap, and that all these

disks should fully lie within the unit circle. The next two constraints do the same in polar

coordinates for disks in Pφ. The fifth set of constraints state that no disk in Cφ may overlap

with a disk in Pφ. Observe that the only linear constraints are those in the fourth set.

This shows that no two formulations are linearly related.

2.2 Reduced reformulation descent

The choice Cφ = I defines the fully cartesian formulation φC , whereas Cφ = ∅ defines

the fully polar formulation φP . Reformulation descent, as introduced in [6] uses only

these two formulations of CPP. The local search for each formulation was a simple local

minimization method of gradient type, in particular we used Minos ([3]), a quite popular

method of this type. Because these formulations did not allow us to tackle problems for

large n, the number of constraints being O(n2), we made some new experiments with

reduced formulations. We suppressed many of the non-overlap constraints by considering

only such constraints for pairs of disks not too far apart at the initial solution, more

precisely when their centers are at a distance ≤ 4r. We found experimentally that solution

quality remains the same, but since the number of constraints is considerably reduced,

Minos is faster.

2.3 Reduced formulation space search

Consider the set F of all mixed formulations. This corresponds to all choices of the index

set Cφ, so has cardinality 2n. F has a nested structure in n + 1 levels, where each level is

given by the cardinality of Cφ. For each formulation we use (reduced) RD as local search.

The idea of FSS is that after each local search with end solution x, a new local search

is started from the initial solution x, but using a new (reduced) formulation, randomly
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Function RFSS-PCC(n, kmin, kstep, kmax);
rcurr ← RD-PCC(n);1

rmax← rcurr; kcurr ← kmin;2

let I be the set of all centers;3

while Stopping Condition is not satisfied do4

select subset P of kcurr centers at random; C = I \ P ;5

rnext← MinosMixed(n, x, y, ρ, α, C, P );6

repeat7

rcurr ← rnext; P = C; C = I \ P ;8

rnext← MinosMixed(n, x, y, ρ, α, C, P );9

until rnext ≤ rcurr ;
if rcurr > rmax then10

rmax← rcurr; kcurr ← kmin;11

else

kcurr← kcurr + kstep;12

if kcurr > kmax then13

kcurr ← kmin;14

end

end

end

Algorithm 1: Reduced FSS for PCC problem

chosen from either level 1 if a new best result was found, or in the opposite case one (or

kstep) level(s) up from the current level, until a maximum level kmax is reached. This is

more precisely described in the boxed pseudo-code Algorithm 1.

Illustrative example. We consider the case with n = 50. Our FSS starts with the RD

solution illustrated in Figure 1, i.e., with rcurr = 0.121858. The values of kmin and kstep

are set to 3 and the value of kmax is set to n = 50. We did not get improvement with

kcurr = 3, 6 and 9. The next improvement was obtained for kcurr = 12. This means that

a mixed formulation (1) with 12 polar and 38 Cartesian coordinates is used (|Cφ| = 38,

|Pφ| = 12). Then we turn again to the formulation with 3 randomly chosen circle centers,

which was unsuccessful, but obtained a better solution with 6, etc. After 11 improvements

we ended up with a solution with radius rmax = 0.125798.

2.4 Computational Results

The FSS method was coded in Fortran and tested on a Pentium 3, 900 MHz computer.

Results in solving PCC problems by our Variable neighborhood FSS heuristic (Algorithm 6)

are compared with the RD results recently published in ([6]. They are presented in Table 1.

In the first column the number of desired circles n is given, then the best known values
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r = 0.121858
RD result

r = 0.122858
kcurr = 12

r = 0.123380
kcurr = 6

r = 0.123995
kcurr = 9

r = 0.124678
kcurr = 15

r = 0.125543
kcurr = 3

r = 0.125755
kcurr = 21

r = 0.125792
kcurr = 3

r = 0.125794
kcurr = 21

r = 0.125796
kcurr = 12

r = 0.125798
kcurr = 18

Figure 1: Reduced FSS for PCC problem and n = 50.

Table 1: Packing in unit circle

RD FSS
n Best known Best Avg. Time Best Avg. Time

50 7.947515 0.06 0.79 3.19 0.00 0.24 80.54
55 8.211102 0.00 2.09 3.37 0.00 0.60 72.81
60 8.646220 0.03 1.40 4.71 0.00 0.95 84.39
65 9.017397 0.00 1.33 16.24 0.00 0.21 108.25
70 9.346660 0.10 0.99 19.56 0.01 0.27 151.64
75 9.678344 0.10 0.77 26.46 0.02 0.20 164.51
80 9.970588 0.10 0.93 39.15 0.04 0.23 229.49
85 10.163112 0.72 1.75 38.79 0.18 0.72 256.17
90 10.546069 0.02 1.27 96.82 0.02 0.56 294.77
95 10.840205 0.18 0.93 147.35 0.07 0.39 308.34

100 11.082528 0.30 1.01 180.32 0.12 0.68 326.67

from the literature for 1/r. Columns 3 and 4 give the % deviations from these best known

values for the best found and the average RD values, respectively, obtained in 40 runs of

the code. Column 5 reports the corresponding average cpu time. The same values for FSS

are given in the last three columns. It appears that the average error of the FSS heuristic

is smaller, i.e., solutions obtained by FSS are more stable than those obtained with RD.
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3 Future research

A real Variable Neighbourhood strategy [5] might be used in formulation space, by not

working in levels around the fixed center φC , but rather allow recentering around the

previous formulation. Neighbourhoods within formulation space are defined by way of

the distance measure d(φ, φ′) = |Cφ △ Cφ′ | = |Pφ △ Pφ′ | where △ denotes the symmetric

difference operator between two sets.

Future research may also include other sets of formulations of CPP problems and use

them within an FSS approach. For example, an unconstrained (min-max) formulations

(with Cartesian and polar systems) may be used, then projective (nonlinear) transforma-

tions among variables, etc. Instead of Minos, some other NLP solver may be tried out.

Extensions to more general circle packing problems with different radii might be considered

too.
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