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auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
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Università della Calabria, 87036 Rende (CS), Italy

musmanno@unical.it

Mai 2007

Les Cahiers du GERAD

G–2007–39

Copyright c© 2007 GERAD





Abstract

The Capacitated Arc Routing Problem (CARP) consists of determining a set of
least cost capacitated vehicle routes servicing a set of arcs. In this paper the undi-
rected CARP is formulated as a pure binary linear integer problem. Valid inequalities
are generated and the problem is solved by branch-and-cut. All the benchmark in-
stances proposed by DeArmon and Benavent et al. can be solved optimally without
any branching, for the first time ever.

Keywords: Capacitated arc routing problem, integer programming, branch-and-cut.

Résumé

Le problème non orienté de tournées sur les arcs avec capacités (PTAC) consiste à
déterminer un ensemble de tournées de véhicules de moindre coût desservant un en-
semble d’arcs. Dans cet article, le PTAC est formulé comme un programme linéaire
binaire. On génère des inégalités valides et on résout le problème par séparation et
coupes. Tous les problèmes tests de DeArmon et de Benavent et al. sont résolus à
l’optimalité pour la première fois.

Mots clés : problème de tournées sur les arcs avec capacités, programmation en
nombres entiers, séparation et coupes.
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1 Introduction

The purpose of this article is to present a new formulation and a branch-and-cut algorithm

for the undirected Capacitated Arc Routing Problem (CARP) defined as follows. Let G(V ,

E) be an undirected graph, where V = {0, 1, . . . , n} is the vertex set and E is the edge set.

Vertex 0 represents the depot at which are based m identical vehicles of capacity Q. A

subset R ⊆ E of edges are required, i.e., they must be serviced by a vehicle, but any edge

of E can be traversed or deadheaded any number of times. Each edge has a non-negative

cost (or length) ce. In addition, each required edge has a nonnegative weight (or demand)

de. The CARP is to design a set of least cost vehicle routes such that each route starts

and ends at the depot, each required edge is serviced by exactly one vehicle, and the total

demand serviced by any vehicle does not exceed Q. The CARP was introduced by Golden

and Wong (1981). It is NP-hard since it includes as a special case the Rural Postman

Problem (RPP), shown to be NP-hard by Lenstra and Rinnooy Kan (1976). Applications

of the CARP arise in garbage collection, snow removal, street sweeping and gritting, mail

delivery, meter reading, school bus routing, etc.

While the CARP is a central problem in arc routing and has been known for a long

time, it is still almost exclusively tackled by means of heuristics. As far as we are aware,

the only available exact method for the CARP is a parallel branch-and-bound algorithm

proposed by Hirabayashi et al. (1992a) and Kiuchi et al. (1995) in which a lower bound is

computed at each node through a node duplication lower bounding procedure (Hirabayashi

et al., 1992b). This enumerative algorithm was capable of instances ranging from 15 edges,

with an average of 35.2 nodes in the search tree, to 50 edges, with an average of 124.5

nodes. Transformations of the CARP into an equivalent vertex routing problem (namely

the Capacitated Vehicle Routing Problem, CVRP) have been proposed by Pearn, Assad

and Golden (1987), Longo, Poggi de Aragão and Uchoa (2006), and Baldacci and Maniezzo

(2006). The first two procedures require three CVRP vertices for each required arc of the

CARP, while the third method needs only two CVRP vertices. By using a state-of-the-art

CVRP algorithm, Baldacci and Maniezzo (2006) were able to improve the lower bounds

obtained for a number of classical test problems, and could solve some instances involving

up to 98 required edges. Various lower bounds have been developed by Benavent et al.

(1992), Amberg and Voß (2002), Wøhlk (2003), and Belenguer and Benavent (1998, 2003).

In addition, Welz (1994) has proposed valid inequalities and separation procedures for the

directed version of the CARP. In recent years, the advent of metaheuristics has given rise to

a new generation of powerful algorithms. These include those of Hertz, Laporte and Mittaz

(2000), Hertz and Mittaz (2001), Beullens et al. (2003), Lacomme, Prins and Ramdane-

Cherif (2004), Doerner et al. (2004), and Brandão and Eglese (2006). The best methods

are based on tabu search, variable neighbourhood search, and memetic search. We refer

the reader to Eiselt, Gendreau and Laporte (1995), to Assad and Golden (1995), and to
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the book of Dror (2000), for a detailed description of early lower bounds and heuristics.

Polyhedral studies of the CARP and other arc routing problems are reviewed in Eglese

and Letchford (2000) and in Benavent Corberán and Sanchis (2000).

In this paper we formulate the undirected CARP as a pure binary linear integer pro-

gram, and we introduce four families of new valid inequalities, which are embedded within

a branch-and-cut algorithm. The remainder of this article is organized as follow. In Sec-

tion 2, we present the new formulation and the valid inequalities. We then describe the

branch-and-cut algorithm in Section 3, and computational results in Section 4. Conclusions

follow in Section 5.

2 Formulation

Our linear formulation is inspired from a non-linear model described by Belenguer and

Benavent (1998). Let xk
e be a binary decision variable equal to 1 if and only if vehicle k

services the required edge e ∈ R, and let yk
e be an integer variable equal to the number of

times vehicle k deadheads edge e ∈ E. Given a subset of vertices S ⊆ V \{0}, let E(S) be

the subset of edges with both endpoints in S, ER(S) = E(S) ∩ R the subset of required

edges with both endpoints in S, δ(S) = {(i, j) : i ∈ S, j /∈ S or i /∈ S, j ∈ S} the cutset

associated with S, and δR(S) = δ(S) ∩ R the cutset of required edges associated with S.

In addition, for any subset of edges E′ ⊆ E and for every subset of required edges R′ ⊆ R,

let xk(R′) =
∑

e∈R′ xk
e and yk(E′) =

∑

e∈E′ yk
e for a given vehicle k. The Belenguer and

Benavent (1998) formulation is as follows:

Minimize

m
∑

k=1

∑

e∈E

cex
k
e +

m
∑

k=1

∑

e∈R

cey
k
e (1)

subject to

m
∑

k=1

xk
e = 1 (e ∈ R) (2)

∑

e∈R

dex
k
e ≤ Q (k = 1, . . . ,m) (3)

xk(δR(S)) + yk(δ(S)) ≥ 2xk
f (S ⊆ V \{0}, f ∈ ER(S), k = 1, . . . ,m) (4)

xk(δR(S)) + yk(δ(S)) = 0 mod (2) (S ⊆ V \{0}, k = 1, . . . ,m) (5)

xk
e ∈ {0, 1} (e ∈ R, k = 1, . . . ,m) (6)

yk
e ≥ 0 and integer (e ∈ E, k = 1, . . . ,m), (7)

where the objective function (1) is the total traversal cost, constraints (2) state that ev-

ery required edge must be serviced, constraints (3) impose the vehicle capacity is never
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exceeded and constraints (4) ensure that the solution is connected. Finally, parity con-

straints (5) stipulate that each route induces an Eulerian subgraph. Unfortunately, these

constraints are non-linear. Belenguer and Benavent (1998) propose a relaxation of their

formulation in which constraints (5) are substituted with the following valid inequalities:

xk(δR(S)\H) + yk(δ(S)) ≥ xk(H) − |H| + 1 (S ⊆ V,H ⊆ δR(S), |H| odd ). (8)

2.1 CARP reformulation

We introduce a linear formulation for the undirected CARP in terms of the xk
e and yk

e

variables. Our model exploits the fact that in a CARP optimal solution each vehicle route

can be seen as an optimal RPP route spanning the required edges of the route. Hence the

RPP dominance relations described in Christofides et al. (1981) can be reformulated as:

yk
e ≤ 2 (e ∈ E\R, k = 1, . . . ,m), (9)

yk
e + xk

e ≤ 2 (e ∈ R, k = 1, . . . ,m). (10)

Indeed, on the basis of the results reported in Ghiani and Laporte (2000), only a small

number of the inequalities (9)–(10) are satisfied as equalities in an optimal CARP solution.

These dominance relations allow us to replace each integer valued yk
e variables with a pair

of binary variables y
′k
e and y

′′k
e , such that:

yk
e = y

′k
e + y

′′k
e (e ∈ E, k = 1, . . . ,m), (11)

y
′k
e ∈ {0, 1} (e ∈ E, k = 1, . . . ,m), (12)

y
′′k
e ∈ {0, 1} (e ∈ E, k = 1, . . . ,m). (13)

Using these variables, we can now express the parity constraints (5) as cocircuit inequal-

ities (Barahona and Grötschel, 1986; Ghiani and Laporte, 2000):

∑

e∈δR(S)\F

xk
e+

∑

e∈δ(S)\F ′

y
′k
e +

∑

e∈δ(S)\F ′′

y
′′k
e ≥

∑

e∈F

xk
e +

∑

e∈F ′

y
′k
e +

∑

e∈F ′′

y
′′k
e −|F |−|F ′|−|F ′′|+1

(S ⊆ V, F ⊆ δR(S), F ′ ⊆ δ(S), F ′′ ⊆ δ(S), |F | + |F ′| + |F ′′| odd, k = 1, . . . ,m). (14)

Constraints (14) state that if an odd subset F ∪ F ′ ∪ F ′′ of serviced and deadheaded

edges are incident to a set of vertices S, then at least another edge of the cutset has to be

serviced or traversed.

2.2 Equivalent solutions

The new CARP formulation (1)–(6), (11)–(14) yields a large number of equivalent solu-

tions. First, since all vehicles have the same capacity, for any given solution m! equivalent
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solutions can be obtained through a permutation of the vehicle indices. We introduce

additional constraints to remove this redundancy. Let σ be a permutation of the set IR

of the indices corresponding to the required edges e ∈ R, and let σ(i) = j ∈ IR. Define

i(k) = min{i ∈ N : xk
eσ(i)

= 1} as the smallest index of the required edges serviced by

vehicle k. To impose the condition

i(1) ≤ . . . ≤ i(m), (15)

we use the following set of fixing constraints:

x1
eσ(1)

= 1, (16)

xk
eσ(i)

≤
∑

j=1,...,i−1

xk−1
eσ(j)

, (k = 3, . . . ,m, i ≥ 2), (17)

xk
eσ(i)

= 0, i = 1, . . . ,m − 1, (k = i + 1, . . . ,m). (18)

Constraints (16) state that vehicle with index 1 must serve edge eσ(1). Constraints (17)

stipulate that if a required edge eσ(i) is serviced by vehicle k (k = 3, . . . ,m) then at least

one edge eσ(j), j = 1, . . . , i−1, must be serviced by the vehicle with the index immediately

preceding k. Finally, constraints (18) state that edges eσ(i) (i = 1, . . . ,m − 1), cannot be

serviced by vehicles with indices larger than k = i + 1, . . . ,m.

To illustrate, let m = 3, IR = {3, 5, 10, 21, 7, 35, 46}, {σ(1) = 46, σ(2) = 10, σ(3) =

3, σ(4) = 7, σ(5) = 5, σ(6) = 21, σ(7) = 35} and consider the three routes (e1
σ(2), e1

σ(7),

e1
σ(1)), (e2

σ(3), e
2
σ(6)) and (e3

σ(5), e
3
σ(4)). Then i(1) = min{2, 7, 1} = 1, i(2) = min {3, 6} = 3

and i(3) = min{5, 4} = 4. Therefore i(1) ≤ i(2) ≤ i(3) and inequalities (16)–(18) become:

x1
e46

= 1;

x3
e10

≤ x2
e46

;

x3
e3

≤ x2
e46

+ x2
e10

;

x3
e7

≤ x2
e46

+ x2
e10

+ x2
e3

;

x3
e5

≤ x2
e46

+ x2
e10

+ x2
e3

+ x2
e7

;

x3
e21

≤ x2
e46

+ x2
e10

+ x2
e3

+ x2
e7

+ x2
e5

;

x3
e35

≤ x2
e46

+ x2
e10

+ x2
e3

+ x2
e7

+ x2
e5

+ x2
e21

.

Moreover, xk
eσ(i)

= 0 for i = 1, 2 and k = 2, 3.

2.3 Surrogate valid inequalities

Our branch-and-cut algorithm uses two classes of constraints, introduced by Belenguer and

Benavent (1998), which impose conditions on the aggregated variables ze =
m
∑

k=1

(y
′k
e + y

′′k
e ),
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e ∈ E. Given a set S ⊆ V \{0}, define D(S) =
∑

e∈ER(S)∪δR(S) de, and observe that at least

⌈D(S)/Q⌉ vehicles are required to service the demand D(S), and any vehicle that services

some edge in the set ER(S) ∪ δR(S) will have to cross δ(S) at least twice. Therefore, any

feasible solution contains at least 2⌈D(S)/Q⌉ − |δR(S)| deadheading edges in the cutset

δ(S). This condition is expressed by the following surrogate capacity constraints:

m
∑

k=1

∑

e∈δ(S)

(y
′k
e + y

′′k
e ) ≥ 2⌈D(S)/Q⌉ − |δR(S)|

(

S ⊆ V \{0}
)

. (19)

We now introduce new valid inequalities based on a basic property of Eulerian graphs,

namely that such graphs must be even, i.e., all their vertices must have an even degree.

The graph associated with any feasible solution for the undirected CARP must be an even

and therefore, any edge cutset must contain an even number of edges. In particular, if any

edge cutset has an odd number of required edges, then at least one edge in the cutset must

be deadheaded. This condition is expressed by the following odd edge cutset constraints:

m
∑

k=1

∑

e∈δ(S)

(y
′k
e + y

′′k
e ) ≥ 1 (S ⊆ V, |δR(S)| odd ). (20)

3 Branch-and-cut algorithm

In this section we describe a branch-and-cut algorithm based on the CARP formulation

defined by (1)–(6), and (11)–(19).

Step 1 (First node of the search tree)

Let z be an upper bound on the optimal solution value z∗. Define a first subproblem

as a linear program containing the objective function (1), constraints (2) and (3), the

fixing constraints (16)–(18) generated for the permutation σ, with σ(i) ≤ σ(j) for each

i ≤ j, a connectivity constraint for each single component, a cocircuit constraint with

F ∪ F ′ ∪ F ′′ = ∅ for each R-odd vertex. Insert this subproblem in a list.

Step 2 (Termination test)

If the list is empty, stop. Otherwise select a subproblem from the list according to the

smallest lower bound strategy.

Step 3 (Subproblem solution)

Solve the subproblem and let z be the solution value. If z ≥ z̄, remove the current

subproblem from the list and go to Step 2. If the solution is feasible for the CARP and

z < z̄, set z̄: = z, remove the current subproblem from the list, and go to Step 2. Otherwise,

go to Step 4.
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Step 4 (Cut generation)

Identify as many violated inequalities as possible. If no inequality is generated, go to Step

5, otherwise add the violated inequalities to the current subproblem, and go to Step 3.

Step 5 (Branching)

Branch on the fractional variable xk
e , y

′k
e or y

′′k
e nearest to 0.5 and generate the correspond-

ing subproblems. Insert the subproblems in the list and go to Step 2.

In Step 1, we use the TSA upper bound of Brandão and Eglese (2006), which empirically

outperforms all upper bounds obtained by means of recent heuristics.

For Step 4 we have developed the following separation procedures. Let (x̄, ȳ′, ȳ′′) be

the current solution of the subproblem selected in Step 3, with x̄ ∈ ℜm|R|, ȳ′ ∈ ℜm|E| and

ȳ′′ ∈ ℜm|E|, the separation problems for the constraints (4), (14), (19), and (20) solved as

follows.

Connectivity inequalities (4). While the separation problem is solvable in O(|V |3) time,

we use a modification of the heuristic proposed by Fischetti, Salazar and Toth (1997). For

each vehicle k, we construct a maximum spanning tree on an auxiliary graph Ḡk where each

connected component Ck
h of Rk is represented by a vertex h′k, and edges e′k = (h′k, tk) have

a cost equal to the sum of variables xk
e , y

′k
e and y

′′k
e corresponding to edges ek = (ik, jk)

such that ik ∈ V k
h and jk ∈ V k

t . At any stage of the construction of this tree, let Sk be

the set of connected components of Rk corresponding to vertices of the partial tree. If Sk

yields a violated connectivity constraint, this constraint is generated. Once the spanning

tree is complete, another check for violated connectivity constraints is made by removing

in turn each edge of the tree.

Cocircuit inequalities (14). This separation problem can be solved in a polynomial time

by using the heuristic procedure proposed by Ghiani and Laporte (2000) for the undirected

RPP. The slack of (14) can be expressed as:
∑

e∈δR(S)\F

x̄k
e +

∑

e∈δ(S)\F ′

ȳ
′k
e +

∑

e∈δ(S)\F ′′

ȳ
′′k
e +

∑

e∈F

(1 − x̄k
e)+

∑

e∈F ′

(1 − ȳ
′k
e )+

∑

e∈F ′′

(1 − ȳ
′′k
e )−1.

To minimize this quantity, include in F every edge e such that x̄k
e ≥ 0.5, in F ′ every edge

e such that ȳ
′k
e ≥ 0.5 and in F ′′ every edge e such that ȳ

′′k
e ≥ 0.5. If |F | + |F ′| + |F ′′| is

odd and the associated slack is negative, then constraint (14) is violated by the current

solution. Otherwise, no constraint (14) is violated.

Surrogate capacity inequalities (19). This separation problem can be solved in polyno-

mial time whenever
m
∑

k=1

∑

e∈δ(S)

(y
′k
e + y

′′k
e ) ≥ 2D(S)/Q−|δR(S)|, by applying a modification
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of the procedure proposed by Belenguer and Benavent (2003). We solve a maximum flow-

minimum cut problem on an auxiliary graph G̃ constructed from G by adding a dummy

vertex n + 1, connected to every vertex i ∈ V . The capacity ue of every edge e of G̃ is

defined as follows:

ue =























z̄e =
m
∑

k=1

(

ȳ
′k
e + ȳ

′′k
e

)

if E\R.

z̄e + 1 − de/Q if e ∈ R.
∑

f∈δR({vi})

df/Q if e = (i, j), i ∈ {1, . . . , n} and j = n + 1.

Using a reasoning similar to that of Belenguer and Benavent (2003), we observe that a

minimum cut separating the depot and vertex n + 1 corresponds to a cut edgeset which

induces a partition of V ∪ {n + 1} into {V̄ , V ∪ {n + 1}\V̄ } such that 0 ∈ V̄ and n + 1 ∈
V ∪ {n + 1}\V̄ . Also, given a set S ⊆ V \{0}, the capacity of the cutset δ(S ∪ {n + 1}),
minus the constant 2

∑

e∈R de/Q, is equal to the slack of constraint (19). It follows that

if the maximum flow from 1 to n + 1 minus 2
∑

e∈R de/Q is negative, then constraint (19)

corresponding to a minimum cutset δ(S∗) is violated by the current solution. Otherwise,

no constraint (19) is violated.

Odd edge cutset inequalities (20). We have applied the O(|V |4) exact procedure of

Padberg and Rao (1982). Given surrogate variables z̄e =
∑

k∈I(ȳ
′k
e + ȳ

′′k
e ), let G(z̄) be

the graph induced by edges e ∈ E such that z̄e > 0. We define z̄e as the capacity of edge

e ∈ E, and label as odd the vertices incident with an odd number of required edges of G.

An odd cutset is defined as an edge cutset δ(S) such that S contains an odd number of

odd vertices. Using the algorithm of Padberg and Rao (1982) we determine the minimum

capacity odd cut in G(z̄). If the capacity of this cut is less than 1 then constraint (20) is

violated by the current solution. Otherwise, no constraint (20) is violated.

4 Computational results

The algorithm was coded in C using the Microsoft Visual Studio C++ Environment and

the CPLEX library. It was executed on a PC with a Pentium IV processor clocked at

2 GHz. We used CPLEX 9.0 to solve the linear programs. The algorithm was tested on

two sets of the CARP benchmark instances introduced by DeArmon (1981) and Benavent

et al. (1992). Computational results are provided in Tables 1 and 2. The column headings

are defined as follows:
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|V | : number of vertices of the graphs;
|E| : number of edges (all required);
z : initial upper bound;
z : lower bound at the root of the search tree;
CONNECT : number of generalized connectivity inequalities;
COCIRCUIT : number of cocircuit inequalities;
AGGRCAP : number of aggregate capacity inequalities;
ODDEDGE : number of odd edge cutset inequalities;
z∗ : optimal solution value;
z/z∗ : lower bound at the root node of the search tree, divided by

the optimal solution value;
Nodes : number of nodes in the search tree;
Seconds : CPU time in seconds.

Our computation times do not include one time required to compute the upper bound

z. According to Brandão and Eglese (2006), this time is on average 2.5 seconds for the

DeArmon instances, and 20.2 seconds for the Benavent et al. (1992) instances, on a

Pentium Mobile (1.4 GHz).

Our results indicate that the proposed algorithm can solve, for the first time and with-

out any branching, all the DeArmon (1981) and Benavent (1992) CARP instances. The

lower bound z generated at the root node of the search tree is always equal to the op-

timum z∗. It is also never less than the best of the available lower bounds: CPA (Be-

lenguer and Benavent, 1998), LB2 (Benavent et al., 1992), NDLB (Kinchi et al., 1992),

and DWMLB (Longo et al., 2006). The best of these bounds is often equal to z so that

there is then no need to execute our algorithm. However, we decided not to use these

bounds in order to test and illustrate the strength of our lower bounding procedure. It can

be seen that all four types of valid inequalities played a role in the solution process, but

the connectivity and cocircuit inequalities were the most useful. The instances for which

optimal solution were identified for the first time are boldmarked. Solutions are available

at: www.deis.unical.it/deis1.0/portale/home/musmanno.

5 Conclusions

The undirected CARP is a hard combinatorial optimization problem with several applica-

tions in the field of distribution management. We have described a new linear formulation

that provides a full description of the CARP in terms of binary variables. A fully auto-

mated branch-and-cut algorithm was then developed and implemented. This algorithm is

capable of solving to optimality all instances of two benchmark sets, for the first time ever

and without any branching.
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