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recherche sur la nature et les technologies.





The Strategic Value of a Seller’s Advance

Booking Discount Program

Steffen Jørgensen

Department of Business and Economics
University of Southern Denmark

Odense, Denmark
stj@sam.sdu.dk

Peter M. Kort

Department of Econometrics and Operations Research and CentER
Tilburg University

Tilburg, The Netherlands
kort@uvt.nl

Georges Zaccour

GERAD and Chair in Game Theory & Management
HEC Montréal
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Abstract

In an Advance Booking Discount Program (ABDP), a firm offers a product at a
price discount prior to the selling season. In the selling season the product is sold
at a regular price. The aim of the paper is to study the strategic value of an ABDP
under uncertainty with respect to a specific consumer characteristic. The setup is a
duopolistic market, modelled by Hotelling’s “linear city” where two firms, A and B,
are located at the boundaries of the city. A and B are uncertain about consumers’
transportation costs. Firm A only has the option to implement an ABDP.

Three scenarios emerge, each generating a particular outcome. In the first scenario
it is not optimal for A to set up an ABDP. The reason typically is that the selling price
of B is considerably larger than that of A and there is no incentive to implement the
program. In the two other scenarios, A implements an ABDP in which the reduced
price enables A to attract customers from B. If consumers’ transportation costs are
sufficiently low, B actually exits the market. We show that when A does not implement
an ABDP, its expected profit increases as uncertainty about consumers’ transportation
cost increases. We also show that the gain of implementing an ABDP may depend on
uncertainty in various ways.

Résumé

Un Programme d’Achat Anticipé (PAA) consiste pour une entreprise à proposer
aux consommateurs d’acheter à un prix réduit un produit qui sera livré durant la saison
régulière. Le produit est disponible au prix régulier durant la saison. L’objectif de cet
article est d’évaluer la valeur stratégique d’un PAA en présence d’incertitude sur une
caractéristique des consommateurs.

Le cadre analytique est celui d’un marché duopolistique à la Hotelling où deux
firmes, A et B, sont localisées aux deux extrémités de la ligne. Les deux firmes sont
incertaines quant au coût de transport des consommateurs. Seule la firme A peut offrir
un PAA. Trois scénarios engendrant des gains différents peuvent émerger. Dans le pre-
mier, il n’est pas optimal pour A d’offrir un tel programme. La raison est typiquement
que le prix régulier au cours de la saison est considérablement plus élevé que le prix
réduit. Dans les deux autres scénarios, A implante un PAA pour attirer une partie de
la clientèle de B. Si le coût de transport est en fait suffisamment bas, la firme B sort
du marché. On montre que quand A n’offre pas un PAA, son profit espéré augmente
avec l’incertitude sur le coût de transport des consommateurs. On montre aussi que le
gain de proposer un PAA peut dépendre de plusieurs façons de l’incertitude.

Acknowledgments: This paper was presented in a seminar at Department of Busi-
ness and Economics, University of Southern Denmark, Odense, and in The Second
Workshop on Game Theory in Marketing, Montréal.
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1 Introduction

The paper considers a situation in which a manufacturing firm offers an “Advance Booking
Discount Program” (ABDP). The idea of the program is to offer consumers a particular
product at a price discount, prior to the “selling season” in which the product is sold at
a higher, “regular” price. Customers who accept to participate in the program place an
order which is binding; no cancelations or refunds are possible. At the beginning of the
selling season the product is delivered to the customers in the program. Consumers who
do not participate in the program can purchase the product at the regular price at any
time during the selling season.

An incentive for a firm to set up an ABDP is that it may provide advance information
about consumer demand which can be useful later on. Furthermore, the firm’s market
share could increase if customers of competing firms choose to participate in the program.
Another advantage of an ABDP is that the product can be sold over a longer period of time.
Moreover, revenues in the program are guaranteed if orders placed under the program are
prepaid. The advantage of participating in an ABDP of a consumer is that the purchasing
cost is lower and the product is delivered without interruption.

ABDPs haven been used in the sales of perishable products that are consumed during a
well-defined and concentrated selling season. Tang et al. (2004) and McCardle et al. (2004)
provide some examples: Pumpkin pies or fresh turkeys during Thanksgiving, moon cakes
during the Chinese mid-Autumn festival, Christmas trees, or new durables with a short
selling season and high demand uncertainty (music CDs, computer games). ABDPs are
often used in service provision (airlines, hotels, travel, entertainment): See, e.g., Shugan
and Xie (2000, 2001, 2004).

The paper is organized as follows. We proceed in this section by a review of the
literature on advance booking discount programs, state the aims of the paper, and report
our main findings. A formal model of a duopolistic market is set up in Section 2. Section 3
analyzes a benchmark case in which no ABDP is implemented. Section 4 is concerned with
the situation where one of the two firms has the option of implementing an ABDP. Our
conclusions are found in Section 5.

1.1 Literature review

Weng and Parlar (1999) address the problem where a seller of a product offers a discount
to consumers to make them buy earlier. Total sales are random and a certain fraction of
sales will be made in the ABDP. The number of customers who will take advantage of
the program is a function of the depth of discount. Weng and Parlar assumed that orders
within the program are deterministically known. The remaining demand, which occurs
during the selling season, is random. There is no explicit time dimension in the model:
customers within and outside the program are in the market during a fixed interval of time.
Hence, the model essentially is static and there is only one decision maker, the seller.
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Tang et al. (2004) extend the setup of Weng and Parlar and assume that the market has
two segments: one which buys the product of the seller and one which buys a competing
(aggregate) product. Tang et al. suppose that demand within as well as outside the
program is random. Moreover, they introduce a fixed cost of implementing the program
and analyze also the case where the program is merely an early reservation procedure
(where there is no discount). A particular focus is on demand updating, that is, how
demand in the program can be used to improve demand forecasts for the selling season.
Clearly, this is relevant for the seller’s lot sizing decision. The following result is particularly
interesting. Denote the random demand in the program by D1 and let D2 be demand in
the selling season. Then it holds that the variance of the conditional distribution of D2

given D1 = d1 is smaller than the variance of the joint distribution of D1 and D2. The
intuition here is that the knowledge of sales generated by the program improves the seller’s
ability to forecast later demands.

Several authors have pointed out that an ABDP can provide demand information by
using advance bookings as a leading indicator of total demand and that sellers can use early-
booking low prices to generate additional, price-sensitive demand. Chen (2001) suggests
an advance-booking discount policy for a monopolist seller when customers select the price
to pay by choosing the shipping date of the items bought.

McCardle et al. (2004) abandon the single-firm assumption of the above works and
suggest a duopoly game in which each firm can decide to implement an ABDP. The model
is a fairly straightforward extension of the one-player setup in Tang et al. (2004) and gives
rise to four scenarios. One in which no firm implements a program and one in which both
firms implement a program. Not unexpectedly, if implementing a program is costless, there
is a unique equilibrium in the duopoly game and in equilibrium both firms offer an ABDP.

There is a sizeable literature in the area of revenue management. These works are
concerned with the advance selling of a fixed capacity (seats in airplanes, rooms in hotels).
In some situations a seller can increase its capacity, but only by paying a large fixed cost.
The fixed capacity feature leads to problems that are essentially different from the one of
this paper. Our assumption is that the seller can decide freely on the amount of goods
available for sales in the program and during the selling season. Moreover, in our setup
the seller does not have to make the capacity decision before launching the program. The
reason is that the amount of capacity that is consumed in the program will be endogenously
determined as a function of the discount offered in the program.

The advance selling problem has been addressed in marketing literature on price deals
and promotions and has relations to contingent claims contracts (insurance), peak load
pricing, and state-dependent utility theory (Shugan and Xie (2001)).

1.2 Aim of paper

The paper is positioned in the “intersection” between the Tang et al. (2004) and the
McCardle et al. (2004) papers. In the former there is a single firm who offers an ABDP,
that is, we have a monopolistic situation. In the latter, there are two firms who compete
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in a duopolistic market and each of them can choose to offer an ABDP. In our setup there
will be two firms in a duopoly, but one firm only has the option to offer a program. (This
corresponds to one of the asymmetric scenarios in McCardle et al. (2004)).

One aim of the paper is to extend the analysis of Tang et al. (2004) (see also McCardle
et al. (2004)) by endogenizing the fraction of customers who participate in the ABDP. In
these papers it was assumed that the relationship between the fraction of customers who
participate in a program and the discount offered by the program is exogenously given
and has a specific functional form. In this paper we wish to determine endogenously the
number of customers participating in the program. Another difference between the two
papers and ours is that we explicitly discount future profits to allow for time-impatience
on the part of firms.

Another aim of the paper is to study the impact of uncertainty in another setup than
that in Tang et al. (2004) and McCardle et al. (2004). In these papers the assumption is
that the joint probability distribution for the random demands in the program and in the
selling season is a bivariate normal distribution. In our setup, random demand is modelled
by a simple two-point probability distribution. Due to this assumption we are able to
derive almost all results analytically. Tang et al. (2004) had, in some instances, to rely on
numerical methods to obtain insights.

1.3 Main results

Consider two firms, A and B, who are in the same market. They play a Hotelling “linear
city” game (Hotelling (1929)) in which with probability 1

2 either customers’ transportation
cost is low or high. Inperiod one, firm A (only) has the option of implementing an ABDP
in which customers are offered a reduced price as an incentive to buy early. To start up
such a program, firm A incurs a fixed cost. Inperiod two (the selling season), the firms
play a game in which they determine their respective outputs. The normal prices charged
in this period are exogenously given. firm A has three decisions to make. First, should
an ABDP be implemented? If yes, what is the optimal discount to give the customers in
the program? Finally, firm A must determine its optimal output in the duopoly output
game played in the selling season. The latter also applies to firm B. It is assumed that
firm A has the lowest normal selling price. Consumer demand is determined by the prices
and the consumers’ random transportation cost. Demand of firm A decreases when the
transportation cost increases, because then demand is less price sensitive.

We show in Section 3 that if firm A does not implement an ABDP, the firm’s optimal ex-
pected profit in the output game increases with the uncertainty in the transportation cost.
Firm A’s profit increases because the firm gets more customers when uncertainty about the
transportation cost increases. The reason is that for firm A demand is decreasing in the
transportation cost in a convex way, and increased uncertainty implies that transportation
costs can take more extreme values. If transportation costs are high, price differences are
less important for consumers in their product choice. An increase in transportation cost
then means that the firm having the highest selling price (which by assumption is firm B)
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will gain demand at the expense of firm A. Using the same reasoning, firm A will sell
more goods when transportation costs are low. Due to the convex dependence of firm A’s
demand on transportation cost, the latter effect will be dominating.

If firm A chooses to implement an ABDP, we first show that all customers of firm A will
join the ABDP. Hence, this means that firm A’s sales inperiod two are zero and information
about demand provided by the ABDP is not exploited in fixing the production volume.
The conclusion is that the benefit of setting up an ABDP is to increase market share, not to
improve demand forecasts for the selling season. In Section 4.1 we determine endogenously
how many customers will take part in the program. We show in Section 4.4 that the above
result for the optimal expected profit of firm A carries over to the situation with an ABDP
(although one subcase requires that the transportation cost is sufficiently low).

We examine the circumstances under which a program should be implemented. If,
ceteris paribus, the regular price of firm A is low, it does not pay to start the program.
Otherwise it may, depending on the fixed cost of setting up the program, be optimal to start
the program. Then there are two choices for the optimal discount given to the customers.

In a first case, the competitor’s price is “large” and firm A gets a substantial price
advantage by implementing the program. Actually, firm A gains all the customers in the
market if the transportation cost happens to be low. The optimal price reduction decreases
in the competitor’s price and increases in firm A’s own price. The price reduction increases
in the mean transportation cost and decreases with the uncertainty in the transportation
cost. The intuition of these results follows from the fact that low transportation costs tend
to be low when mean transportation costs are low or when uncertainty is high. Then a
small price reduction is enough to attract all customers if the transportation cost is low.

In a second case, the price reduction is larger and by implementing the program, firm A
can attract some customers of firm B (but demand of firm B remains positive). The
optimal price reduction percentage varies with the competitor’s price and own price in
the same way as in the first case. However, the price reduction decreases with the mean
transportation cost and increases with the uncertainty on the transportation costs. This
is the opposite of what happened in the first case. The reason is that price sensitivity is
higher when the transportation cost is low such that this is a dominant scenario when it
comes to determining the optimal price reduction. When transportation costs are low, a
price reduction attracts more customers and a price reduction is more substantial.

In Section 4.6 we study how the decision to start a program is affected by the uncer-
tainty in the transportation cost. For the scenario discussed in the previous paragraph we
identify parameter constellations under which the profitability of implementing the pro-
gram increases, decreases, or first increases and then decreases with the uncertainty. We
show that if there is no uncertainty about consumers’ transportation cost, the benefit of
implementing the program is substantial. The benefit decreases, however, as uncertainty
increases and eventually the benefit becomes zero. Then the presence of a fixed start-up
cost implies that it is not profitable to start up an ABDP.
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2 Model

We consider an ABDP in which firm A can choose to offer a particular product at a price
discount, prior to the selling season. If customers accept the offer they make a prepayment
at the time of their order. At the beginning of the selling season the product is delivered
to those who participate in the program. Consumers who do not want to participate in
the program can purchase the product at the regular (and higher price) at any instant of
time during the selling season.

Our model is based on Hotelling’s “linear city” output (or pricing) game (Hotelling
(1929), Tirole (1988)). A linear city of length one is a city which lies on a straight line
and there is a population of risk neutral consumers being uniformly distributed over the
interval [0, 1]. There are two risk neutral firms: firm A sells product A while firm B sells
product B. The firms are located at the extremes of the city. (Firms could be located at
interior positions, cf. Fudenberg and Tirole (1991). In general, locations at the extremes
of the city is advantageous to the firms in that it tends to reduce price competition).

Suppose that firm A is located at y = 0, firm B at y = 1. Both firms have the same unit
cost of production of the good, equal to c = const. > 0. Consumers incur a transportation
cost T per unit of distance travelled. Thus, a consumer located at y incurs a cost of Ty
when buying from firm A and a cost of T [1 − y] when buying from firm B. A consumer
buys either one unit of the good or nothing and derives utility s̄ = const. > 0 from the
consumption (gross of price and transportation costs) of one product unit. We assume
that s̄ is a large number such that any consumer prefers to buy A or B to buying nothing.
(In this way we do not need to worry about buyers who are not purchasing at all).

Remark 1 In the above description, consumers are located at different places. An alter-
native interpretation of the linear city is that customers have heterogenous tastes which lie
on a continuum. Firms A and B being at different locations then means that their products
have different tastes. The location of a consumer represents her relative preference for
the tastes of the two products. Transportation costs reflect the loss of utility suffered by a
consumer who does not get her preferred product.

The linear city model is used in a two-period setup. (For a similar setup, see Shugan
and Xie (2001)). Inperiod one, firm A (but not B) has the possibility to implement an
ABDP which will be in effect inperiod one only. The “selling season” isperiod two in which
firms have unit selling prices pA and pB , respectively. These prices are the regular prices
that are assumed exogenously given. If firm A chooses not to implement an ABDP in
period one, it charges its regular price in that period two.

Consumers of product A enter the market inperiod one and can – if they join the
program – buy the product of firm A at a reduced price, equal to xpA, were x ∈ (0, 1) is
the discount offered on the regular price. The reduced price is announced inperiod one. If
a consumer of product A does not buy inperiod one she wait untilperiod two in which she
can buy either product A or product B. Consumers of product B enter the market inperiod
two (or, alternatively, the product of firm B is not available inperiod one).
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To implement the program, firm A must pay a fixed cost K = const. > 0. Firm A is
not obliged to produce the goods sold in the program untilperiod two arrives: Customers
in the program have prepaid their orders, but delivery is postponed untilperiod two.

A priori, both firms face an uncertainty; they do not know the actual value of the
transportation cost T . This cost is a random variable. To make things simple, suppose
that T is “high”, equal to t + w > 0 with probability 1

2 , or “low” and equal to t − w > 0

with probability 1
2 , where w ∈ [0, t) is called the “uncertainty parameter”. It follows that

E(T ) = t and var(T ) = w2. The firms must determine their respective quantities qA and
qB before knowing the actual transportation cost.

A consumer located at y ∈ (0, 1) derives a net utility of buying product A which equals
s̄−pA− [t + w] y when the transportation cost is high. The net utility is s̄−pA− [t − w] y if
the transportation cost is low. If the transportation cost is high, consumers have a stronger
preference for one of the products than when the cost is low. Thus, differences in prices
are more important to consumers when preferences are weaker.

In order to avoid less interesting outcomes, we make some assumptions. First, to make
production worthwhile, we make

Condition 2 For both firms, the discounted price exceeds the unit cost.

By the discounted price we mean the normal price, discounted backwards by one period,
not the reduced price charged in the ABDP. Denoting the one-period discount factor by
δ = const. ∈ (0, 1), the discounted price of firm i equals δpi, i ∈ {A,B} .

If (i) the transportation cost is deterministically known, (ii) prices are endogenously
determined, and (iii) an ABDP does not exist, it has been shown (Tirole (1988) or Fu-
denberg and Tirole (1991)) that the discounted prices simply are c + T . We shall study a
situation in which prices are not “too different” from c+T. More specifically, we make the
following assumption.

Condition 3 Suppose that a firm’s discounted price does not exceed the sum of the unit
production cost and two times the maximal transportation cost.

The two conditions can be formalized as

c < δpi < c + 2 [t + w] , i ∈ {A,B} . (1)

Finally we need

Condition 4 Suppose that for any firm its expected profits will be negative if its output is
directed at a market segment where, with probability 1

2 , the customers prefer to buy from
either firm.
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The implication is that if firm B serves such a segment, it is suboptimal for firm A to
do so, and vice versa. The assumption can also be expressed as

max {δpA, δpB} < 2c. (2)

3 No ABDP

This section assumes that either firm A does not have the option of implementing an
ABDP, or, if it has, it does not wish to use that option. The latter could be the case if
(i) the cost of setting up and running the program is high and the additional revenues
generated in the program are insufficient to cover those costs. It could also happen (cf.
Shugan and Xie (2001)) in the case where (ii) the firm’s production capacity is very small
or (iii) when marginal production costs are large. All three cases will be addressed below.

In the absence of an ABDP, firms play in the selling season a one-period game in which
they fix their quantities without knowing the transportation cost. First we characterize
the demand functions in this game. A demand function can be found by locating the
“indifferent consumer” (see, e.g., Rasmusen (1989)). Every individual located to the left
(right) of the indifferent consumer buys the product of firm A (B). The location of the
indifferent consumer is a value of y which satisfies

pA + Ty = pB + T [1 − y] , (3)

that is,

y =
T + pB − pA

2T
. (4)

Let yh be the location of the indifferent consumer when the transportation cost is high
(T = t + w) and let yl be the location of the indifferent consumer when the transportation
cost is low (T = t − w). The implication is, using (4), that

yh =
t + w + pB − pA

2 [t + w]
(5)

yl =
t − w + pB − pA

2 [t − w]

and it holds that yh

(

<
>

)

yl for pA

(

<
>

)

pB.

We confine our interest to the case pA < pB. The case pA = pB is uninteresting because
the market is shared equally among the firms, no matter the value of the uncertainty
parameter w. We refrain from analyzing the case pA > pB. Our expectation here is that
there is a stronger incentive to start an ABDP. The reason is that firm A could improve its
competitive position by lowering the “high” price pA and offer a substantial price reduction
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to customers in the program. To make sure that yh and yl are between zero and one it
suffices to assume pB − pA ≤ t − w, that is, the price differential does not exceed the
low value of the transportation cost. In other words, to have positive demands for both
products, the difference in prices must not be too large.

Under the assumption pA < pB it holds that consumers with y ∈ [0, yh) always prefer
product A, consumers with y ∈ [yh, yl) prefer A if the transportation cost is low and
B otherwise, whereas consumers with y ∈ [yl, 1) always prefer B. Noting that yl and yh

converge to 1
2 when the mean transportation cost increases shows that price differences are

less important when consumers have high transportation costs (strong preferences).

Denote by πA(qA, qB) the profit of firm A and let E1 represent the expectation operator,
given the information available at the start ofperiod one. The expected profit of firm A,
which is to be maximized with respect to qA ≥ 0, is given by

E1 [πA(qA, qB)] =

min {yh, qA} δpA +
1

2
max {min {yl − yh, qA − yh} , 0} δpA+

1

2
max

{

1 − yh − qB

1 − yh

, 0

}

max {min {yl − yh, qA − yh} , 0} δpA+

max

{

1 − yl − qB

1 − yl

, 0

}

max{min {1 − yl, qA − yl} , 0}δpA − cqA.

This formulation of firm A’s objective assumes that the consumers located along the line
segment [0, qA] will be served, given that at least qA consumers want to buy from firm A.
Consumers who would like to buy from firm A, but are located outside the line segment,
will not be served by firm A. In a similar fashion, given that at least qB consumers want
to buy from firm B, consumers located in the segment [1 − qB, 1] will be served by firm B.

The objective consists of four revenue terms and one cost term (cqA). The first revenue
term concerns the consumers in the segment (0, yh) who will buy from firm A, provided
that its output is sufficient. The second revenue term relates to the segment (yh, yl) if the
transportation cost is low. In this case consumers choose firm A. The third term relates to
the segment (yh, yl) if the transportation cost is high. Consumers in this segment would
like to buy from firm B, but will go to firm A if firm B’s output is insufficient. The fourth
term relates to the segment (yl, 1) where consumers prefer to buy from firm B, but choose A
if the output of firm B is insufficient.

We turn to the determination of equilibrium values of qA and qB. Recall the assumption
in (2) and note that since (1) implies c < min (δpA, δpB) , it is optimal for a firm to
produce for those consumers who always prefer to buy its product, given it is available.
The implications are that

qA ≥ yh, qB ≥ 1 − yl.

Next we need to determine which firm will serve the “intermediate” segment (yh, yl) .
Consumers prefer A and B with the same probability. For firm A, the expected discounted
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revenue per consumer equals 1
2δpA. Given the assumption in (2), firm A will produce

for consumers in the intermediate segment only if firm B does not, and vice versa. The
implication is that if firm A chooses qA = yl, firm B’s best reply is qB = 1 − yl. On the
other hand, if firm B selects qB = 1 − yh, firm A’s best reply is qA = yh. Thus we have
two equilibria. In fact, there are many more equilibria since for every y ∈ (yh, yl) , it holds
that qA = y and qB = 1− y is an equilibrium. We summarize these results in the following
proposition.

Proposition 5 Consider the game where no ABDP is available to firm A. Under the
assumption (2) there are infinitely many equilibria such that for every y ∈ [yh, yl] , the pair
(qA = y, qB = 1 − y) is an equilibrium.

Consider the particular equilibrium in which half of the consumers in the “intermediate”
segment (yh, yl) are served by firm A, the other half by B. In this equilibrium it holds that

q̂A = yh +
yl − yh

2
=

yl + yh

2
,

q̂B = 1 − yl +
yl − yh

2
= 1 −

yl + yh

2
, (6)

yielding the following equilibrium profits of firm A:

E1 [πA(q̂A, q̂B)] = [δpA − c]
yl + yh

2
=

δpA − c

2

[

1 +
t

t2 − w2
[pB − pA]

]

, (7)

in which we have used (5). It is readily seen that the profit E1 [πA(q̂A, q̂B)] is increasing in
w. An intuition follows by noting that

∣

∣

∣

∣

∂yl

∂w

∣

∣

∣

∣

>

∣

∣

∣

∣

∂yh

∂w

∣

∣

∣

∣

.

The inequality means that if the transportation cost is low, the indifferent consumer moves
farther to the right than that the indifferent consumer moves to the left if the transportation
cost were high. What drives the result is that the demand of firm A (i.e., the location of
the indifferent consumer), is convex decreasing in the transportation cost, cf. (4). In the
equilibrium given by (6), firm A expects to get more customers if w increases. Since firm A
has the lower output price, it is this firm which benefits from increased uncertainty in the
transportation cost.

4 ABDP

This section considers first the situation in which firm A has decided to implement an
ABDP. After having studied this case, we proceed by answering the important question:
Under which circumstances it is worthwhile for firm A to implement an ABDP?
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Consumers who take part in the ABDP pay the price xpA, where the percentage x ∈
(0, 1) is a decision variable of firm A. The number of customers who take part in the
program is a function of x (the “response” function) and is denoted by R (x) . In Tang et
al. (2004), function R(x) represents a fraction of demand. These authors assumed that
R(x) is an exogenously given function, R(x) = 1−axf , where a and f are parameters. We
have choosen a different approach and shall determine the function R (x) endogenously.

Recall that the total number of consumers is one. Now, if R (x) consumers choose the
program, 1 − R (x) consumers will enterperiod two having bought nothing. Inperiod two
they can choose between products A and B. Let Rh (x) denote the demand (number of
customers) in the ABDP if the transportation cost is high and let Rl (x) be the demand
in the ABDP if the transportation cost is low.

Firm A has the following expected profit, which is to be maximized with respect to
x ∈ (0, 1), qA ≥ 0 :

E1 [πA(qA, x, qB)] = E1 [min {R (x) , qA}xpA + δRIP2 − K − cqA] =

1

2
[min {Rh (x) , qA}xpA + δ(RIP2 | T = t + w)] +

1

2
[min {Rl (x) , qA}xpA + δ(RIP2 | T = t − w)] − K − cqA =

1

2
[min {Rh (x) , qA} + min {Rl (x) , qA}]xpA+

δ

2
[RIP2 | T = t + w] +

δ

2
[RIP2 | T = t − w] − K − cqA,

where RIP2 means revenue in period two (which tentatively is left undefined).

The output qA of firm A is sold partly in the ABDP, partly to customers who wait and
buy product A inperiod two. Note that when firm A must make its decision about x, the
sales volume in the program is unknown. On the other hand, customers in the program
do not need to have their orders delivered until the end ofperiod one. Hence, assuming
instantaneous production, firm A can wait to produce until that instant of time.

The analysis of the ABDP will proceed as follows. In Sections 4.1 through 4.5, the
assumption is that firm A already has chosen to start the ABDP. Section 4.1 determines
the demand function in the ABDP and Section 4.2 identifies the objective function of
firm A as a function of the decision x. Section 4.3 determines optimal values of x in
various scenarios and in Section 4.4 we calculate the optimal objective value of firm A.
In Section 4.5 we address the duopoly output game. Finally, Section 4.6 identifies the
circumstances under which it is optimal for firm A to start an ABDP.

Before doing these analyses, we state a general result.

Proposition 6 A customer of product A who is located at position y, will enter the ABDP
if

xpA + Ty < δpA + Ty =⇒ x < δ.
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Proof. For a firm A customer, compare her utility s̄ − xpA − Tyof participating in the
program, paying xpA, to her present value utility s̄−δpA−Ty of waiting to buy and paying
the regular price pA inperiod two. Clearly, if x < δ, the price xpA paid in the program is
lower than the present value, δpA, of the regular price pA that is charged inperiod two.

Proposition 2 says that all potential customers of product A will enter the ABDP if
x < δ. On the other hand, if x > δ, all these individuals choose to wait and buy the product
at the regular price inperiod two. Put in another way: the total demand for product A
is either fully satisfied by early sales in the ABDP or by later sales at the normal price.
This result is, admittedly, an extreme one as it excludes situations where some consumers
of product A choose the program while others wait and buy at the normal price.

The only concern of consumers is utility maximization. Buyers advance purchase only
if the present value cost of buying in the program is less than the present value cost of
waiting and buying product A later on inperiod two.

An implication of Proposition 2 is that demand information obtained in the program
is not exploited in fixing the production volume inperiod two: Whenever an ABDP is
implemented, sales of product A inperiod two are zero.

Clearly, consumers may have other objectives than utility maximization. For example,
if customers in the program are guaranteed fulfilment of their orders, and it is uncer-
tain whether all demands in the selling season can be satisfied, a consumer may wish to
participate in an ABDP, simply to be sure to get the product.

4.1 ABDP Demand Function

For tractability purposes we impose an upper limit on the price differential:

pB − pA <
[t − w]2

t + w
. (8)

The upper limit increases in t and decreases in w. Thus, if the mean transportation cost
(t) is large, pB could be considerably larger than pA. If the uncertainty parameter w in the
transportation cost is small, pB could also be considerably larger than pA

The expected demand in the ABDP is 1
2 [Rh (x) + Rl (x)] and for this quantity we have

the following result.

Lemma 7 Expected demand in the ABDP equals

1

2
[Rh (x) + Rl (x)] =



























0
1
2 + t

2(t2−w2)
[pB − pA]

1
2 + t

2(t2−w2) [δpB − xpA]
1
2 + δpB−xpA+t+w

4[t+w]

1
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if































x > δ

1 − (1−δ)pB

pA
< x ≤ δ

δpB−[t−w]
pA

< x ≤ 1 − (1−δ)pB

pA

δpB−[t+w]
pA

< x ≤ δpB−[t−w]
pA

x ≤ δpB−[t+w]
pA































.. (9)

Proof. See the appendix.

In the first line in (9) no consumers choose the ABDP because the price reduction offered
in the ABDP is too small (cf. Proposition 2). As of the second line, all consumers of product
A choose the program. As of the third line, the program starts to attract customers from
firm B. Tang et al. (2004) also noted that lowering the price in the program attracts more
customers to firm A and therefore makes a larger portion of this firm’s demand certain
through the precommitted orders. In our setup Proposition 2 showed that for x < δ all
demands of product A customers will be satisfied in the program and hence is certain.

4.2 Objective function of firm A

We know that if x > δ, an ABDP generates no demand (and should not be implemented).
Since we wish to establish firm A’s objective function, given it has chosen to implement
the program, we only need to consider values of x in the interval (0, δ] . We also know that
all demands for product A goes to the program, whenever it exists.

Since demand in the program is known before production takes place, output qA can
be determined such that it equals demand. Then, given the existence of an ABDP, the
expected profit function stated in the beginning of Section 4 can be formulated as

E1 [πA(qA, x, qB)] =
1

2
[Rh (x) + Rl (x)] [xpA − c] − K, (10)

and it is to be maximized with respect to x ∈ (0, δ] , for any feasible pair (qA, qB). Substi-
tution from (9) into (10) yields

E1 [πA(qA, x, qB)] =



























[

1
2 + t

2(t2−w2)
[pB − pA]

]

[xpA − c] − K
[

1
2 + t

2(t2−w2)
[δpB − xpA]

]

[xpA − c] − K
[

1
2 + δpB−xpA+t+w

4[t+w]

]

[xpA − c] − K

xpA − c − K



























if























1 − (1−δ)pB

pA
< x ≤ δ

δpB−[t−w]
pA

< x ≤ 1 − (1−δ)pB

pA

δpB−[t+w]
pA

< x ≤ δpB−[t−w]
pA

0 < x ≤ δpB−[t+w]
pA























.. (11)
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In the case appearing in the second line of (11), the ABDP attracts some customers from
firm B. In the third line, firm A captures the whole market if the transportation cost is
low. In the fourth line, firm A captures the whole market whatever the magnitude of the
transportation cost. The intuition here is that the value of x decreases as we move from
the first to the fourth line in (11), that is, the price reduction is gradually becoming larger
and hence the program becomes increasingly attractive for the consumers.

4.3 Optimal price reduction in ABDP

Our task here is to maximize firm A’s expected profit with respect to x ∈ (0, δ) . For this
purpose we need to examine the function E1 [πA((qA, x, qB)] . For any given pair (qA, qB) it
is convenient to denote this function by E1 [πA(x)] . The function consists of four segments,
defined by the lower bound (zero), the upper bound (δ) and three interior boundaries.
Referring to (11) the interior boundaries are

x1 = 1 −
(1 − δ)pB

pA
(12)

x2 =
δpB − [t − w]

pA

(13)

x3 =
δpB − [t + w]

pA

. (14)

First we show that the function E1 [πA(x)] is continuous at the boundary points x1, x2, x3.

Lemma 8 The function E1 [πA(x)] is continuous in x for all x ∈ (0, δ).

Proof. See the appendix.

Next, we examine the shape of E1 [πA(x)] on three segments of the x−axis. Our results
are stated in Lemmas 5 through 8.

Lemma 9 In the segment defined by (x1, δ] it holds that

E1 [πA(x)] =

[

1

2
+

t

2(t2 − w2)
[pB − pA]

]

[xpA − c] − K

and E1 [πA(x)] is a linearly increasing function.

Proof. Easy and omitted.

In view of Lemma 5, one might choose x = δ as a candidate for an optimal x. However,
the resulting optimal objective value turns out to be less than the one that could be
obtained by charging the normal price. The reason is that the discounted regular price
δpA is equal to the reduced price xpA in the program. Since the implementation of the
program requires the payment of a fixed cost, the choice x = δ would be suboptimal.
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Lemma 10 In the segment defined by (x2, x1] it holds that

(1) The expected profit is given by

E1 [πA(x)] =

[

1

2
+

t

2(t2 − w2)
[δpB − xpA]

]

[xpA − c] − K (15)

(2) The function E1 [πA(x)] is

(3) If

δpB < 2 [pB − pA] + c + t −
w2

t
,

the function E1 [πA(x)] is increasing

(4) If

δpB > c +
1

t
[3t + w] [t − w] ,

the function E1 [πA(x)] is decreasing and has a local maximum at x2, which is given
by (13).

(5) If

2 [pB − pA] + c + t −
w2

t
< δpB < c +

1

t
[3t + w] [t − w] ,

the function E1 [πA(x)] is increasing on (x2, x̂) and decreasing on (x̂, x1] , where x̂ is
given by (16) below. The function E1 [πA(x)] has a local maximum at

x̂ =
δpB + c + t − w2/t

2pA
. (16)

Proof. See the appendix.

Lemma 11 In the segment defined by (x3, x2] it holds that

E1 [πA(x)] =
1

2

[

1 +
1

2 [t + w]
[δpB − xpA + t + w]

]

[xpA − c] − K (17)

and the function E1 [πA(x)] is increasing.

Proof. See the appendix.

Lemma 12 In the segment defined by (0, x3] it holds that

E1 [πA(x)] = xpA − c − K,

and the function E1 [πA(x)] is linearly increasing.

Proof. Easy and omitted.

The above lemmas suggest that we distinguish three scenarios.
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Scenario 1. If

δpB < 2 [pB − pA] + c + t −
w2

t
, (18)

expected profits in the program are increasing in x. The maximal value of x for which a
program is profitable is δ. However, we have seen that for x = δ, revenue in the program
equals what could be obtained by selling at the normal price. Since a cost of K is incurred
by launching the program, it is suboptimal to start an ABDP if the inequality in (18)

holds. The scenario occurs if pA is sufficiently small, pA < 1
2

[

c + t − w2

t
+ pB(2 − δ)

]

.

There is no reason for firm A to implement the program since doing so will only make the
selling price even smaller.

Scenario 2. If

δpB > c + 3t − 2w −
w2

t
,

it may (depending on the magnitude of the fixed cost K) be optimal to start an ABDP with
x2 given by (13). Scenario 2 occurs if pB is sufficiently large in which case, by implementing
the program, firm A will get a substantial price advantage. In fact, the firm will attract
all customers in the market if it happens that the transportation cost is low (T = t − w).

The optimal price reduction percentage x2 increases in pB and decreases in pA. Both
results are intuitive. If the competitor’s price pB is high, the price reduction in the program
need not be a dramatic one. On the other hand, if the firm’s own (normal) price pA is
high, the price reduction need to be more substantial to attract customers. Using (13)
shows that x2 decreases in the mean transportation cost t. The intuition here is that if this
cost is large, a more significant price reduction is needed to attract customers. Finally, x2

increases in the uncertainty parameter w, which happens if the variance w2 of T increases.
Thus, when uncertainty about the true value of the transportation cost increases, the firm
offers a smaller price reduction.

To understand the result for Scenario 2 we note that price reductions have the highest
impact (that is, attract the highest number of new customers) if the transportation cost is
low (T = t − w). When determining the optimal price reduction in the program, the case
of a low transportation cost is more important than that of a high transportation cost. In
fact, an aim of implementing the program is to attract all customers if the transportation
cost happens to be low. Then a lower value of t, and a larger value of w, reduces the
transportation cost T . The implication is that a smaller price reduction is needed to
attract all customers. Note that x2 decreases in t and increases in w.

Scenario 3. If

2 [pB − pA] + c + t −
w2

t
< δpB < c + 3t − 2w −

w2

t

it may (depending on the magnitude of the fixed cost K) be optimal to start an ABDP
with x̂ given by (16). Implementing the program under such circumstances, firm A can
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attract some customers of firm B, but demand of firm B remains positive. The optimal
price reduction percentage x̂ increases in pB and decreases in pA (as was the case for x2).
Moreover, x̂ increases in the mean transportation cost t. If this cost is large, the firm will
offer a smaller price reduction. (This is the opposite as what was the case for x2). Finally,
x̂ decreases in the uncertainty parameter w. (This is also the opposite as what was the
case for x2). When uncertainty about the value of the transportation cost increases, the
firm offers a larger price reduction.

To interpret the results in Scenario 3, we focus on the case of a low transportation
cost (T = t − w). Then the price sensitivity is higher and the low transportation cost
becomes dominant in the determination of an optimal price reduction. Under low trans-
portation costs a price reduction will attract more customers and price reductions are more
substantial when t is low (and w is high).

It is readily shown that x̂ > x2 and hence the price reduction in the ABDP is largest
in Scenario 2. In this scenario, firm A can attract all consumers if the transportation cost
is low. Scenario 2 is also the one where pB has the largest value, implying that firm A’s
price reduction attracts more customers.

We collect the above results in the following proposition.

Proposition 13 If Scenario 1 applies, that is, if

δpB < 2 [pB − pA] + c + t −
w2

t

it is suboptimal to start an ABDP.

If Scenario 2 applies, that is, if

δpB > c + 3t − 2w −
w2

t
(19)

it may, depending on the fixed cost K, be optimal to start an ABDP with

x2 =
δpB − t + w

pA
.

If Scenario 3 applies, that is, if

2 [pB − pA] + c + t −
w2

t
< δpB < c + 3t − 2w −

w2

t
(20)

it may, depending on the fixed cost K, be optimal to start an ABDP with

x̂ =
δpB + c + t − w2/t

2pA

.
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4.4 Firm A’s optimal objective value with an ABDP

Proposition 9 has shown that there are two candidates for an optimal level of the coefficient
x. Which one should be chosen depends on the parameter values in the inequalities (19)
and (20). The parameters involved are the two regular prices, the production cost, the
discount rate and the two parameters of the probability distribution of T. We shall make a
sensitivity analysis with respect to the key parameter w, the standard deviation of T. For
this purpose we introduce w as an argument of the optimal objective function of firm A.

Lemma 14 If the inequality
(t + w)2

t2
≥ 2w

is satisfied, the derivative dE1 [πA(w)] /dw is positive in Scenario 2.

Proof. See the appendix.

Lemma 10 states that when firm A implements the ABDP, its expected profit increases
as uncertainty becomes larger (i.e., the parameter w increases). The inequality in the
lemma is satisfied for sufficiently small values of t (note that w < t).

Lemma 15 The derivative dE1 [πA(w)] /dw is positive in Scenario 3.

Proof. See the appendix.

The lemma shows that the optimal expected profit of firm A in Scenario 3 is increasing
in the uncertainty parameter w.This result is true for any feasible value of w.

In Section 3, where there was no ABDP available to firm A, we have seen that the
optimal expected profit of firm A is an increasing function of the parameter w for any
feasible value of w. Firm A has, by assumption, the lower normal price (pA < pB) and it
stands to benefit from increased uncertainty about the transportation cost, no matter the
magnitude of this cost.

When an ABDP is available the results of Lemma 10 and 11 show that in Scenario 2
(for a low expected transportation cost) and in Scenario 3 (always), firm A gains from
increased uncertainty.

4.5 Duopoly output game

This section deals with the duopoly output game to be played inperiod two by firms A
and B. Recall the benchmark case of Section 3 where firm A did not implement the program.
If firm A chooses to implement the program, Proposition 2 has shown that if firm A selects
x > δ, all potential customers of firm A will wait and buy the product inperiod two. Then
there is no demand for product A in the program and A and B play the duopoly game of
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Section 3. On the other hand, if firm A selects x < δ, all potential consumers of product
A will participate in the program and demand for product A in the duopoly game will be
zero.

4.6 Is it optimal to start an ABDP?

To identify the circumstances under which it is optimal for firm A to implement an ABDP
we need to compare objective function values. Using (7) shows that if firm A does not
start the program, its expected optimal profits equal

E1 [πA(w)] =
1

2

[

1 +
t

t2 − w2
[pB − pA]

]

[δpA − c] . (21)

Now consider the three scenarios listed in Proposition 9. We have shown that it is
suboptimal to start an ABDP in Scenario 1 and in that case the value of the objective
function is given by (21).

An ABDP started in Scenario 2 has x = x2 and the objective value is

E1 [πA (w)] =
2t + w

2 [t + w]
[δpB − c − t + w] − K. (22)

Using (21) and (22) shows that it is optimal to start the ABDP if

1

2

[

1 +
t

t2 − w2
[pB − pA]

]

[δpA − c] + K ≤
2t + w

2 [t + w]
[δpB − c − t + w] . (23)

On the left-hand side of the inequality in (23), K is the fixed cost K of implementing the
program. The first term is the opportunity cost of starting the program.

An ABDP started in Scenario 3 has x = x̂ and objective value is

E1 [πA (w)] =

[

1

2
+

t

2 (t2 − w2)
(δpB − x̂pA)

]

(x̂pA − c) − K. (24)

Using (21) and (24) shows that the condition for starting an ABDP is:

1

2

[

1 +
t

t2 − w2
[pB − pA]

]

[δpA − c] + K ≤

1

2

[

1 +
t

t2 − w2
[δpB − x̂pA]

]

[x̂pA − c] .

In what follows we focus on Scenario 3 and wish to assess how the profitability of
an ABDP depends on the uncertainty parameter w. For this purpose, let K (w) be the
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fixed cost at which firm A is indifferent between starting a program and not starting it.
Consequently,

K (w) =
1

2
[x̂pA − c] −

1

2
[δpA − c]

+
1

2

t

t2 − w2
[[δpB − x̂pA] [x̂pA − c] − [pB − pA] [δpA − c]] .

For function K(w) we have the following result.

Proposition 16 (1) K (w) is increasing in w if

[δpB − c]2 − t2 − 4 [δpA − c] [pB − pA] ≥ 0

(2) K (w) is first decreasing and then increasing in w if

[δpB − c]2 − t2 − 4 [δpA − c] [pB − pA] < 0 <

[δpB − c]2 − 4 [δpA − c] [pB − pA]

(3) K (w) is decreasing in w if [δpB − c]2 − 4 [δpA − c] [pB − pA] ≤ 0.

Proof. See the appendix.

To illustrate Proposition 13, assume that parameters have the values

t = δ = 1, pB = 4, pA = 2.75, c = 1.

Then

[δpB − c]2 − t2 − 4 [δpA − c] [pB − pA] = 9 − 1 − 8.75 < 0

[δpB − c]2 − 4 [δpA − c] [pB − pA] = 0.25 > 0

which shows that the example illustrates case (2) of Proposition 12. The figure below
depicts the non-monotonic function K (w).
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0.0

0.1

0.2

0.3

w
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The graph of K (w) shows that if there is no uncertainty about consumers’ transporta-
tion cost (w = 0), the benefit of implementing the program is relatively large. The benefit
decreases, however, as w increases and eventually vanishes. Then, for any positive value of
K, it is not optimal to implement a program. Afterwards, the benefit increases again. Qual-
itatively speaking, when it implements the program, firm A would prefer to have a large
amount of uncertainty. If this is not attainable, the firm would prefer a little uncertainty
only.

5 Conclusions

The paper has studied a two-player, two-period game played by two firms, A and B. The
duopolistic market is described by Hotelling’s linear city model. Firm A only has the option
of implementing inperiod one an advance booking discount program in which customers
are offered a lower price than the regular one as an incentive to buy early. Inperiod two
(the selling season), the firms play an output game. The normal prices charged in this
period are exogenously fixed.

Firm A has three decisions to make. First, should an ABDP be implemented? Second,
what is the optimal discount to offer customers if the program is worthwhile implementing.
Third, firm A must determine its optimal output in the duopoly game inperiod two. Firm B
makes one decision only, its output in the game played inperiod two.

It was assumed that firm A has the lowest normal selling price. Consumer demand
was supposed to be determined by a random transportation cost as well as the regular
prices. Demand of firm A decreases when the transportation cost increases, because price
differences are less important for a customer when her transportation cost is high.

Section 3 demonstrated that if firm A does not implement an ABDP, the firm’s optimal
expected profit increases with the uncertainty in the transportation cost. The upshot is
that the firm with the smaller regular price (i.e., firm A) stands to benefit from increased
uncertainty about consumers’ transportation cost. This result is a consequence of the fact
that firm A’s demand is decreasing in the transportation cost in a convex way such that a
mean preserving spread raises expected demand.

Given that firm A implements an ABDP, we determined endogenously how many cus-
tomers will take part in the program. We found that the major purpose of starting a
program is to increase the firm’s market share by reducing the output price. It was not
optimal to implement a program if the selling price of the other firm is relatively high.
The reason is that the price differential is already large enough and firm A can capture a
considerable share of the market without having to start an ABDP. For an intermediate
level of the selling price of firm B, firm A implements an ABDP and captures the whole
market if consumers’ transportation costs is low. In such a case the difference in regular
prices matters to consumers. If the regular price of firm B is low, firm A starts an ABDP
in order to gain some of the market share of firm B. However, firm B stays in the market.
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We have also shown that under an ABDP the optimal expected profit of firm A increases
with the uncertainty on the consumer transportation cost (although in one scenario we need
the transportation cost to be sufficiently low).

Finally we showed that the decision to start a program depends significantly on the
uncertainty on the transportation cost. Scenarios were identified in which the profitabil-
ity of starting the program increases, decreases, or first increases and then decreases as
uncertainty increases.

6 Appendix

Proof of Lemma 3.

With respect to Rh (x) it holds that consumers located in the interval [0, yh) will enter the
ABDP if

xpA + [t + w] y < δpA + [t + w] y =⇒ x < δ.

Consumers having a y ∈ [yh, 1] will choose the program if

xpA + [t + w] y < δpB + [t + w] [1 − y] =⇒ x <
δpB + [t + w] [1 − 2y]

pA

. (25)

For Rl (x) it holds that consumers located in the interval [0, yl) will enter the program if

x < δ

while consumers having a location at y ∈ [yl,∞] choose the program if

x <
δpB + [t − w] [1 − 2y]

pA

.

We define Rh (x) (and, in a similar way, Rl (x)) as the sum

Rh (x) = R1
h (x) + R2

h (x) + R3
h (x) ,

where R1
h (x) represents the number of consumers in [0, yh) who choose the program, R2

h (x)
represents the number of consumers in [yh, yl) who choose the program, and R3

h (x) rep-
resents the number of consumers in [yl, 1] who choose the program. It is readily proved
that

1/2
[

R1
h (x) + R1

l (x)
]

= {

(

0

yh

)

} for x{

(

>

≤

)

}δ (26)

and

R2
l (x) = {

(

0

yl − yh

)

} for x{

(

>

≤

)

}δ. (27)
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For R2
h (x) we obtain from (25) that for a consumer to participate in the program it is

necessary that

xpA + [t + w] y < δpB + [t + w] [1 − y]

y <
1

2 [t + w]
[δpB − xpA + t + w]

and hence

R2
h (x) =







0
1

2[t+w] [δpB − xpA + t + w] − yh

yl − yh







(28)

if











x > δpB+[t+w][1−2yh]
pA

δpB+[t+w][1−2yl]
pA

< x ≤ δpB+[t+w][1−2yh]
pA

x ≤ δpB+[t+w][1−2yl]
pA











..

In order to calculate 1/2
[

R2
h (x) + R2

l (x)
]

we need to determine how the x - boundaries

δ,
δpB + [t + w] [1 − 2yh]

pA
, and

δpB + [t + w] [1 − 2yl]

pA

are related to each other. Here it holds that

δpB + [t + w] [1 − 2yh]

pA
=

δpB + [t + w]
[

1 − 2(t+w+pB−pA)
2[t+w]

]

pA
=

δpB − pB + pA

pA
< δ,

and hence
δpB + [t + w] [1 − 2yl]

pA
<

δpB + [t + w] [1 − 2yh]

pA
< δ.

Combining (27) and (28) provides

1/2
[

R2
h (x) + R2

l (x)
]

=



















0
1/2 [yl − yh]

1/2
[

yl + 1
2[t+w] [δpB − xpA + t + w]

]

− yh

yl − yh



















(29)

if



















x > δ
δpB+[t+w][1−2yh]

pA
< x ≤ δ

δpB+[t+w][1−2yl]
pA

< x ≤ δpB+[t+w][1−2yh]
pA

x ≤ δpB+[t+w][1−2yl]
pA



















..
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With respect to R3
l (x) it holds that the program is chosen if

x <
δpB + [t − w] [1 − 2y]

pA

y <
1

2 [t − w]
[δpB − xpA + t − w]

and hence one obtains

R3
l (x) =







0
1

2[t−w] [δpB − xpA + t − w] − yl

1 − yl







if











x > δpB+[t−w][1−2yl]
pA

δpB−[t−w]
pA

≤ x ≤ δpB+[t−w][1−2yl]
pA

x < δpB−[t−w]
pA











..

Similar to R2
h (x) one finds for R3

h (x) that

R3
h (x) =







0
1

2[t+w] [δpB − xpA + t + w] − yl

1 − yl







if











x > δpB+[t+w][1−2yl]
pA

δpB−[t+w]
pA

< x ≤ δpB+[t+w][1−2yl]
pA

x ≤ δpB−[t+w]
pA











..

To calculate 1/2
[

R3
h (x) + R3

l (x)
]

we need to determine how the x-boundaries

δpB + [t − w] [1 − 2yl]

pA
,
δpB − [t − w]

pA
,

δpB + [t + w] [1 − 2yl]

pA
, and

δpB − [t + w]

pA

are related. Using (8) the following inequalities can be established

δpB − [t + w]

pA

<
δpB − [t − w]

pA

<
δpB + [t + w] [1 − 2yl]

pA

<

δpB + [t − w] [1 − 2yl]

pA
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and we obtain

1

2

[

R3
h (x) + R3

l (x)
]

=































0
1
2

[

1
2[t−w] [δpB − xpA + t − w] − yl

]

δpB−xpA+t−w
4[t−w] + δpB−xpA+t+w

4[t+w] − yl

1
2 + δpB−xpA+t+w

4[t+w] − yl

1 − yl































(30)

if































x > δpB+[t−w][1−2yl]
pA

δpB+[t+w][1−2yl]
pA

< x ≤ δpB+[t−w][1−2yl]
pA

δpB−[t−w]
pA

< x ≤ δpB+[t+w][1−2yl]
pA

δpB−[t+w]
pA

< x ≤ δpB−[t−w]
pA

x ≤ δpB−[t+w]
pA































..

Finally, we combine (26), (29), and (30) to derive the desired result. From

δpB − [t + w]

pA
<

δpB − [t − w]

pA
<

δpB + [t + w] [1 − 2yl]

pA
<

δpB + [t − w] [1 − 2yl]

pA
=

δpB + [t + w] [1 − 2yh]

pA
< δ

we obtain

1

2
[Rh (x) + Rl (x)] =



































0
1/2 [yl + yh]

δpB−xpA+t+w
4[t+w] + δpB−xpA+t−w

4[t−w]
δpB−xpA+t−w

4[t+w] + δpB−xpA+t+w
4[t−w]

1
2 + δpB−xpA+t+w

4[t+w]

1



































if











































x > δ
δpB+[t−w][1−2yl]

pA
< x ≤ δ

δpB+[t+w][1−2yl]
pA

< x ≤ δpB+[t−w][1−2yl]
pA

δpB−[t−w]
pA

< x ≤ δpB+[t+w][1−2yl]
pA

δpB−[t+w]
pA

< x ≤ δpB−[t−w]
pA

x ≤ δpB−[t+w]
pA











































..

Using this result readily leads to the expression for expected demand that is stated in the
proposition. Q.E.D.
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Proof of Lemma 4.

Continuity of the function E1 [πA (x)] must be checked at x1, x2, and x3 (cf. (12) - (14)).
Continuity at x1 requires

1

2
[yl + yh] [x1pA − c] − K =

[

δpB − x1pA + t + w

4 [t + w]
+

δpB − x1pA + t − w

4 [t − w]

]

[x1pA − c] − K,

which can be rewritten as
[t + w] yh = [t − w] yl + w. (31)

Employing (5) one can show that (31) holds and hence E1 [πA (x)] is continuous at x1.

Continuity at x2 requires

[

δpB − x2pA + t + w

4 [t + w]
+

δpB − x2pA + t − w

4 [t − w]

]

[x2pA − c] − K =

[

1

2
+

δpB − x2pA + t + w

4 [t + w]

]

[x2pA − c] − K

which is equivalent to
1

2 [t − w]
[δpB − x2pA] =

1

2
.

Substitution of (13) into this expression verifies the satisfaction of this equality.

Finally, continuity at x3 requires

1

2

[

1 +
1

2 [t + w]
[δpB − xpA + t + w]

]

= 1.

Combining this expression with (14) shows continuity at x3. Q.E.D.

Proof of Lemma 6.

Differentiating expected profit with respect to x yields

dE1 [πA (x)]

dx
=

1

2

[

1

2 [t + w]
[δpB − xpA + t + w] +

1

2 [t − w]
[δpB − xpA + t − w]

]

pA −
pA

2

[

t

t2 − w2

]

[xpA − c] ,
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and by differentiation is follows that

d2E1 [πA (x)]

dx2
= −

1

2

[

1

t + w
+

1

t − w

]

p2
A < 0.

Hence function E1 [πA (x)] is concave.

Next, we look for an interior maximum in the line segment. From

dE1 [πA (x)]

dx
= 0

one obtains, denoting the interior value by x̂, that

2 −
2t

t2 − w2
[−δpB + 2x̂pA − c] = 0.

Hence

x̂ =
[δpB + c] t + t2 − w2

2tpA

.

From the above we conclude that in the segment (x2, x1]:

1. E1 [πA (x)] is increasing if x2 < x1 < x̂

2. E1 [πA (x)] is decreasing if x̂ < x2 < x1

3. E1 [πA (x)] has a local maximum x̂ if x2 < x̂ < x1.

Re 1. This case occurs when x1 < x̂, that is,

δpB + [t − w] [1 − 2yl]

pA
<

[δpB + c] t + t2 − w2

2tpA

which is equivalent to
tδpB < 2t [pB − pA] + ct + t2 − w2.

Re 2. This case occurs when x̂ < x2, that is,

[δpB + c] t + t2 − w2

2tpA

<
δpB − [t − w]

pA

,

which is equivalent to
tδpB > ct + [3t + w] [t − w] .

Re 3. This case occurs when the two previous ones do not occur, that is, if

2t [pB − pA] + ct + t2 − w2 < tδpB < ct + [3t + w] [t − w] .

Q.E.D.
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Proof of Lemma 7.

Differentiating (17) gives

dE1 [πA (x)]

dx
=

1

2

[

1 +
1

2 [t + w]
[δpB − xpA + t + w]

]

pA −

1

2

1

2 [t + w]
pA [xpA − c] ,

from which it can be derived that

d2E1 [πA (x)]

dx2
= −

p2
A

2 [t + w]
< 0,

which shows that E1 [πA] (x) is a strictly concave function.

The extremal point x̄ satisfies

1 +
1

2 [t + w]
[δpB − 2x̄pA + t + w + c] = 0,

which leads to

x̄ =
3 [t + w] + δpB + c

2pA
.

Due to the concavity of E1 [πA (x)] , this function is increasing on (x3, x2] , given that
x2 < x̄. The implication is that

δpB − [t − w]

pA
<

3 [t + w] + δpB + c

2pA
,

which can be reduced to
δpB < 5t + w + c.

Because of (1) and the fact that w < t, this inequality is always satisfied. Q.E.D.

Firm A’s objective value at x = x̂.

E1 [πA] (x̂) =
1

4 [t + w]
[δpB − x̂pA + t + w] [x̂pA − c] +

1

4 [t − w]
[δpB − x̂pA + t − w] [x̂pA − c] − K =

1

4 [t + w]

[

δpB −
[δpB + c] t + t2 − w2

2tpA
pA + t + w

]

[x̂pA − c] +

1

4 [t − w]

[

δpB −
[δpB + c] t + t2 − w2

2tpA
pA + t − w

]

[x̂pA − c] − K =
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1

8t [t + w]

[

tδpB − ct + [t + w]2
]

[x̂pA − c] +

1

8t [t − w]

[

tδpB − ct + [t − w]2
]

[x̂pA − c] − K =

t − w

8t(t2 − w2)
[tδpB − ct] [x̂pA − c] +

t − w

8t(t2 − w2)
[t + w]2 [x̂pA − c] +

t + w

8t(t2 − w2)
[tδpB − ct] [x̂pA − c] +

t + w

8t(t2 − w2)
[t − w]2 [x̂pA − c] − K =

1

4(t2 − w2)
[tδpB − ct] [x̂pA − c] +

t + w

8t
[x̂pA − c] +

t − w

8t
[x̂pA − c] − K =

[

δpB − c

4(t2 − w2)
+

1

4t

]

[x̂pA − c] t − K =

[

δpB − c

8(t2 − w2)
+

1

8t

]

[

[δpB − c] t + (t2 − w2)
]

− K.

Proof of Lemma 10.

In Scenario 2, the optimal value of the objective function of firm A is

E1 [πA(x2, w)] =
1

2

[

1 +
t

2(t + w)
[δpB − x2pA + t + w]

]

[x2pA − c] − K.

Substituting from (13) yields

E1 [πA(w)] = E1 [πA (w)] =
t2 + t + w

2 [t + w]
[δpB − [t − w] − c] − K

and differentiation with respect to w provides

dE1 [πA(w)]

dw
= −

t2

2 [t + w]2

[

δpB − c − 2t −
(t + w)2

t2

]

.

Due to the assumption made in (1), it holds that

(t + w)2

t2
≥ 2w

which implies dE1 [πA(x2, w)] /dw > 0. Q.E.D.

Proof of Lemma 11.

In Scenario 3, the optimal value of the objective function of firm A is

E1 [πA (x̂, w)] =

[

1

2
+

t

2 (t2 − w2)
(δpB − x̂pA)

]

(x̂pA − c) − K. (32)
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To assess the sign of the derivative dE1 [πA (x̂, w)] /dw we use the formula

dE1 [πA (x̂, w)]

dw
=

∂E1 [πA (x̂, w)]

∂w
+

∂E1 [πA (x̂, w)]

∂x̂

∂x̂

∂w
.

It is readily shown that
∂E1 [πA (x̂, w)]

∂w
> 0

and from Section 4.3 we know that ∂x̂/∂w < 0. Differentiation in (32) provides

∂E1 [πA (x̂, w)]

∂x̂
= pA

[

1

2
+

t

2 (t2 − w2)
[δpB − 2x̂pA + c]

]

=
pA

2 (t2 − w2)

[

δpBt − 2x̂pAt + ct + t2 − w2
]

= 0

and we conclude that

dE1 [πA (x̂, w)]

dw
=

∂E1 [πA (x̂, w)]

∂w
> 0.

Q.E.D.

Proof of Proposition 12.

First we calculate

K ′ (w) =
wt

(t2 − w2)2
[[δpB − x̂pA] [x̂pA − c] − [pB − pA] [δpA − c]] . (33)

Since, according to Proposition 9, it holds that

x̂pA =
1

2

[

δpB + c + t −
w2

t

]

,

we obtain

δpB − x̂pA =
1

2

[

δpB − c − t +
w2

t

]

,

x̂pA − c =
1

2

[

δpB − c + t −
w2

t

]

,

and therefore

[δpB − x̂pA] [x̂pA − c] =
1

4

[

(δpB − c)2 −

(

t −
w2

t

)2
]

.

It follows that [δpB − x̂pA] [x̂pA − c] , and the part in curly brackets in (33), is increasing
in w. This establishes the result of the proposition. Q.E.D.
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