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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
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C.P. 6128, Succ. Centre-ville
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Abstract

We consider the bandwidth coloring problem, a generalization of the well-known
graph coloring problem. For the latter problem, a classical theorem, discovered inde-
pendently by Gallai, Roy and Vitaver, states that the chromatic number of a graph is
bounded from above by the number of vertices in the longest elementary path in any
directed graph derived by orienting all edges in the graph. We generalize this result
to the bandwidth coloring problem. Two proofs are given, a simple one and a more
complex that is based on a series of equivalent mathematical programming models.
These formulations can motivate the development of various solution algorithms for
the bandwidth coloring problem.

Résumé

Nous considérons le problème de la coloration par bande, une généralisation de la
coloration usuelle des sommets d’un graphe. Pour ce dernier, un théorème classique,
énoncé indépendamment par Gallai, Roy et Vitaver, démontre que le nombre chroma-
tique d’un graphe est borné supérieurement par le nombre de sommets sur le plus long
chemin élémentaire dans un graphe orienté obtenu en choisissant une orientation pour
chaque arête du graphe. Nous généralisons ce résultat au problème de la coloration par
bande. Nous donnons deux preuves de ce résultat, une simple et une plus complexe
qui est basée sur l’équivalence entre divers modèles de programmation mathématique
pour la coloration par bande. Ces divers modèles peuvent motiver le développement
de nouveaux algorithmes pour la résolution du problème de la coloration par bande.
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1 Introduction

All graphs considered in this paper have no loops and no multiple edges. For a graph G,

we denote V its vertex set and E its edge set. A strictly positive integer weight dij is

associated to each edge {i, j} ∈ E. A k-coloring of G is a function c : V → {1, 2, . . . , k},

and it is said d-legal if |c(i)− c(j)| ≥ dij for all edges {i, j} ∈ E. The d-chromatic number,
χd(G), is the smallest integer k such that a d-legal k-coloring exists for G. Finding the

d-chromatic number of a graph is known as the bandwidth coloring problem [5, 6]. When

dij = 1 for all {i, j} ∈ E, the problem reduces to the well-known graph coloring problem,

which is NP-hard [4]. In this case, the d-chromatic number is simply the chromatic number,
denoted χ(G).

An orientation of a graph G is a directed graph, denoted ~G, obtained from G by
orienting each edge {i, j} ∈ E from i to j or from j to i. In other words, for each edge

{i, j} ∈ E, there is one corresponding arc in ~G, either (i, j) or (j, i). The weight of an arc

(i, j) in an orientation ~G of G is the weight dij of the corresponding edge {i, j} ∈ E. An

elementary path ~P in an orientation ~G of G is a sequence (i1, . . . , ip) of distinct vertices

such that (il, il+1) (l = 1, · · · , p− 1) is an arc in ~G, and its length L(~P ) is the total weight
p−1
∑

l=1

dilil+1
. We denote Ω(G) the set of all orientations of G, and λ(~G) the length of a longest

elementary path in ~G.

In this paper, we give two proofs of the following theorem:

Theorem 1 χd(G) = 1 + min~G∈Ω(G) λ(~G).

As a direct corollary to this theorem, we obtain:

Corollary 2 In any orientation ~G of G, χd(G) ≤ λ(~G) + 1.

If dij = 1 for all {i, j} ∈ E, then the length L(~P ) of an elementary path ~P in an

orientation ~G of G is equal to its number of arcs, which means that L(~P ) + 1 is the

number of vertices on ~P . Hence, by applying the above corollary to the special case of the
graph coloring problem, we derive the following classical theorem, independently proved

by Gallai [3], Roy [7] and Vitaver [8]:

Theorem 3 The maximum number of vertices on an elementary path of an orientation
~G of G is at least equal to the chromatic number χ(G) of G.

For variations on this theorem, the reader is referred to de Werra and Hansen (2005).

The rest of this paper is dedicated to the proof of Theorem 1. The next section con-

tains a simple proof, while Section 3 presents a more complex proof that uses a series of
equivalent mathematical programming models (two models are equivalent if their optimal
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values are equal for all problem instances). Thus, we not only generalize the Gallai-Roy-

Vitaver theorem to the bandwidth coloring problem, but we also suggest several equivalent

mathematical programming formulations which can be used to develop various solution al-

gorithms for the bandwidth coloring problem.

2 A Simple Proof of Theorem 1

A simple proof of Theorem 1 can be obtained with the help of the following lemma.

Lemma 4 For every graph G there exists a circuit-free orientation ~G∗ of G such that
λ(~G∗) = min~G∈Ω(G)

λ(~G)

Proof. Consider an orientation ~G′ of G such that λ(~G′) = min~G∈Ω(G) λ(~G). If ~G′ contains

circuits, then let C be one of them with a maximum number of arcs. Let (u, v) be an

arc on C with minimum weight, ~P denote the path from v to u on C, and ~G′′ denote the

orientation of G obtained from ~G′ by changing the orientation of arc (u, v). The new arc
(v, u) in ~G′′ does not belong to any circuit, else there would be a path with at least two arcs

linking u to v in ~G′, which, combined with ~P , would constitute a circuit C ′ with strictly

more arcs than C, a contradiction. Also, the longest elementary path ~P ′ in ~G′′ containing

(v, u) has length L(~P ′) ≤ λ(~G′) else, by replacing (v, u) with ~P , one would get a path in
~G′ of length strictly larger than λ(~G′), a contradiction. By optimality of ~G′, we therefore

have λ(~G′′) = λ( ~G′). By repeating this process a finite number of times, one obtains a

circuit-free orientation ~G∗ with λ(~G∗) = λ(~G′) = min~G∈Ω(G) λ(~G).

Proof of Theorem 1. Consider a circuit-free orientation ~G∗ of G such that λ(~G∗) =

min~G∈Ω(G) λ(~G). The existence of such an orientation follows from Lemma 4. For every

i ∈ V , define c(i) equal to 1 + the length of the longest path entering i in ~G∗. Then

c(i) ∈ {1, . . . , 1 + λ(~G∗)} for all i ∈ V , and c(j) ≥ c(i) + dij for all arcs (i, j) in ~G∗, which

means that c is a d-legal (1+λ(~G∗))-coloring of G. Hence, χd(G) ≤ 1 + min ~G∈Ω(G) λ(~G).

Conversely, consider any d-legal χd(G)-coloring c of G and define ~G∗ as the orientation

of G obtained by orienting every edge {i, j} ∈ E from i to j if and only if c(i) < c(j). Let
~P = (i1, . . . , ip) be a longest elementary path in ~G∗. We then have

L(~P ) =

p−1
∑

l=1

dilil+1
≤

p−1
∑

l=1

(c(il+1) − c(il)) = c(ip) − c(i1) ≤ χd(G) − 1.

Hence, min~G∈Ω(G) λ(~G) ≤ λ(~G∗) = L(~P ) ≤ χd(G) − 1.
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3 Mathematical Programming Models for the Bandwidth

Coloring Problem

We now give a more complex proof of Theorem 1 that is based on a series of equivalent

mathematical programming models. For every model M , we denote Z(M) its optimal
value and zM (x) the value of a feasible solution x to M . The following nonlinear integer

programming model, M1, is based on the definition of the bandwidth coloring problem. It

provides an optimal solution to the problem and an optimal value Z(M1) equal to χd(G)−1.

M1



















minimize zM1
(c, k) = k − 1

subject to |ci − cj| ≥ dij ∀{i, j} ∈ E (1)

1 ≤ ci ≤ k ∀i ∈ V (2)

ci integer ∀i ∈ V (3)

By imposing constraints (1)-(3), it is clear that the variables ci define a d-legal k-

coloring, provided k is an integer, which is necessarily the case at optimality (otherwise,
one could set k = maxi∈V {ci} to obtain a feasible integer solution with a lower objective

value). Since we are minimizing k, we have k = χd(G) in an optimal solution to this model.

Proposition 5 Model M1 is equivalent to its continuous relaxation M2 obtained by drop-

ping the integrality requirements (3):

M2

{

minimize zM2
(c, k) = k − 1

subject to constraints (1) and (2)

Proof. Since M2 is a relaxation of M1, we have Z(M1) ≥ Z(M2). Conversely, to show

that Z(M2) ≥ Z(M1), it is sufficient to prove that from any optimal solution to M2, we

can construct a feasible solution to M1 with the same objective value. Let (c, k) be an
optimal solution to M2 and define (c, k) as follows: ci = ⌊ci⌋ for each i ∈ V . Clearly, this

solution satisfies constraints (2) and (3). To show it also satisfies inequalities (1), let us

assume the contrary: there exists an edge {i, j} ∈ E such that |ci − cj | < dij . Without

loss of generality, we can assume ci ≥ cj , which implies ci − cj ≥ dij and ci − cj < dij . But
then, we have: ci ≥ cj + dij ≥ cj + dij > ci, a contradiction, since cj + dij is an integer

that would be smaller than or equal to ci but greater than the largest integer smaller than

ci.

Proposition 6 Model M2 is equivalent to the following formulation M3, where the nota-

tion a+ stands for max{0, a}:
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M3







minimize zM3
(c, k) = k − 1 +

∑

{i,j}∈E

(dij − |ci − cj |)
+

subject to constraints (2)

Proof. First note that if |ci − cj| ≥ dij , then (dij −|ci − cj |)
+ = 0. Using this observation,

we have zM2
(c, k) = zM3

(c, k) for every feasible solution (c, k) to M2. Hence, we can replace
zM2

(c, k) by zM3
(c, k) in M2 to obtain an equivalent model. Now, if we drop constraints

(1), we obtain model M3, which therefore provides a lower bound Z(M3) on Z(M2).

It remains to prove that Z(M3) ≥ Z(M2). Let (c, k) be an optimal solution to M3.

As observed above, if constraints (1) are satisfied, (c, k) is a feasible solution to M2 with

zM2
(c, k) = zM3

(c, k). So, let us assume that at least one edge {u, v} ∈ E violates con-
straints (1), i.e., |cu − cv| < duv, and, without loss of generality, that cu ≥ cv . We then

define δuv = duv − (cu − cv) > 0 from which we derive the following new solution (c, k) to

M3:

ci =

{

ci if i = v or ci < cu

ci + δuv otherwise,

k = k + δuv.

We prove that |ci − cj | ≥ |ci − cj | for all edges {i, j} ∈ E. Consider any edge {i, j} ∈ E,

and assume, without loss of generality, that ci ≥ cj . If cj = cj , then ci ≥ ci ≥ cj = cj,
which implies |ci − cj| = ci − cj ≥ ci − cj = |ci − cj |. Otherwise, cj = cj + δuv, which

means that ci ≥ cj ≥ cu ≥ cv. Then, there are two cases: 1) if i = v, then ci = ci = cj ,

which implies |ci − cj | = δuv > 0 = |ci − cj|; 2) if i 6= v, then ci = ci + δuv, which implies

|ci − cj| = |ci − cj |.

As a consequence, no constraint of type (1) satisfied by (c, k) is violated by (c, k), since
|ci − cj| ≥ |ci − cj | ≥ dij , for all edges {i, j} ∈ E satisfying (1). When {i, j} = {u, v}, we

have duv − |cu − cv| = duv − (cu − cv) − δuv = 0. This implies that constraint (1) for edge

{u, v} is no more violated in solution (c, k).

By optimality of (c, k), we have zM3
(c, k) − zM3

(c, k) ≤ 0. But, we also have:

zM3
(c, k) − zM3

(c, k) = (k − 1) +
∑

{i,j}∈E

(dij − |ci − cj |)
+

−(k − 1) −
∑

{i,j}∈E

(dij − |ci − cj |)
+

= (k − k) +

(

(duv − (cu − cv)) − (duv − (cu − cv))

)

+
∑

{i,j}∈E\{u,v}

(

|ci − cj |
+ − |ci − cj |

+

)
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≥ (k − (k + δuv)) +

(

(cu − cv) − (cu − cv)) − δuv

)

= 0.

Thus, the new solution (c, k) is also optimal for M3, but, compared to (c, k), it has at least

one additional constraint of type (1) that is satisfied, and no further violated constraints

of this type. Hence, by repeating the same argument a finite number of times, we would
eventually derive a feasible solution to M2 having the same objective value.

For each edge {i, j} ∈ E we now introduce two new variables aij and bij defined as
follows:

aij = (dij − (cmin{i,j} − cmax{i,j}))
+ (4)

bij = (dij − (cmax{i,j} − cmin{i,j}))
+. (5)

Proposition 7 Model M3 is equivalent to the following formulation M4:

M4



































minimize zM4
(c, k, a, b) = k − 1 +

∑

{i,j}∈E

min{aij , bij}

subject to constraints (2) and

aij ≥ (dij − (cmin{i,j} − cmax{i,j})) ∀{i, j} ∈ E (6)

bij ≥ (dij − (cmax{i,j} − cmin{i,j})) ∀{i, j} ∈ E (7)

aij , bij ≥ 0 ∀{i, j} ∈ E (8)

Proof. Consider any feasible solution (c, k, a, b) to M4. Constraints (6)-(8) are equivalent

to imposing aij ≥ (dij − (cmin{i,j} − cmax{i,j}))
+ and bij ≥ (dij − (cmax{i,j} − cmin{i,j}))

+.
Hence, Z(M3) ≤ Z(M4) since (c, k) is a feasible solution to M3, and the following inequality

is valid for every edge {i, j} ∈ E:

(dij − |ci − cj|)
+ = (min{dij − (cj − ci), dij − (ci − cj)})

+

= min{(dij − (cj − ci))
+, (dij − (ci − cj))

+}

≤ min{aij , bij}.

The above inequality becomes an equality when aij and bij are defined according to (4)
and (5). Hence, given any feasible solution (c, k) to M3, the solution (c, k, a, b) obtained by

using definitions (4) and (5) is feasible to M4 and zM3
(c, k) = zM4

(c, k, a, b), which means

that Z(M4) ≤ Z(M3).

Let A be the set of ordered pairs (i, j) with {i, j} ∈ E. Hence, for every edge {i, j} ∈ E,

there are two elements (i, j) and (j, i) in A. Let A> be the subset of pairs (i, j) ∈ A with
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i > j, and let A< be the subset of pairs (i, j) ∈ A with i < j. Definitions (4) and (5) are

equivalent to

(dij − (ci − cj))
+ =

{

aij if (i, j) ∈ A<

bij if (i, j) ∈ A>.

Hence, by defining tij = aij if (i, j) ∈ A< and tij = bij if (i, j) ∈ A>, definitions (4) and

(5) are equivalent to
tij = (dij − (ci − cj))

+ ∀(i, j) ∈ A. (9)

Proposition 8 Model M4 is equivalent to the following formulation M5:

M5















































minimize zM5
(c, k, t, y) = k − 1 +

∑

(i,j)∈A

yijtij

subject to constraints (2) and

tij ≥ (dij − (ci − cj)) ∀(i, j) ∈ A (10)

tij ≥ 0 ∀(i, j) ∈ A (11)

yij + yji = 1 ∀{i, j} ∈ E (12)

yij ∈ {0, 1} ∀(i, j) ∈ A (13)

Proof. Let (c, k, a, b) be a feasible solution to M4, and let (c, k, t, y) be the feasible solution

to M5 obtained by defining variables tij according to (9), and by setting yij = 1 if tij < tji,

or tij = tji and i < j, and yji = 0 otherwise. We have zM4
(c, k, a, b) = zM5

(c, k, t, y), since
min{aij , bij} = min{tij, tji} = tijyij + tjiyji for every edge {i, j} ∈ E, which proves that

Z(M5) ≤ Z(M4).

Consider now an optimal solution (c, k, t, y) to M5. We necessarily have tijyij + tjiyji =
min{tij , tji}, else a better solution could be obtained by permuting the values of yij and yji.

Let (c, k, a, b) be the solution to M4 obtained from (c, k, t, y) by setting aij = tmin{i,j}max{i,j}

and bij = tmax{i,j}min{i,j} for every edge {i, j} ∈ E. The nonnegativity constraints (8) of

M4 are satisfied since tij ≥ 0 for all (i, j) ∈ A. Constraints (6) and (7) of M4 are also
satisfied by (c, k, a, b) since

aij = tmin{i,j}max{i,j} ≥ dij − (cmin{i,j} − cmax{i,j}), and

bij = tmax{i,j}min{i,j} ≥ dij − (cmax{i,j} − cmin{i,j}).

Hence, (c, k, a, b) is a feasible solution to M4, and zM4
(c, k, a, b) = zM5

(c, k, t, y) since

tijyij + tjiyji = min{tij , tji} = min{aij , bij} for every edge {i, j} ∈ E. This proves that

Z(M5) ≥ Z(M4)

Formulation M5 can be viewed as a bilevel programming model. Indeed, let Y be the

set of |A|-dimensional vectors satisfying constraints (12) and (13) of M5. The problem of
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finding an optimal solution to M5 for a fixed y ∈ Y can be formulated using the following

model M6(y):

M6(y)







minimize zM6(y)(c, k, t) = k − 1 +
∑

(i,j)∈A

yijtij

subject to constraints (2), (10) and (11)

Hence Z(M5) = miny∈Y Z(M6(y)), and M6(y) is equivalent to the following model,

obtained by a simple change of variables, namely k̃ = k − 1 and c̃i = ci − 1 for all i ∈ V :

M6(y)



































minimize zM6(y)(c̃, k̃, t) = k̃ +
∑

(i,j)∈A

yijtij

subject to c̃i − c̃j + tij ≥ dij ∀(i, j) ∈ A (14)

k̃ − c̃i ≥ 0 ∀i ∈ V (15)

tij ≥ 0 ∀(i, j) ∈ A (16)

c̃i ≥ 0 ∀i ∈ V (17)

This problem is feasible, since k̃ = 0, c̃i = 0 (i ∈ V ), and tij = dij ((i, j) ∈ A) define a

feasible solution to M6(y). As Z(M6(y)) ≥ 0, it also has a finite optimal value. Hence, it

is equivalent to its dual, defined using the variables xij associated to constraints (14) and

si corresponding to constraints (15):

M7(y)























































maximize zM7(y)(x, s) =
∑

(i,j)∈A

dijxij

subject to
∑

i∈V

si = 1 (18)

∑

j|(i,j)∈A

xij −
∑

j|(j,i)∈A

xji − si ≤ 0 ∀i ∈ V (19)

xij ≤ yij ∀(i, j) ∈ A (20)

si ≥ 0 ∀i ∈ V (21)

xij ≥ 0 ∀(i, j) ∈ A (22)

Since M6(y) and M7(y) are dual problems, we have Z(M6(y)) = Z(M7(y)). Every
y ∈ Y corresponds to an orientation of G, denoted ~Gy, obtained by choosing the orientation

(i, j) for edge {i, j} ∈ E if yij = 1, and (j, i) if yji = 1. By adding a nonnegative slack

variable to each constraint (19), we obtain flow conservation equations having the following

interpretation: each of these nonnegative slack variables correspond to the flow going from
a super-origin q to each vertex i ∈ V . Hence, we denote xqi these additional slack variables.

Also, we can rewrite variables si as flow variables xir representing the flow coming into a

super-destination r from each vertex i ∈ V . We denote by ~G+
y the directed graph obtained

from ~Gy by adding vertices q and r along with their incident arcs (i.e., there is an arc in
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~G+
y from q to i and from i to r for every i ∈ V ). With these transformations, we can

reformulate M7(y) as follows:

M8(y)







































































maximize zM8(y)(x) =
∑

(i,j)∈A

dijxij

subject to
∑

i∈V

xqi = 1 (23)

∑

i∈V

xir = 1 (24)

∑

j|(i,j)∈A

xij + xqi −
∑

j|(j,i)∈A

xji − xir = 0 ∀i ∈ V (25)

xij ≤ yij ∀(i, j) ∈ A (26)

xqi, xir ≥ 0 ∀i ∈ V (27)

xij ≥ 0 ∀(i, j) ∈ A (28)

Note that the redundant constraint (23) is derived by summing flow conservation equa-
tions (25) over i ∈ V . It is well-known that any feasible solution to this network flow

formulation contains an elementary path from q to r in ~G+
y (along with a finite number

of elementary circuits) [1]. Since each such elementary path is formed of one arc going

out of q, an elementary path in ~Gy and one arc going into r, the optimal value of this

maximization problem is at least equal to the length L(~P ) of the longest elementary path
~P in ~Gy. If ~Gy is circuit-free, then Z(M8(y)) = L(~P ) = λ(~Gy). Otherwise (i.e., if ~Gy

contains a circuit), Z(M8(y)) is possibly strictly larger than λ(~Gy).

Proposition 9 min~G∈Ω(G)
λ(~G) = miny∈Y Z(M8(y))

Proof. Consider a vector y∗ ∈ Y such that Z(M8(y
∗)) = miny∈Y Z(M8(y)). Then

Z(M8(y
∗)) ≥ λ(~Gy∗) ≥ min~G∈Ω(G) λ(~G).

Conversely, consider an orientation ~G∗ such that λ(~G∗) = min~G∈Ω(G) λ(~G). According

to Lemma 4, we may assume that ~G∗ is circuit-free. Let y∗ be the vector in Y such that
~G∗ = ~Gy∗ . We then have min~G∈Ω(G) λ(~G) = λ(~Gy∗) = Z(M8(y

∗)) ≥ miny∈Y Z(M8(y)).

It follows from all previous propositions that

χd(G) − 1 = Z(M5)

= min
y∈Y

Z(M8(y))

= min
~G∈Ω(G)

λ(~G).

Hence, Theorem 1 is proved.
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