
Les Cahiers du GERAD ISSN: 0711–2440

F2-Linear Random Number

Generators

P. L’Ecuyer
F. Panneton

G–2007–21

March 2007

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.





F2-Linear Random Number Generators

Pierre L’Ecuyer∗

François Panneton

Département d’informatique et de recherche opérationnelle
Université de Montréal

C.P. 6128, Succ. Centre-ville
Montréal (Québec) Canada, H3C 3J7
{lecuyer, panneton}@iro.umontreal.ca

∗ and GERAD

March 2007

Les Cahiers du GERAD

G–2007–21

Copyright c© 2007 GERAD





Abstract

Random number generators based on linear recurrences modulo 2 are among the
fastest long-period generators currently available. The uniformity and independence of
the points they produce, by taking vectors of successive output values from all possible
initial states, can be measured by theoretical figures of merit that can be computed
quickly, and the generators having good values for these figures of merit are statisti-
cally reliable in general. Some of these generators can also provide disjoint streams
and substreams efficiently. In this chapter, we review the most interesting construc-
tion methods for these generators, examine their theoretical and empirical properties,
describe the relevant computational tools and algorithms, and make comparisons.

Résumé

Les générateurs de nombres aléatoires basés sur des récurrences modulo 2 sont
parmi les générateurs plus rapides parmi ceux ayant de très grandes périodes. On
peut mesurer l’uniformité et l’indépendance des vecteurs de valeurs successives pro-
duits par ces générateurs par des figures de mérite théoriques rapidement calculables.
Les générateurs ayant de bonnes valeurs pour ces figures de mérite sont habituellement
fiables du point de vue statistique. Certains de ces générateurs peuvent aussi fournir
des sous-séquences disjointes de manière efficace. Dans cet article, nous examinons et
comparons les méthodes de construction les plus intéressantes pour ces générateurs,
nous examinons leurs propriétés théoriques et empiriques, et nous décrivons les algo-
rithmes et les outils de calcul pertinents pour contruire et analyser de tels générateurs.

Acknowledgments: This work has been supported by NSERC-Canada grant No.
ODGP0110050 and a Canada Research Chair to the first author. This chapter was
written while the first author was a visiting scientist at the University of Salzburg,
Austria, in 2005, and at IRISA, Rennes, in 2006. A short draft of it appeared in the
proceedings of the 2005 Winter Simulation Conference. Richard Simard helped doing
the speed tests.





Les Cahiers du GERAD G–2007–21 1

1 Introduction

Given that computers work in binary arithmetic, it seems natural to construct random
number generators (RNGs) defined via recurrences in arithmetic modulo 2, so that these
RNGs can be implemented efficiently via elementary operations on bit strings, such as
shifts, rotations, exclusive-or’s (xor’s), and bit masks. Very fast RNGs whose output
sequences have huge periods can be constructed in this way. Among them, we find the
Tausworthe or linear feedback shift register (LFSR), generalized feedback shift register
(GFSR), twisted GFSR (TGFSR), Mersenne twister, the WELL, and xorshift generators
(Tezuka 1995, L’Ecuyer 1996, Matsumoto and Nishimura 1998, L’Ecuyer and Panneton
2002, L’Ecuyer 2006, Panneton, L’Ecuyer, and Matsumoto 2006, Panneton and L’Ecuyer
2005a, Panneton 2004). A common characterization of all these generators is that they are
special cases of a general class of generators whose state evolves according to a (matrix)
linear recurrence modulo 2. The bits that form their output are also determined by a linear
transformation modulo 2 applied to the state. Since doing arithmetic modulo 2 can be
interpreted as working in F2, the finite field of cardinality 2 with elements {0, 1}, we shall
refer to this general class as F2-linear generators.

Some widely-used RNGs of this form are not statistically reliable, but other well-
designed instances are good, reliable, and fast. Which ones? What defects do the others
hide? What mathematical tools can be used to analyze and practically assess their quality
from a theoretical viewpoint? Is it easy to jump ahead quickly in their sequence in order to
split it into multiple streams and substreams? In the remainder of this paper, we address
these questions and provide a state-of-the-art overview of F2-linear RNGs.

In the next section, we define a general framework that covers all F2-linear generators.
We provide some basic properties of these RNGs, such as maximal-period conditions, a
simple way to jump ahead, and a simple combination method of F2-linear generators (via
a bitwise xor) to construct larger (and often better-behaved) F2-linear generators. We
describe efficient algorithms to compute the characteristic polynomial of an RNG and
to check if it has maximal period. In Section 3, we discuss the theoretical measures of
uniformity and independence that are typically used in practice as figures of merit to assess
their quality. These RNGs turn out to have a lattice structure in spaces of polynomials
and formal series over F2. There are counterparts in those spaces of the spectral test, and
other lattice-based tests and properties that have been developed for linear congruential
generators. Interestingly, these tests are strongly linked with computing the measures
of uniformity of F2-linear generators. Section 4 outlines this theory. We explain how
to construct and analyze the polynomial lattices and how to use them for computing
the uniformity measures of interest. In Section 5, we describe specific families of F2-
linear generators proposed over the years, show how they fit the general framework, and
summarize what we know about their strengths and weaknesses. In Section 6, we compare
specific implementations in terms of their speed and (theoretical) figures of merit, and
discuss their behavior in empirical statistical tests. Compared with the most widely used



2 G–2007–21 Les Cahiers du GERAD

RNG that offers multiple streams and substreams in simulation software, the best F2-linear
RNGs are faster by a factor of 1.5 to 3, depending on the computing platform. Section 7
concludes the paper.

2 F2-Linear Generators

2.1 General Framework

We consider an RNG defined by a matrix linear recurrence over the finite field F2, as
follows:

xn = Axn−1, (1)

yn = Bxn, (2)

un =

w
∑

ℓ=1

yn,ℓ−12
−ℓ = .yn,0 yn,1 yn,2 · · · , (3)

where xn = (xn,0, . . ., xn,k−1)
t ∈ F

k
2 is the k-bit state vector at step n, yn = (yn,0, . . .,

yn,w−1)
t ∈ F

w
2 is the w-bit output vector at step n, k and w are positive integers, A is a

k×k transition matrix with elements in F2, B is a w×k output transformation matrix with
elements in F2. The real number un ∈ [0, 1) is the output at step n. All operations in (1)
and (2) are performed in F2, i.e., modulo 2. This setting is from L’Ecuyer and Panneton
(2002). Several popular classes of RNGs fit this framework as special cases, by appropriate
choices of the matrices A and B. Many will be described in Section 5.

The period of this RNG cannot exceed 2k−1, because there are only 2k−1 possible values
for xn. When this maximum is reached, we say that the RNG has maximal period. To
discuss the periodicity and see how we can construct maximal-period F2-linear RNGs, we
use the following basic definitions and properties from linear algebra and finite fields. Let
F2[z] denote the ring of polynomials with coefficients in F2. The characteristic polynomial
of the matrix A is

P (z) = det(zI − A) = zk − α1z
k−1 − · · · − αk−1z − αk,

where I is the identity matrix and each αj is in F2. This P (z) is also the characteristic
polynomial of the linear recurrence (in F2)

xn = (α1xn−1 + · · · + αkxn−k). (4)

We shall assume that αk = 1. Usually, we know a priori that this is true by construction
of the matrix A. In that case, the recurrence (4) has order k and it is purely periodic, i.e.,
there is some integer ρ > 0 such that (xρ, . . . , xρ+k−1) = (x0, . . . , xk−1); this ρ is called the
period of the recurrence. The minimal polynomial of A is the polynomial Q(z) ∈ F2[z]
of smallest degree for which Q(A) = 0. Every other polynomial R(z) ∈ F2[z] for which



Les Cahiers du GERAD G–2007–21 3

R(A) = 0 must be a multiple of the minimal polynomial. This implies in particular that
P (z) is a multiple of Q(z). In the context of RNG construction, Q(z) and P (z) are almost
always identical, at least for good constructions.

The fact that the sequence {xn, n ≥ 0} obeys (1) implies that it satisfies the recurrence
that corresponds to the minimal polynomial of A (or any other polynomial that is a
multiple of Q(z)):

xn = (α1xn−1 + · · · + αkxn−k) (in F2). (5)

This means that the sequence {xn,j, n ≥ 0} obeys (4) for each j, 0 ≤ j < k. The sequence
{yn,j, n ≥ 0}, for 0 ≤ j < w, also obeys that same recurrence. However, these sequences
may also follow recurrences of order smaller than k. For any periodic sequence in F2, there
is a linear recurrence of minimal order obeyed by this sequence, and the characteristic
polynomial of that recurrence is called the minimal polynomial of the sequence. This
minimal polynomial can be computed by the Berlekamp-Massey algorithm (Massey 1969).
The sequences {xn,j, n ≥ 0} may have different minimal polynomials for different values of
j, and also different minimal polynomials than the sequences {yn,j, n ≥ 0}. But all these
minimal polynomials must necessarily divide P (z). If P (z) is irreducible (it has no divisor
other than 1 and itself), then P (z) must be the minimal polynomial of all these sequences.
Reducible polynomials P (z) do occur when we combine generators (Section 2.3); in that
case, P (z) is typically the minimal polynomial of the output bit sequences {yn,j, n ≥ 0}
as well, but the sequences {xn,j, n ≥ 0} often have much smaller minimal polynomials
(divisors of P (z)).

It is well-known that the recurrences (4) and (5) have maximal period if and only if
P (z) is a primitive polynomial over F2 (Niederreiter 1992, Knuth 1998). Primitivity is
a stronger property than irreducibility: P (z) is primitive if and only if it is irreducible
and for all prime divisors pi of r = 2k − 1, zr/pi 6≡ 1 mod P (z). A good way to verify if a
polynomial is primitive is to verify irreducibility first, and then check the second condition.
Note that when r is prime (this type of prime is called a Mersenne prime), the second
condition is automatically verified.

In the context of RNG construction, we are interested essentially only in maximal-period
recurrences. The RNG is constructed either from a single maximal-period recurrence, on
from a combination of maximal-period recurrences, as we shall explain later. Assuming
that we are interested only in primitive polynomials P (z), we can compute P (z) and check
its primitivity as follows.

We first run the generator for k steps from some arbitrary non-zero initial state x0 and
we compute the minimal polynomial Q0(z) of {xn,0, n ≥ 0} with the Berlekamp-Massey
algorithm. If Q0(z) has degree less than k, then P (z) is necessarily reducible and we reject
this generator; otherwise P (z) = Q0(z) and it remains to verify its primitivity. For this, we
can use the following algorithm from Rieke, Sadeghi, and Poguntke (1998) and Panneton
(2004); it verifies the set of necessary and sufficient conditions stated in Knuth (1998),
page 30, but it also specifies in what order to perform the polynomial exponentiations:



4 G–2007–21 Les Cahiers du GERAD

Algorithm P [Given P (z) of degree k, returns TRUE iff P (z) is primitive]:
Factorize r = 2k − 1 = pe1

1 · · · peb

b where p1, . . . , pb are distinct prime;
Compute q := r/(p1 · · · pb) and qb(z) := zq mod P (z);
For i = b, . . . , 1, let qi−1(z) := qi(z)pi mod P (z);
If q0(z) 6= 1 or q1(z) = 1, return FALSE;
For i = b, . . . , 2, {

Compute ti(z) := qi(z)pi−1···p1 mod P (z);
If ti(z) = 1, return FALSE; }

Return TRUE.

When k is large, it is worthwhile to first apply an irreducibility test that can detect
reducibility faster than this primitivity test. Note that P (z) is reducible if and only if it has
an irreducible factor of degree ≤ ⌊k/2⌋. A key theorem in finite fields theory states that for
any integer n ≥ 1, the product of all irreducible polynomials whose degree d divides n is
equal to z2n

+ z. This means that P (z) is irreducible if and only if pgcd(z2n

+ z, P (z)) = 1
for all n ≤ ⌊k/2⌋. This gives the following algorithm:

Algorithm I [Given P (z) of degree k, returns TRUE iff P (z) is irreducible]:
For n = 1, . . . , ⌊k/2⌋: if pgcd(z2n

+ z, P (z)) 6= 1, return FALSE;
Return TRUE.

When searching for primitive polynomials for RNG construction, we typically select k
and impose a special form on the matrix A, so that a fast implementation is available (see
Section 5). Then we search (often at random), in the space of matrices A that satisfy these
constraints, for instances having a primitive characteristic polynomial. The following old
result (see, e.g., Lidl and Niederreiter 1986) may give a rough idea of our chances of success.
It gives the probability that a random polynomial, generated uniformly over the set of all
polynomials of degree k, is primitive. It is important to underline, however, that when
generating A randomly from a special class, the polynomial P (z) does not necessarily have
the uniform distribution over the set of polynomials, so the probability that it is primitive
might differ from the formula given in the theorem.

Theorem 1 Among the 2k polynomials of degree k in F2[z], the proportion of primitive
polynomials is exactly

1

k

b
∏

i=1

pi − 1

pi

where p1, . . . , pb are the distinct prime factors of r = 2k − 1.

This result suggests that to improve our chances, it is better to avoid values of r having
several small factors. If r is a Mersenne prime, the proportion is exactly 1/k.



Les Cahiers du GERAD G–2007–21 5

2.2 Jumping Ahead

A key requirement of modern stochastic simulation software is the availability of random
number generators with multiple disjoint streams and substreams. These streams and sub-
streams can provide parallel RNGs and are also important to support the use of variance
reduction techniques (Law and Kelton 2000, L’Ecuyer, Simard, Chen, and Kelton 2002).
They are usually implemented by partitioning the output sequence of a long-period gener-
ator into long disjoint subsequences and subsubsequences whose starting points are found
by making large jumps in the original sequence.

Jumping ahead directly from xn to xn+ν for a very large integer ν is easy in principle
with this type of generator. It suffices to precompute the matrix Aν mod 2 (this can be
done in O(k3 log ν) operations by a standard method) and then multiply xn by this binary
matrix, modulo 2. The latter step requires O(k2) operations and O(k2) words of memory
to store the matrix. This approach works fine for relatively small values of k (e.g., up to
100 or so), but becomes rather slow when k is large. For example, the Mersenne twister of
Matsumoto and Nishimura (1998) has k = 19937 and the above method is impractical in
that case.

A more efficient method is proposed by Haramoto, Matsumoto, Nishimura, Panneton,
and L’Ecuyer (2006). For a given step size ν, the method represents the state xn+ν as

gν(A)xn, where gν(z) =
∑k−1

j=0 djz
j is a polynomial of degree less than k in F2[z]. The

product

gν(A)xn =

k−1
∑

j=0

djA
jxn =

k−1
∑

j=0

djxn+j

can be computed simply by running the generator for k−1 steps to obtain xn+1, . . . ,xn+k−1

and adding (modulo 2) the xn+j’s for which dj = 1. For large k, the cost is dominated by
these additions. Their number can be reduced (e.g., by a factor of about 4 when k = 19937)
by using a sliding window technique, as explained in Haramoto, Matsumoto, Nishimura,
Panneton, and L’Ecuyer (2006). This method still requires O(k2) operations but with
a smaller hidden constant and (most importantly) much less memory than the standard
matrix multiplication. Yet jumping ahead for F2-linear generators of large order k (such
as the Mersenne twister) remains slow with this method. One way to make the jumping-
ahead more efficient is to adopt a combined generator, as discussed in Subsection 2.3, and
do the ν-step jumping-ahead separately for each component.

2.3 Combined F2-Linear Generators

A simple way of combining F2-linear generators is as follows. For some integer C > 1,
consider C distinct recurrences of the form (1)–(2), where the cth recurrence has parameters
(k,w,A,B) = (kc, w,Ac,Bc) and state xc,n at step n, for c = 1, . . . , C. The output of the
combined generator at step n is defined by



6 G–2007–21 Les Cahiers du GERAD

yn = B1x1,n ⊕ · · · ⊕ BCxC,n,

un =

w
∑

ℓ=1

yn,ℓ−12
−ℓ,

where ⊕ denotes the bitwise exclusive-or (xor) operation. One can show (Tezuka and
L’Ecuyer 1991, Tezuka 1995) that the period ρ of this combined generator is the least com-
mon multiple of the periods ρc of its components. This combined generator is equivalent to
the generator (1)–(3) with k = k1+· · ·+kC , A = diag(A1, . . . ,AC), and B = (B1, . . . ,BC).
If Pc(z) is the characteristic polynomial of Ac for each c, then the characteristic polynomial
of A is P (z) = P1(z) · · ·PC(z). This polynomial is obviously reducible, so the combined
RNG cannot have maximal period 2k − 1. However, if we select the parameters carefully
so that each component has maximal period ρc = 2kc − 1 and if the ρc are pairwise rela-
tively prime (the Pc(z) must be distinct irreducible polynomials), then the period of the

combined generator is the product of the periods of the components: ρ =
∏C

c=1(2
kc − 1).

In fact, within one cycle, all combinations of nonzero states for the C components are
visited exactly once. When the kc’s are reasonably large, this ρ is not far from 2k − 1; the
difference is that instead of discarding a single k-bit zero state, we must discard the zero
state for each component (i.e., all k-bit states in which at least one of the components is
in the zero state). Concrete constructions of this form are given in (Tezuka and L’Ecuyer
1991, Wang and Compagner 1993, L’Ecuyer 1996, Tezuka 1995).

Why would we want to combine generators like this? We already gave one good rea-
son in the previous subsection: efficient jumping-ahead is easier for a combined generator
of order k having several components of smaller order than for a non-combined genera-
tor with the same k. Another important reason is that matrices A that give very fast
implementations typically lead (unfortunately) to poor quality RNGs from the statistical
viewpoint, because of a too simplistic structure. Combined generators provide a way out
of this dilemma: select simple components that allow very fast implementations and such
that the corresponding combined generator has a more complicated structure, good figures
of merit from the theoretical viewpoint, and good statistical properties. Many of the best
F2-linear generators are defined via such combinations. As an illustration, one may have
four components of periods 263−1, 258 −1, 255−1, 247 −1, so the state of each component
fits a 64-bit integer and the overall period is near 2223.

There could be situations where instead of combining explicitly known F2-linear com-
ponents, we would go the other way around; we may want to generate matrices A ran-
domly from a given class, then find the decomposition of their (reducible) characteristic
polynomials, analyze their periodicity and figures of merit, and so on. This approach is
used by Brent and Zimmermann (2003), for example. In that case, we can decompose
P (z) = P1(z) · · ·PC(z), where the Pc(z) are irreducible, and also decompose the ma-
trix A in its Jordan normal form: A = PÃP−1, where P is an invertible matrix and



Les Cahiers du GERAD G–2007–21 7

Ã = diag(Ã1, . . . , ÃC) is a block-diagonal matrix for which each block Ãc has irreducible
characteristic polynomial Pc(z) (Golub and Loan 1996, Strang 1988). Once we have this
decomposition, we know that the generator is equivalent to a combined RNG with transi-
tion matrix Ã and output transformation matrix B̃ = BP, and we can analyze it in the
same way as if we had first selected its components and then combined them. It is impor-
tant to note that the purpose of the decomposition in this case is not to provide an efficient
implementation for the combined generator, nor an efficient algorithm to jump ahead, but
only to analyze the periodicity and other theoretical properties of the generator.

3 Quality Criteria

In general, good RNGs must have a long period ρ (say, ρ ≈ 2200 or more), must run fast,
should not waste memory (the state should be represented in no more than roughly log2 ρ
bits of memory), must be repeatable and portable (able to reproduce exactly the same
sequence in different software/hardware environments), and must allow efficient jumping-
ahead in order to obtain multiple streams and substreams. But these required properties
do not suffice to imitate independent random numbers.

Recall that a sequence of random variables U0, U1, U2, . . . are i.i.d. U [0, 1) if and only
if for all integers i ≥ 0 and t > 0, the vector (Ui, . . . , Ui+t−1) is uniformly distributed
over the t-dimensional unit hypercube [0, 1)t. Of course, this cannot hold for algorithmic
RNGs that have a finite period. For RNGs that fit our F2-linear framework, any vector of
t successive output values of the generator belongs to the finite set

Ψt = {(u0, . . . , ut−1) : x0 ∈ F
k
2},

i.e., the set of output points obtained when the initial state runs over all possible k-bit
vectors. This set Ψt always has cardinality 2k when viewed as a multiset (i.e., if the points
are counted as many times as they appear).

If x0 is drawn at random from the set of k-bit vectors F
k
2 , with probability 2−k for

each vector, then (u0, . . . , ut−1) is a random vector having the uniform distribution over
Ψt. Thus, to approximate well the uniform distribution over [0, 1)t, Ψt must cover the
hypercube [0, 1)t very uniformly (L’Ecuyer 1994, L’Ecuyer 2006). More generally, we may
also want to measure the uniformity of sets of the form

ΨI = {(ui1 , . . . , uit) | x0 ∈ F
k
2},

where I = {i1, · · · , it} is a fixed ordered set of non-negative integers such that 0 ≤ i1 <
· · · < it. For I = {0, . . . , t − 1}, we recover Ψt = ΨI

The uniformity of ΨI is usually assessed by measures of discrepancy between the em-
pirical distribution of its points and the uniform distribution over [0, 1)t (Hellekalek and
Larcher 1998, L’Ecuyer and Lemieux 2002, Niederreiter 1992). These measures can be



8 G–2007–21 Les Cahiers du GERAD

defined in many ways and they are in fact equivalent to goodness-of-fit tests for the mul-
tivariate uniform distribution. They must be computable without enumerating the points,
because the cardinality of Ψt makes the enumeration practically infeasible when the period
is large enough. For this reason, the uniformity measures are usually tailored to the gen-
eral structure of the RNG. Measures that are commonly used for F2-linear RNGs will be
described in a moment. The selected discrepancy measure can be computed for each set
I in some predefined class J , then these values can be weighted or normalized by factors
that may depend on I, and the worst-case (or average) over J can be adopted as a figure
of merit used to rank RNGs. The choice of J and of the weights are arbitrary. They are a
question of compromise and practicality. Typically, J would contain sets I such that t and
it − i1 are rather small. We generally try to optimize this figure of merit when searching
(by computer) for concrete RNG parameters, within a given class of constructions.

For F2-linear generators, the uniformity of the point sets ΨI is typically assessed by
measures of equidistribution defined as follows (L’Ecuyer 1996, L’Ecuyer and Panneton
2002, L’Ecuyer 2004, Tezuka 1995). For an arbitrary vector q = (q1, . . . , qt) of non-
negative integers, partition the unit hypercube [0, 1)t into 2qj intervals of the same length
along axis j, for each j. This determines a partition of [0, 1)t into 2q1+···+qt rectangular
boxes of the same size and shape. If a given set ΨI has exactly 2q points in each box of
this partition, where the integer q must satisfy k − q = q1 + · · · + qt, we say that ΨI is
q-equidistributed. This means that among the 2k points (ui1 , . . . , uit) of ΨI , if we consider
all (k − q)-bit vectors formed by the qj most significant bits of uij for j = 1, . . . , t, each of

the 2k−q possibilities occurs exactly the same number of times. Of course, this is possible
only if q1 + · · ·+ qt ≤ k. When q1 + · · ·+ qt ≥ k, i.e., when the number of boxes is larger or
equal to the number of points, we say that ΨI is q-collision-free (CF) if no box contains
more than one point (L’Ecuyer 1996).

If ΨI is (ℓ, . . . , ℓ)-equidistributed for some ℓ ≥ 1, it is called t-distributed with ℓ bits of
accuracy, or (t, ℓ)-equidistributed (L’Ecuyer 1996) (we will avoid this last notation because
it conflicts with that for (q1, . . . , qt)-equidistribution). The largest value of ℓ for which
this holds is called the resolution of the set ΨI and is denoted by ℓI . It cannot exceed
ℓ∗t = min(⌊k/t⌋, w). We define the resolution gap of ΨI as δI = ℓ∗t − ℓI . Potential figures
of merit can then be defined by

∆J ,∞ = max
I∈J

ωIδI and ∆J ,1 =
∑

I∈J

ωIδI

for some non-negative weights ωI , where J is a preselected class of index sets I. The
weights are often taken all equal to 1.

We also denote by tℓ the largest dimension t for which Ψt is t-distributed with ℓ bits of
accuracy, and we define the dimension gap for ℓ bits of accuracy as

δ̃ℓ = t∗ℓ − tℓ,



Les Cahiers du GERAD G–2007–21 9

where t∗ℓ = ⌊k/ℓ⌋ is an upper bound on tℓ. We may then consider the worst-case weighted
dimension gap and the weighted sum of dimension gaps, defined as

∆̃∞ = max
1≤ℓ≤w

ωℓδ̃ℓ and ∆̃1 =

w
∑

ℓ=1

ωℓδ̃ℓ

for some non-negative weights ωℓ, as alternative figures of merit for our generators. Often,
the weights are all 1 and the word “weighted” is removed from these definitions.

When ∆̃∞ = ∆̃1 = 0, the RNG is said to be maximally equidistributed (ME) or asymp-
totically random for the word size w (L’Ecuyer 1996, Tezuka 1995, Tootill, Robinson, and
Eagle 1973). This property ensures perfect equidistribution of all sets Ψt, for any partition
of the unit hypercube into subcubes of equal sizes, as long as ℓ ≤ w and the number of
subcubes does not exceed the number of points in Ψt. As an additional requirement, we
may ask that Ψt be (ℓ, . . . , ℓ)-collision-free whenever tℓ ≥ k. Then we say that the RNG
is collision-free (CF) (L’Ecuyer 1999b). Large-period ME (or almost ME) and ME-CF
generators can be found in L’Ecuyer (1999b), L’Ecuyer and Panneton (2002), Panneton
and L’Ecuyer (2004), and Panneton, L’Ecuyer, and Matsumoto (2006), for example.

The (k−q)-bit vectors involved in assessing the q-equidistribution of ΨI can be expressed
as a linear function of the k-bit initial state x0, that is, as z0 = Mqx0 for some (k− q)× k
binary matrix Mq. Clearly, ΨI is q-equidistributed if and only if Mq has full rank. Thus,
q-equidistribution can easily be verified by constructing this matrix Mq and checking its
rank via (binary) Gaussian elimination (Fushimi 1983, L’Ecuyer 1996, Tezuka 1995). This
is a major motivation for adopting this measure of uniformity.

To construct the matrix Mq that corresponds to ΨI , one can proceed as follows. For
j ∈ {1, . . . , k}, start the generator in initial state x0 = ej , where ej is the unit vector with
a 1 in position j and zeros elsewhere, and run the generator for it steps. Record the q1

most significant bits of the output at step i1, the q2 most significant bits of the output at
step i2, . . . , and the qt most significant bits of the output at step it. These bits form the
jth column of the matrix Mq.

In the case of a combined generator as in Section 2.3, the matrix Mq can be constructed

by first constructing the corresponding matrices M
(c)
q for the individual components, and

simply juxtaposing these matrices, as suggested in L’Ecuyer (1999b). To describe how this

is done, let us denote by Ψ
(c)
I the point set that corresponds to component c alone, and

let xt

0 = ((x
(1)
0 )t, . . . , (x

(C)
0 )t) where x

(c)
0 is the initial state for component c. If z

(c)
0 is the

(k − q)-bit vector relevant for the q-equidistribution of Ψ
(c)
I , then we have z

(c)
0 = M

(c)
q x

(c)
0

for some (k−q)×kc binary matrix M
(c)
q that can be constructed as explained earlier. Note

that the point set ΨI can be written as the direct sum

ΨI = Ψ
(1)
I ⊕ · · · ⊕ Ψ

(C)
I = {u = u(1) ⊕ · · · ⊕ u(C) | u(c) ∈ Φ

(c)
I for each c},



10 G–2007–21 Les Cahiers du GERAD

where ⊕ denotes the bitwise sum of binary expansions, coordinate by coordinate, and
observe that

z0 = z
(1)
0 ⊕ · · · ⊕ z

(C)
0 = M

(1)
q x

(1)
0 ⊕ · · · ⊕ M

(C)
q x

(C)
0 .

This means that Mq is just the juxtaposition Mq = M
(1)
q · · ·M

(C)
q . That is, M

(1)
q gives

the first k1 columns of Mq, M
(2)
q gives the next k2 columns, and so on.

For very large values of k, the matrix Mq is expensive to construct and reduce, but a
more efficient method based on the computation of the shortest nonzero vector in a lattice
of formal series, studied in Couture and L’Ecuyer (2000), can be used in that case to verify
(ℓ, . . . , ℓ)-equidistribution; see Section 4.

The figures of merit defined above look at the most significant bits of the output val-
ues, but give little importance to the least significant bits. We could of course extend
them so that they also measure the equidistribution of the least significant bits, simply
by using different bits to construct the output values and computing the corresponding
q-equidistributions. But this becomes quite cumbersome and expensive to compute in
general because there are too many ways of selecting which bits are to be considered.
Certain classes of F2-linear generators (the Tausworthe/LFSR RNGs defined in Subsec-
tion 5.1) have the interesting property that if all output values are multiplied by a given
power of two, modulo 1, all equidistribution properties remain unchanged. In other words,
they enjoy the nice property that their least significant bits have the same equidistribution
as the most significant ones. We call such generators resolution-stationary (Panneton and
L’Ecuyer 2005b).

Aside from excellent equidistribution, good F2-linear generators are also required to
have characteristic polynomials P (z) whose number N1 of nonzero coefficients is not too
far from half the degree, i.e., near k/2 (Compagner 1991, Wang and Compagner 1993).
Intuitively, if N1 is very small and if the state xn happens to contain many 0’s and only a
few 1’s, then there is a high likelihood that the N1 − 1 bits used to determine any given
new bit of the next state are all zero, in which case this new bit will also be zero. In other
words, it may happen frequently in that case that only a small percentage of the bits of
xn are modified from one step to the next, so the state can contain much more 0’s than
1’s for a large number of steps. Then, in the terminology of cryptologists, the recurrence
has low diffusion capacity. An illustration of this with the Mersenne twister can be found
in Panneton, L’Ecuyer, and Matsumoto (2006). In particular, generators for which P (z) is
a trinomial or a pentanomial, which have been often used in the past, should be avoided.
They fail rather simple statistical tests (Lindholm 1968, Matsumoto and Kurita 1996).
The fraction N1/k of nonzero coefficients in P (z) can be used as a secondary figure of
merit for an RNG.

Other measures of uniformity are popular in the context where k is small and the entire
point set Ψt is used for quasi-Monte Carlo integration (Niederreiter 1992, Hellekalek and
Larcher 1998, L’Ecuyer and Lemieux 2002); for example the smallest q for which Ψt is a
(q, k, t)-net (commonly known as a (t,m, s)-net, using a different notation), the Pα measure



Les Cahiers du GERAD G–2007–21 11

and its weighted versions, the diaphony, etc. However, no one knows how to compute these
measures efficiently when k > 50 (say), which is always the case for good F2-linear RNGs.

4 Lattice Structure in a Space of Formal Series

The lattice structure of linear congruential generators (LCGs) is well-known in the sim-
ulation community (Law and Kelton 2000, Knuth 1998). F2-linear RNGs do not have a
lattice structure in the real space, but they do have a similar form of lattice structure in a
space of formal series (Couture and L’Ecuyer 2000, L’Ecuyer 2004, Lemieux and L’Ecuyer
2003, Tezuka 1995), which we now outline. In comparison with the lattices of LCGs, the
real space R is replaced by the space L2 of formal power series with coefficients in F2, of
the form

∑∞
ℓ=ω xℓz

−ℓ for some integer ω, and the integers are replaced by polynomials over
F2.

Some F2-linear RNGs (e.g., the LFSR generators) have a dimension-wise lattice struc-
ture where the lattice contains vectors of t-dimensional formal series, whose coordinate j
is the generating function for the binary expansion of the jth output value, for a given ini-
tial state (Tezuka and L’Ecuyer 1991, L’Ecuyer 1994, Tezuka 1995, Lemieux and L’Ecuyer
2003). This dimension-wise lattice can be used to study equidistribution, but it only applies
to a subclass of F2-linear RNGs. For this reason, we will not discuss it any further here.
We will concentrate instead on the resolution-wise lattice introduced by Tezuka (1995),
which applies to all F2-linear generators.

The sequence of values taken by the jth bit of the output, from a given initial state x0,
has generating function

Gj(z) = y0,jz
−1 + y1,jz

−2 + · · · =

∞
∑

n=1

yn−1,jz
−n

(which depends on x0). When multiplying this formal series by P (z), we obtain the
polynomial gj(z) = Gj(z)P (z) in F2[z]/P (z) (the space of polynomials of degree less than
k, with coefficients in F2), because the successive terms of the series satisfy a recurrence
with this characteristic polynomial. For ℓ = 1, . . . , w, let G(ℓ)(z) = (G0(z), . . . , Gℓ−1(z)).

We first consider the case where P (z) is an irreducible polynomial. In that case, if
G0(z) 6= 0, then g0(z) has an inverse modulo P (z) and there is a unique initial state of the
RNG that corresponds to the vector

Ḡ(ℓ)(z) = g−1
0 (z)G(ℓ)(z)

= (1, g−1
0 (z)g1(z), . . . , g−1

0 (z)gℓ−1(z))/P (z)

(Panneton 2004), Lemma 3.2. Thus, if we rename momentarily g−1
0 (z)gj(z) as gj(z), we

see that it is always possible to select the initial state of the RNG so that g0(z) = 1, i.e,

Ḡ(ℓ)(z) = (1, g1(z), . . . , gℓ−1(z))/P (z).



12 G–2007–21 Les Cahiers du GERAD

When P (z) is irreducible, any given bit of the output follows the same recurrence, with
minimal polynomial P (z), but with a lag between the recurrences for the different bits,
i.e., they have different starting points. The vector Ḡ(ℓ)(z) tell us about these lags. More
specifically, if gi(z) ≡ g0(z)zti mod P (z), then the lag between the recurrences for bit 0
and bit i is ti.

Let L2 = F2((z
−1)) be the space of formal series of the form

∑∞
n=i dn−1z

−n where i ∈ Z

and dn−1 ∈ F2 for each n. Let L2,0 be those series for which i ≥ 1. Suppose that the

first ℓ rows of the matrix B are linearly independent. Then the vectors v1(z) = Ḡ(ℓ)(z),
v2(z) = e2(z), . . . ,vℓ(z) = eℓ(z) form a basis of a lattice Lℓ in L2, defined by

Lℓ =







v(z) =

ℓ
∑

j=1

hj(z)vj(z) such that hj(z) ∈ F2[z]







.

This lattice is called the ℓ-bit resolution-wise lattice associated with the RNG. The matrix
V whose rows are the vj ’s has an inverse W = V−1 whose columns

w1(z) = (P (z), 0, . . . , 0)t,

w2(z) = (−g1(z), 1, . . . , 0)t,

· · ·

wℓ(z) = (−gℓ−1(z), 0, . . . , 1)t

form a basis of the dual lattice

L∗
ℓ = {h(z) ∈ L

ℓ
2 : h(z) · v(z) ∈ F2[z] for all v(z) ∈ Lℓ},

where h(z) ·v(z) =
∑ℓ

j=1 hj(z)vj(z) (the scalar product). This resolution-wise lattice fully
describes all the possible output sequences of the RNG via the following theorem. It says
that the set of all vectors of generating function that we can get, from all possible initial
states x0, is exactly the set of lattice points that belong to L2,0. (Here we do not assume
that g0(z) = 1.)

Theorem 2 (Couture and L’Ecuyer 2000). We have

Lℓ ∩ L2,0 = {(g0(z), . . . , gℓ−1(z))/P (z) : x0 ∈ F
k
2}.

For any h(z) = (h1(z), . . . , hℓ(z)) ∈ (F2[z])ℓ, we define the length of h(z) by ‖0‖ = 0
and

log2 ‖h(z)‖ = max
1≤j≤ℓ

deg hj(z) for h(z) 6= 0.

Theorem 3 (Tezuka 1995, Couture and L’Ecuyer 2000). Ψt is t-distributed with ℓ bits of
accuracy if and only if

min
0 6=h(z)∈L∗

ℓ

log2 ‖h(z)‖ > ℓ.



Les Cahiers du GERAD G–2007–21 13

This theorem shows that checking equidistribution amounts to computing a shortest
nonzero vector in the dual lattice L∗

ℓ , just like the spectral test commonly applied to LCGs
but with a different lattice. As it turns out, very similar algorithms can be used to compute
the shortest vector in both cases (Couture and L’Ecuyer 2000). The algorithm of Lenstra
(1985) computes a reduced lattice basis in the sense of Minkowski for a polynomial lattice;
the first (shortest) vector of that reduced basis is a shortest nonzero vector in the lattice.

This approach is more efficient than applying Gaussian elimination to the matrix Mq

(see Subsection 3) when t is large. However, it applies only to the point set Ψt formed by
t successive output values, and not to the more general point sets ΨI .

To construct a basis of the dual lattice for all ℓ ≤ w, we only need the polynomials
g0(z), g1(z), . . . , gw−1(z). These polynomials can be computed as follows. Start the gen-
erator in some arbitrary nonzero initial state x0, run it for k − 1 steps, and observe the
corresponding output bits yn = (yn,0, . . . , yn,w−1), for n = 0, . . . , k− 1. This gives the first

k coefficients of Gj(z) for j = 0, . . . , w − 1. The coefficients of each gj(z) =
∑k

i=1 cj,izk−i

can then be obtained via (Lemieux and L’Ecuyer 2003, Proposition 3.6):











cj,1

cj,2
...

cj,k











=











1 0 . . . 0
α1 1 . . . 0
...

. . .
. . .

...
αk−1 . . . α1 1





















y0,j

y1,j
...

yk−1,j











.

Then, to obtain g0(z) = 1, it suffices to compute the inverse of g0(z) modulo P (z) and to
multiply each gj(z) by this inverse.

When P (z) is reducible, we can no longer use the argument that g0(z) has an inverse, but
everything else still applies. Suppose P (z) = P1(z) · · · PC(z) where the Pc(z)’s are distinct
irreducible polynomials; all interesting RNGs should satisfy this assumption, usually with
a small value of C. In that case, the RNG can then be interpreted as a combined F2-
linear generator that fits the framework of Section 2.3 and a basis of the dual lattice can

be constructed by decomposition, as we now explain. If L
(c)
ℓ denotes the resolution-wise

lattice associated with component c alone and L
(c)∗
ℓ its dual, it can be seen easily that

Lℓ = L
(1)
ℓ ⊕ · · · ⊕ L

(C)
ℓ

(the direct sum of lattices) and

L∗
ℓ = L

(1)∗
ℓ ∩ · · · ∩ L

(C)∗
ℓ .

To find a basis of this dual lattice, we can first compute a basis of the dual lattice L
(c)∗
ℓ

for each component c, as described earlier. Let −g
(c)
1 (z), . . . ,−g

(c)
ℓ−1(z) be the polynomials



14 G–2007–21 Les Cahiers du GERAD

found in the first coordinates of these dual basis vectors (we assume that g
(c)
0 (z) = 1). For

each c, compute Qc(z) = (P (z)/Pc(z))−1 mod Pc(z); then for j = 1, . . . , ℓ − 1, compute

gj(z) =
C

∑

c=1

(

g
(c)
j (z)Qc(z)P (z)/Pj(z)

)

mod P (z),

so that gj(z) ≡ g
(c)
j (z) mod P (z) for each j. Then define v1 = (1, g2(z), . . . , gℓ−1(z))/P (z),

vj(z) = ej(z) for j ≥ 2, w1(z) = (P (z), 0, . . . , 0)t, and wj(z) = ej − gj(z)e1 for j ≥ 2, as
before. Under the assumption that the Pc(z)’s are pairwise relatively prime, the proof of
Proposition 4.13 of Lemieux and L’Ecuyer (2002) (an expanded version of Lemieux and
L’Ecuyer 2003) implies the following result:

Proposition 4 The vectors v1, . . . ,vℓ form a basis of Lℓ and w1, . . . ,wℓ are a basis of
the dual lattice L∗

ℓ .

This way of doing most of the computations for the components separately before
putting the results together is more efficient than working directly with the combined
generator, especially if the components are much smaller than the combination.

5 Specific Classes of Generators

5.1 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR) generator (Tausworthe 1965,
L’Ecuyer 1996, Tezuka 1995) is defined by a linear recurrence modulo 2, from which a
block of w bits is taken every s steps, for some positive integers w and s:

xn = a1xn−1 + · · · + akxn−k, (6)

un =

w
∑

ℓ=1

xns+ℓ−12
−ℓ. (7)

where a1, . . . , ak are in F2 and ak = 1. This fits our framework by taking A = (A0)
s (in

F2) where

A0 =











1
. . .

1
ak ak−1 . . . a1











, (8)

and blank entries in this matrix are zeros (we use that convention all along this paper). If
w ≤ k, the matrix B would contain the first w rows of the k× k identity matrix. However,
we may also have w > k, in particular when implementing an LFSR used as a component of
a combined generator. In that case, it is convenient to expand A into a w×w matrix with



Les Cahiers du GERAD G–2007–21 15

the same minimal polynomial (of degree k), as follows: For j = 1, . . . , w − k, add the row

(a
(j)
1 , . . . , a

(j)
k ), where the coefficients a

(j)
i are such that xn+j = a

(j)
1 xn−1 + · · · + a

(j)
k xn−k.

This can be done in the same way as when we build the matrix Mq in Section 3. Then,
we add w − k columns of zeros.

Note that P (z) is the characteristic polynomial of the matrix A = (A0)
s, not that of

the recurrence (6), and the choice of s is important for determining the quality of this
generator. A frequently encountered case is when a single aj is nonzero in addition to
ak; then, the characteristic polynomial of A0 is a trinomial and we have a trinomial-
based LFSR generator. Typically, s is small to make the implementation efficient. These
trinomial-based generators are known to have important statistical weaknesses (Matsumoto
and Kurita 1996, Tezuka 1995) but they can be used a components of combined RNGs
(Tezuka and L’Ecuyer 1991, Wang and Compagner 1993, L’Ecuyer 1996). They also enjoy
the important properties of being resolution-stationary (Panneton and L’Ecuyer 2005b).
Tables of specific parameters for maximally equidistributed combined LFSR generators,
together with concrete implementations for 32-bit and 64-bit computers, can be found in
L’Ecuyer (1999b). These generators are among the fastest ones currently available.

To show how an LFSR generator can be implemented efficiently, we outline an algorithm
for the following situation. Suppose that aj = 1 for j ∈ {j1, . . . , jd} and aj = 0 otherwise,
with k/2 ≤ j1 < · · · < jd = k ≤ w and 0 < s ≤ j1. We work directly with the w-bit
vectors yn = (xns, . . . , xns+w−1), assuming that w is the computer’s word length. Under
these conditions, a left shift of yn by k− ji bits, denoted yn ≪ (k− ji), gives a vector that
contains the first w − k + ji bits of yn+k−ji

followed by k − ji zeros (for i = d, ji = k so
there is no shift). Adding these d shifted vectors by a bitwise xor, for j = 1, . . . , d, gives a
vector ỹ that contains the first w− k + j1 bits of yn+k = yn+k−j1 ⊕ · · · ⊕yn+k−jd

followed
by k− j1 other bits (which do not matter). Now we shift ỹ by k− s positions to the right,
denoted ỹ ≫ (k − s); this gives k − s zeros followed by the last w − k + s bits of yn+s

(the k − j1 bits that do not matter have disappeared, because s ≥ j1). Zeroing the last
w − k bits of yn and then shifting it to the left by s bits gives the first k − s bits of yn+s.
Adding this to ỹ then gives yn+s. This is summarized by the following algorithm, in which
& denotes a bitwise “and” and mask contains k 1’s followed by w − k 0’s.

Algorithm L [One step of a simple LFSR generator]:
ỹ = yn;
For i = 2, . . . , d, ỹ = ỹ ⊕ (yn ≪ (k − ji));
yn+s = (ỹ ≫ (k − s)) ⊕ ((yn& mask) ≪ s);

For this to work properly, we must make sure that y0 is initialized to a valid state,
i.e., that the values xk, . . . , xw−1 satisfy the recurrence xj = a1xj−1 + · · · + akxj−k for
j = k, . . . , w−1. We can take (x0, . . . , xk−1) as an arbitrary nonzero vector, and then simply
compute xk, . . . , xw−1 from the recurrence. L’Ecuyer (1996) explains how to implement
this.



16 G–2007–21 Les Cahiers du GERAD

5.2 The GFSR, Twisted GFSR, and Mersenne Twister

Here we suppose that A is a pq × pq matrix with the general form

A =















S1 S2 Sq−1 Sq

Ip

Ip

. . .

Ip















for some positive integers p and q, where Ip is the p × p identity matrix, and each Sj is
a p × p matrix. Often, w = p and B contains the first w rows of the pq × pq identity
matrix. If Sr = Sq = Ip for some r and all the other Sj ’s are zero, this generator is the
trinomial-based generalized feedback shift register (GFSR), for which xn is obtained by a
bitwise exclusive-or of xn−r and xn−q and where xn gives the w bits of un (Lewis and
Payne 1973). This provides an extremely fast RNG. However, its period cannot exceed
2q − 1, because each bit of xn follows the same binary recurrence of order k = q, with
characteristic polynomial P (z) = zq − zq−r − 1.

More generally, we can define xn as the bitwise exclusive-or of xn−r1
,xn−r2

, . . . ,xn−rd

where rd = q, so that each bit of xn follows a recurrence in F2 whose characteristic
polynomial P (z) has d + 1 nonzero terms. This corresponds to taking Sj = Ip for j ∈
{r1, . . . , rd} and Sj = 0 otherwise. However, the period is still bounded by 2q − 1, whereas
considering the pq-bit state, we should expect a period close to 2pq. This was the main
motivation for the twisted GFSR (TGFSR) generator. In the original version introduced
by Matsumoto and Kurita (1992), w = p, Sq is defined as the transpose of A0 in (8) with
k replaced by p, Sr = Ip, and all the other Sj ’s are zero. The characteristic polynomial of
A is then P (z) = PS(zq + zq−r), where PS(ζ) = ζp − apζ

p−1 − · · · − a1 is the characteristic
polynomial of Sq, and its degree is k = pq. If the parameters are selected so that P (z)
is primitive over F2, then the TGFSR has period 2k − 1. Matsumoto and Kurita (1994)
pointed out important weaknesses of the original TGFSR, for which B contains the first
rows of the identity matrix, and introduced an improved version that uses a well-chosen
matrix B whose rows differ from those of the identity. The operations implemented by this
matrix are called tempering and their purpose is to improve the uniformity of the points
produced by the RNG. To our knowledge, this was the first proposal of F2-linear RNG
with a B that differs from the truncated identity.

The Mersenne twister (Matsumoto and Nishimura 1998, Nishimura 2000) (MT) is a
variant of the TGFSR where k is slightly less than pq and can be a prime number. It uses
a pq-bit vector to store the k-bit state, where k = pq − r is selected so that r < p and
2k − 1 is a Mersenne prime. The matrix A is a (pq− r)× (pq− r) matrix similar to that of
the TGFSR and the implementation is also quite similar. The main reason for using a k of
that form is to simplify the search for primitive characteristic polynomials (see Algorithm
P). If we take k = pq, then we know that we cannot have a Mersenne prime because 2pq −1



Les Cahiers du GERAD G–2007–21 17

is divisible by 2p−1 and 2q−1. A specific instance proposed by Matsumoto and Nishimura
(1998), and named MT19937, has become quite popular; it is fast and has the huge period
of 219937 − 1.

A weakness of this RNG is underlined and illustrated in Panneton, L’Ecuyer, and
Matsumoto (2006): if the generator starts in (or reaches) a state that has very few ones,
it may take up to several hundred thousands steps before the ratio of ones in the output
and/or the average output value are approximately 1/2. For example, for MT19937, if
we average the output values at steps n + 1 to n + 100 (a moving average) and average
this over all 19937 initial states x0 that have a single bit at one, then we need at least
n > 700, 000 before the average gets close to 1/2 as it should be (this is graphically
illustrated in Panneton, L’Ecuyer, and Matsumoto 2006). Likewise, if two states differ by
a single bit, or by only a few bits, a very large number of steps are required on average
before the states or the outputs differ by about half of their bits. The source of the problem
is that this RNG has a (huge) 19937-bit state and few of these bits are modified from one
step to the next, as explained near the end of Section 3; it has only N1 = 135 nonzero
coefficients out of 19938 in its characteristic polynomial. Moreover, the figure of merit ∆̃1

takes the large value 6750 for this generator.

It has been proved that the TGFSR and Mersenne twister construction methods used
in Matsumoto and Kurita (1994), Matsumoto and Nishimura (1998) cannot provide ME
generators in general. They typically have large equidistribution gaps. But combining
them via a bitwise xor can yield generators with the ME property. Concrete examples of
ME combined TGFSR generators with periods around 2466 and 21250 are given in L’Ecuyer
and Panneton (2002). These generators have the additional property that the resolution
gaps δI are also zero for a class of index sets I of small cardinality and whose elements
are not too far apart. These combined RNGs are of course somewhat slower than their
original (uncombined) counterparts.

5.3 The WELL RNGs

These RNGs were developed by Panneton (2004) and are described by Panneton, L’Ecuyer,
and Matsumoto (2006). The idea was to “sprinkle” a small number of very simple opera-
tions on w-bit words (where w is taken as the size of the computer word), such as xor, shift,
bit mask, etc., into the matrix A in a way that the resulting RNG has maximal period
and runs about as fast as the Mersenne twister, but also has (under these constraints) the
best possible equidistribution properties, and a characteristic polynomial with around 50%
nonzero coefficients.

The state xn = (vt

n,0, . . . ,v
t

n,r−1)
t is comprised of r blocks of w = 32 bits vn,j, and

the recurrence is defined by a set of linear transformations that apply to these blocks, as
described in Panneton, L’Ecuyer, and Matsumoto (2006). Essentially, the transformations
modify vn,0 and vn,1 by using several of the other blocks. They are selected so that P (z), a
polynomial of degree k = rw− p, is primitive over F2. The output is defined by yn = vn,0.



18 G–2007–21 Les Cahiers du GERAD

The authors list specific parameters for WELL generators with periods ranging from
2512 − 1 to 244497 − 1. Many of them are ME and the others are nearly ME. Their char-
acteristic polynomials have nearly 50% coefficients equal to 1. These RNGs have much
better diffusion capacity than the Mersenne twister and have comparable speed.

5.4 Xorshift Generators

Marsaglia (2003) has proposed a class of very fast RNGs whose recurrence can be imple-
mented by a small number of xorshift operations only, where a xorshift operation consists
in replacing a w-bit block in the state by a (left or right) shifted version of itself (by a po-
sitions, where 0 < a < w) xored with the original block. The constant w is the computer’s
word size (usually 32 or 64). The specific generators he proposed in his paper use three
xorshift operations at each step. As it turns out, xorshifts are linear operations so these
generators fit our F2-linear setting.

Panneton and L’Ecuyer (2005a) analyzed the theoretical properties of a general class
of xorshift generators that contains those proposed by Marsaglia. They studied maximal-
period conditions, limits on the equidistribution, and submitted xorshift generators to
empirical statistical testing. They concluded that three-xorshift generators are unsafe and
came up with generators based on 7 and 13 xorshifts, whose speed is only 20% slower
than those with three xorshifts to generate U(0, 1) real numbers. Aside from the tests that
detect F2-linearity, these RNGs pass other standard statistical tests.

Brent (2004) has proposed a family of generators that combine a xorshift RNG with
a Weyl generator. The resulting generator is no longer F2-linear and it behaves well
empirically (L’Ecuyer and Simard 2006).

5.5 Linear Recurrences in F2w

Fix a positive integer w (e.g., w = 32) and let q = 2w. Panneton (2004) and Panneton and
L’Ecuyer (2004) consider fast RNGs based on recurrences in the finite field Fq, which can
be written as

mn = b1mn−1 + · · · + brmn−r

for some integer r, where the arithmetic is performed in Fq. The maximal period ρ = 2rw−1

is reached if and only if P̃ (z) = zr − b1z
r−1 − · · · − br−1z − br is a primitive polynomial

over Fq.

To implement this recurrence, these authors select an algebraic element ζ of Fq, take
{1, ζ, . . . , ζr−1} as a basis of Fq over F2, and represent the elements mn = vn,0+vn,1ζ+· · ·+
vn,w−1ζ

w−1 of Fq by the bit vectors vn = (vn,0, vn,1, . . . , vn,w−1)
t. The state of the RNG is

thus represented by a rw-bit vector and the output is constructed as in (3), from the bits
of vn. (More generally, one could define the output by taking yn = (vn,vn−1, . . . ,vn−r+1)



Les Cahiers du GERAD G–2007–21 19

for some r ≥ 1.) This construction fits our F2-linear framework (1–3) and generalizes the
TGFSR generators. Panneton and L’Ecuyer (2004) call them LFSR generators in F2w .

The same authors also propose a slightly different construction called polynomial LCG
in F2w , and based on the recurrence

qn(z) = zqn−1(z) mod P̃ (z)

in Fq[z] (the ring of polynomials with coefficients in Fq), where P̃ (z) ∈ Fq[z] is a primitive
polynomial. To implement this, each coefficient of qn(z) is represented by a w-bit vector
just as for mn and the output is defined in a similar way. Again, this fits the F2-linear
framework (1–3).

Panneton (2004) (see also Panneton and L’Ecuyer 2005a) goes further by proving certain
properties of the equidistribution of these RNGs. For instance, he shows that if P̃ (z) is
irreducible over Fq and can be written as

P̃ (z) = p0(z) + ζp1(z) + · · · + ζγpγ(z)

where each pi(z) is in F2[z], then the RNG cannot be t-distributed with ℓ bits of accuracy
if t > r and ℓ > γ. As a corollary, since the TGFSR has P̃ (z) = p0(z) + ζp1(z), it cannot
be t-distributed with more than a single bit of accuracy in any dimension t > r. He also
shows that if P̃ (z) is irreducible over Fq and has at least three nonzero coefficients, then
among the 2rw −1 two-dimensional point sets Ψ{0,j} where 1 ≤ j < 2kw, exactly 2w −1 are
not 2-distributed with w bits of accuracy. For example, if w = 32 and r = 25 (so k = 800),
only one two-dimensional projection out of 2768 is not equidistributed!

Panneton (2004) and Panneton and L’Ecuyer (2004) propose tables of good parameters
for LFSRs and polynomial LCGs in Fq. These parameters were found by computer searches

based on the figure of merit ∆̃1. They also provide concrete implementations in the C
language. These implementations are fast, comparable to the Mersenne twister for instance,
but one drawback is that they use precomputed multiplication tables that require a non-
negligible amount of memory. (In the case of multiple streams, a single copy of the tables
is shared by all the streams.) The output transformation by a non-trivial matrix B is
integrated into these multiplication tables to improve the efficiency.

6 Speed and Performance in Statistical Tests

6.1 Speed Comparisons

Table 1 reports the speed of some RNGs available in the Java-based SSJ simulation package
(L’Ecuyer and Buist 2005). The timings are for the SSJ implementations on a 2.4 GHz 64-
bit AMD-Athlon computer with SUN’s JDK 1.5, C implementations on the same processor,
and C implementations running on a 2.8 GHz 32-bit Intel processor. The first and second



20 G–2007–21 Les Cahiers du GERAD

Table 1: CPU time (sec) to generate 109 random numbers, and CPU time to jump ahead
106 times, with some RNGs available in SSJ

RNG ρ ≈ CPU time in SSJ (Java) CPU time in C

gen. jump gen. 64 gen. 32

LFSR113 2113 31 0.1 10 39
LFSR258 2258 35 0.2 12 58
WELL512 2512 33 234 12 38
WELL1024 21024 34 917 11 37
MT19937 219937 36 — 16 42
MRG31k3p 2185 51 0.9 21 71
MRG32k3a 2191 70 1.1 21 99

columns of the table give the generator’s name and its approximate period. All these
generators are implemented for a 32-bit computer, although the C implementation of the
two MRG generators (last two lines) used on the 64-bit computer was different; it exploits
the 64-bit arithmetic. The SSJ implementations of all generators have more overhead
because they support multiple streams, can generate either integers or real numbers, etc.
The jumping ahead in SSJ is implemented via a multiplication by Aν as explained in
Section 2.2. For the combined LFSR generators, the linear recurrence that corresponds
to the matrix Aν is implemented directly using the algorithm of Section 5.1, for each
component of the combination. It is much faster for this reason. Column 3 of the table
gives the CPU time (sec) to generate 109 random numbers and add them up, whereas
column 4 gives the CPU time needed to jump ahead 106 times by a very large number
of steps (to get a new stream), in SSJ. For comparison, columns 5 and 6 give the time
to generate 109 numbers with the C implementation available in TestU01 (L’Ecuyer and
Simard 2006), first on the same computer (gen. 64), and then on the 32-bit computer
(gen. 32).

The first five RNGs are F2-linear and the last two are combined multiple recursive
generators (MRGs). The first two are combined LFSRs proposed by L’Ecuyer (1999b)
for 32-bit and 64-bit computers, with four and five components, respectively. The two
WELL RNGs are proposed in Panneton, L’Ecuyer, and Matsumoto (2006). Other WELL
generators with much longer periods (up to nearly 244497) proposed in that paper have
approximately the same speed as those given here to generate random numbers, but are
much slower than WELL1024 for jumping ahead because of their larger value of k. For the
Mersenne twister MT19937, proposed by Matsumoto and Nishimura (1998), jumping ahead
is also too slow and is not implemented in SSJ. All these F2-linear RNGs have roughly the
same speed for generating random numbers. Other ones with about the same speed are
also proposed by Panneton and L’Ecuyer (2004) and Matsumoto and Kurita (1994), e.g.,
with periods near 2800.



Les Cahiers du GERAD G–2007–21 21

The timings of the two MRGs in the table are reported for comparison. The first one
(MRG31k3p) was proposed by L’Ecuyer and Touzin (2000) while the second one (MRG32k3a)
was proposed by L’Ecuyer (1999a) and is used in several simulation packages to provide
multiple streams and substreams. This latter RNG has been heavily tested over the years
and is very robust. On the other hand, the F2-linear generators are faster.

6.2 Statistical Testing

All the RNGs in Table 1 have been submitted to empirical statistical testing using the bat-
teries Smallcrush, Crush, and Bigcrush of the TestU01 package (L’Ecuyer and Simard 2002,
L’Ecuyer and Simard 2006). They passed all the tests in these batteries with the following
notable exceptions: All F2-linear generators fail the tests that look for linear relationships
in the sequences of bits they produce, namely the matrix-rank test (Marsaglia 1985) for
huge binary matrices and the linear complexity tests (Erdmann 1992). The reason for this
general failure is obvious: We know from their definitions that these generators produce
bit sequences that obey linear recurrences, so they cannot have the linear complexity of a
truly random sequence. This is definitely a limitation of these RNGs. But whenever the
bit sequences are transformed nonlinearly by the application (e.g., to generate real-valued
random numbers from non-uniform distributions), the linear relationships between the bits
usually disappear, and the linearity is then very unlikely to cause a problem. For situations
where simulation results can be noticeably affected by the linear dependencies among the
bits, to make these RNGs safer without slowing them down too much, we could either com-
bine them with a generator from another class (such as an MRG, for instance), or combine
them with a small nonlinear RNG implemented via precomputed tables as suggested by
L’Ecuyer and Granger-Piché (2003), or add a nonlinear output transformation that is fast
to compute.

7 Conclusion

F2-linear RNGs are convenient for simulation because they are fast and the high-dimen-
sional uniformity of their point sets can be measured by theoretical figures of merit that can
be computed efficiently. Combined F2-linear generators with relatively small components
have the important advantage of faster jumping-ahead, because the (smaller) components
can be dealt with separately. Some F2-linear generators proposed in the literature have
huge periods, but it is not always true that larger is better. A huge state has the disad-
vantages of using more memory (this can be important when there is a large number of
streams in a simulation). It also makes jumping ahead much slower, and it requires more
operations to modify a large fraction of the bits in the state. Of course, very long bit
sequences produced by F2-linear generators will always fail statistical tests that measure
their linear complexity. This can be viewed as a weak limitation, which could be over-
come by adding a nonlinear output transformation or combining the F2-linear RNG with
a generator from another class.



22 G–2007–21 Les Cahiers du GERAD

References

Brent, R. P. 2004. Note on Marsaglia’s xorshift random number generators. Journal of Statistical
Software 11 (5): 1–4. See http://www.jstatsoft.org/v11/i05/brent.pdf.

Brent, R. P., and P. Zimmermann. 2003. Random number generators with period divisible by
a Mersenne prime. In Computational Science and its Applications—ICCSA 2003, Volume 2667,
Lecture Notes in Computer Science. Berlin: Springer-Verlag.

Compagner, A. 1991. The hierarchy of correlations in random binary sequences. Journal of
Statistical Physics 63:883–896.

Couture, R., and P. L’Ecuyer. 2000. Lattice computations for random numbers. Mathematics of
Computation 69 (230): 757–765.

Erdmann, E. D. 1992. Empirical tests of binary keystreams. Master’s thesis, Department of
Mathematics, Royal Holloway and Bedford New College, University of London.

Fushimi, M. 1983. Increasing the orders of equidistribution of the leading bits of the Tausworthe
sequence. Information Processing Letters 16:189–192.

Golub, G. H., and C. F. V. Loan. 1996. Matrix computations . third ed. John Hopkins University
Press.

Haramoto, H., M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer. 2006. Efficient jump
ahead for F2-linear random number generators. GERAD Report G-2006-62, submitted.

Hellekalek, P., and G. Larcher. (Eds.) 1998. Random and quasi-random point sets, Volume 138 of
Lecture Notes in Statistics. New York: Springer.

Knuth, D. E. 1998. The art of computer programming, volume 2: Seminumerical algorithms .
Third ed. Reading, Mass.: Addison-Wesley.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling and analysis. Third ed. New York:
McGraw-Hill.

L’Ecuyer, P. 1994. Uniform random number generation. Annals of Operations Research 53:77–120.

L’Ecuyer, P. 1996. Maximally equidistributed combined Tausworthe generators. Mathematics of
Computation 65 (213): 203–213.

L’Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive ran-
dom number generators. Operations Research 47 (1): 159–164.

L’Ecuyer, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Mathematics
of Computation 68 (225): 261–269.

L’Ecuyer, P. 2004. Polynomial integration lattices. In Monte Carlo and Quasi-Monte Carlo
Methods 2002, ed. H. Niederreiter, 73–98. Berlin: Springer-Verlag.

L’Ecuyer, P. 2006. Uniform random number generation. In Simulation, ed. S. G. Henderson and
B. L. Nelson, Handbooks in Operations Research and Management Science, 55–81. Amsterdam,
The Netherlands: Elsevier. Chapter 3.

L’Ecuyer, P., and E. Buist. 2005. Simulation in Java with SSJ. In Proceedings of the 2005 Winter
Simulation Conference, 611–620: IEEE Press.



Les Cahiers du GERAD G–2007–21 23

L’Ecuyer, P., and J. Granger-Piché. 2003. Combined generators with components from different
families. Mathematics and Computers in Simulation 62:395–404.

L’Ecuyer, P., and C. Lemieux. 2002. Recent advances in randomized quasi-Monte Carlo methods.
In Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, ed.
M. Dror, P. L’Ecuyer, and F. Szidarovszky, 419–474. Boston: Kluwer Academic.

L’Ecuyer, P., and F. Panneton. 2002. Construction of equidistributed generators based on linear
recurrences modulo 2. In Monte Carlo and Quasi-Monte Carlo Methods 2000, ed. K.-T. Fang,
F. J. Hickernell, and H. Niederreiter, 318–330. Berlin: Springer-Verlag.

L’Ecuyer, P., and R. Simard. 2002. TestU01: A software library in ANSI C for empirical testing
of random number generators. Software user’s guide. Available at http://www.iro.umontreal.

ca/~lecuyer.

L’Ecuyer, P., and R. Simard. 2006. TestU01: A C library for empirical testing of random number
generators. ACM Transactions on Mathematical Software. to appear.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002. An object-oriented random-number
package with many long streams and substreams. Operations Research 50 (6): 1073–1075.

L’Ecuyer, P., and R. Touzin. 2000. Fast combined multiple recursive generators with multipliers
of the form a = ±2q ± 2r. In Proceedings of the 2000 Winter Simulation Conference, ed. J. A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 683–689. Pistacaway, NJ: IEEE Press.

Lemieux, C., and P. L’Ecuyer. 2002. Randomized polynomial lattice rules for multivariate integra-
tion and simulation. extended version, available at http://www.iro.umontreal.ca/~lecuyer.

Lemieux, C., and P. L’Ecuyer. 2003. Randomized polynomial lattice rules for multivariate inte-
gration and simulation. SIAM Journal on Scientific Computing 24 (5): 1768–1789.

Lenstra, A. K. 1985. Factoring multivariate polynomials over finite fields. Journal of Computer
and System Sciences 30:235–248.

Lewis, T. G., and W. H. Payne. 1973. Generalized feedback shift register pseudorandom number
algorithm. Journal of the ACM 20 (3): 456–468.

Lidl, R., and H. Niederreiter. 1986. Introduction to finite fields and their applications. Cambridge:
Cambridge University Press.

Lindholm, J. H. 1968. An analysis of the pseudo-randomness properties of subsequences of long
m-sequences. IEEE Transactions on Information Theory IT-14 (4): 569–576.

Marsaglia, G. 1985. A current view of random number generators. In Computer Science and
Statistics, Sixteenth Symposium on the Interface, 3–10. North-Holland, Amsterdam: Elsevier
Science Publishers.

Marsaglia, G. 2003. Xorshift RNGs. Journal of Statistical Software 8 (14): 1–6. See http:

//www.jstatsoft.org/v08/i14/xorshift.pdf.

Massey, J. L. 1969. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theor IT-
15:122–127.

Matsumoto, M., and Y. Kurita. 1992. Twisted GFSR generators. ACM Transactions on Modeling
and Computer Simulation 2 (3): 179–194.



24 G–2007–21 Les Cahiers du GERAD

Matsumoto, M., and Y. Kurita. 1994. Twisted GFSR generators II. ACM Transactions on
Modeling and Computer Simulation 4 (3): 254–266.

Matsumoto, M., and Y. Kurita. 1996. Strong deviations from randomness in m-sequences based
on trinomials. ACM Transactions on Modeling and Computer Simulation 6 (2): 99–106.

Matsumoto, M., and T. Nishimura. 1998. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation 8 (1): 3–30.

Niederreiter, H. 1992. Random number generation and quasi-Monte Carlo methods, Volume 63 of
SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: SIAM.

Nishimura, T. 2000. Tables of 64-bit Mersenne twisters. ACM Transactions on Modeling and
Computer Simulation 10 (4): 348–357.

Panneton, F. 2004, August. Construction d’ensembles de points basée sur des récurrences linéaires
dans un corps fini de caractéristique 2 pour la simulation Monte Carlo et l’intégration quasi-Monte
Carlo. Ph. D. thesis, Département d’informatique et de recherche opérationnelle, Université de
Montréal, Canada.

Panneton, F., and P. L’Ecuyer. 2004. Random number generators based on linear recurrences in
F2w . In Monte Carlo and Quasi-Monte Carlo Methods 2002, ed. H. Niederreiter, 367–378. Berlin:
Springer-Verlag.

Panneton, F., and P. L’Ecuyer. 2005a. On the xorshift random number generators. ACM Trans-
actions on Modeling and Computer Simulation 15 (4): 346–361.

Panneton, F., and P. L’Ecuyer. 2005b. Resolution-stationary random number generators. Tech-
nical report. GERAD Report G-2006-60.

Panneton, F., P. L’Ecuyer, and M. Matsumoto. 2006. Improved long-period generators based on
linear recurrences modulo 2. ACM Transactions on Mathematical Software 32 (1): 1–16.

Rieke, A., A.-R. Sadeghi, and W. Poguntke. 1998, August. On primitivity tests for polynomials.
In Proceedings of the 1998 IEEE International Symposium on Information Theory. Cambridge,
MA.

Strang, G. 1988. Linear algebra and its applications . third ed. Philadelphia, PA: Saunders.

Tausworthe, R. C. 1965. Random numbers generated by linear recurrence modulo two. Mathe-
matics of Computation 19:201–209.

Tezuka, S. 1995. Uniform random numbers: Theory and practice. Norwell, Mass.: Kluwer Aca-
demic Publishers.

Tezuka, S., and P. L’Ecuyer. 1991. Efficient and portable combined Tausworthe random number
generators. ACM Transactions on Modeling and Computer Simulation 1 (2): 99–112.

Tootill, J. P. R., W. D. Robinson, and D. J. Eagle. 1973. An asymptotically random Tausworthe
sequence. Journal of the ACM 20:469–481.

Wang, D., and A. Compagner. 1993. On the use of reducible polynomials as random number
generators. Mathematics of Computation 60:363–374.


