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Abstract

Starting from coding-theoretic constructions, we build digital nets with good fig-
ures of merit, where the figure of merit takes into account the equidistribution of a
preselected set of low-dimensional projections. This type of figure of merit turns out
to be a better predictor than the t-value for the variance of randomized quasi-Monte
Carlo (RQMC) estimators based on nets, for certain classes of integrals. Our con-
struction method determines the most significant digits of the points by exploiting
the equivalence between the desired equidistribution properties used in our criterion
and the property of a related point set to be an orthogonal array, and using existing
orthogonal array constructions. The least significant digits are then adjusted to im-
prove the figure of merit. Known results on orthogonal arrays provide bounds on the
best possible figure of merit that can be achieved. We present a concrete construction
that belongs to the class of cyclic digital nets and we provide numerical illustrations of
how it can reduce the variance of an RQMC estimator, compared with more standard
constructions.

Résumé

Partant de structures issues de la théorie des codes, nous construisons des réseaux
digitaux dont les mesures de qualité sont excellentes, lorsque ces mesures prennent en
compte l’équidistribution d’un ensemble choisi de projections de l’ensemble de points
sur des sous espaces de petites dimensions. Ce type de mesure de qualité s’avère
un meilleur prédicteur que la t-valeur pour la variance d’estimateurs de type quasi-
Monte Carlo randomisés (RQMC) basés sur les réseaux digitaux, pour certaines classes
d’intégrales. Nos méthodes de construction déterminent d’abord les digits les plus
significatifs des coordonnées des points en exploitant l’équivalence entre les propriétés
d’équidistribution visées par les mesures de qualité et la propriété d’un ensemble de
points légèrement modifié d’être un tableau orthogonal, et en utilisant des méthodes de
construction connues pour les tableaux orthogonaux. Les digits les moins significatifs
sont ensuite ajustés pour améliorer les mesures de qualité. À partir de résultats con-
nus sur les tableaux orthogonaux, on peut obtenir des bornes sur les meilleures valeurs
possibles pour les mesures de qualité. Nous présentons une construction concrète
qui appartient à la classe de réseaux digitaux cycliques. Nous donnons des exemples
numériques pour illustrer la réduction de variance obtenue par un estimateur RQMC
qui utilise ces réseaux, en comparaison avec d’autres réseaux digitaux connus.

Acknowledgments: This research has been supported by NSERC-Canada grant
No. ODGP0110050 and a Canada Research Chair to the second author.
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1 Introduction

This paper deals with the construction of finite sets of points that are more evenly dis-

tributed in the s-dimensional unit hypercube, in some sense, than a typical set of random

points. The two main issues that arise in building such point sets are: (a) to define an

appropriate measure of uniformity, or measure of discrepancy between the uniform dis-

tribution and the empirical distribution of the points; (b) to find construction methods

for point sets having high uniformity, or low discrepancy, with respect to the retained

definition.

A popular class of construction is that of digital nets [16, 18], whose uniformity is

usually measured by figures of merit defined in terms of the equidistribution of the points

in certain families of rectangular boxes that partition the unit hypercube. A widely-used

figure of merit in this context is the t-value [13, 16, 18, 23, 24]. One limitation of this

measure, however, is that when the dimension of the point set is much larger than the

basis of the net, the t-value is necessarily large, and it does not really take into account

the quality of the low-dimensional projections. There are several applications in RQMC

integration where for a given t-value, the uniformity of certain low-dimensional projections

can make an important difference [11, 15, 22].

The aim of this paper is to propose digital net constructions with good t-values and

high-quality low-dimensional projections and to exhibit theoretical bounds on what can

be achieved in this direction. We do this by exploiting the links between digital net

constructions on the one hand, and some established results on orthogonal arrays and

error correcting codes on the other hand. Results from coding theory have already been

exploited extensively to construct digital nets with a small t-value and to compute tables

of the best known t-value for a given dimension, basis, and number of points [4, 17, 18, 24].

Here we use similar techniques to define skeletons for our nets, i.e., to determine the most

significant digits of the points. The construction is then refined by adjusting the least

significant digits to improve our figure of merit. Known results on orthogonal arrays also

provide bounds on the best possible figure of merit that can be achieved.

As a concrete example, we propose an algebraic construction of a family of cyclic digital

nets with well-equidistributed projections. These nets are cyclic in the sense that if we

shift all coordinates of any given s-dimensional point of the net by one position to the left

and put the old first coordinate at the end, the resulting point is always in the net. (This

definition differs from that of [17].) By repeating the blocks of s successive coordinates

ad infinitum, these nets provide point sets that are infinite-dimensional and dimension-

stationary, in the sense of [11, 22]. We present a family of cyclic (t,m, s)-nets that belong

to that class; they have the same parameters t, m, and s as in [4] (which give the best
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t known so far for certain values of s and m), and improved equidistribution properties

for certain projections. We give a numerical illustration showing that this type of point

set can be more accurate than other well-established digital nets (such as Sobol’ nets) for

QMC integration, at least for certain types of integrands.

The rest of the paper is organized as follows. In Section 2, we recall and discuss various

ways of measuring the uniformity of digital nets. In Section 3, we make the links between

the nets that we want to construct and orthogonal arrays, whose additive versions are

the duals of additive error-correcting codes. A specific class of cyclic net constructions is

proposed and analyzed in Section 4. The numerical illustrations are in Section 5.

2 Digital Nets and Their Figures of Merit

QMC and RQMC. We want to construct finite point sets of the form Pn = {u0, . . . ,

un−1} in [0, 1)s with low discrepancy (i.e., high uniformity) in some sense.. These point

sets can be used, for instance, to estimate the integral of some function f over [0, 1)s by

quasi-Monte Carlo (QMC):

µ =

∫

[0,1)s

f(u)du ≈
1

n

n−1
∑

i=0

f(ui). (1)

Randomized QMC (RQMC) also uses the approximation (1), but after randomizing the

point set Pn in a way that each individual point has the uniform distribution over [0, 1)s

even though the point set as a whole keeps its high uniformity [13, 16, 20]. It has the

advantage of providing an unbiased estimator of µ, and also an unbiased variance estimator

if we make several independent randomizations.

Digital nets. The two most widely used classes of constructions for Pn are digital nets

and lattice rules [16, 26]. We focus on the former. For given integers b ≥ 2 (usually a

prime or a prime power) and m ≥ 1, a digital net in base b with n = bm points is defined

as follows. For j = 1, . . . , s, select a w × m generator matrix C(j) whose elements are

either in the finite ring Zb or in the finite field Fb. (If b = pe where p is prime and e > 1,

the operations in Fb and in Zb are not equivalent, so one must make sure that the correct

arithmetic is used, depending on how the C(j) where constructed.) To define the ith point

ui, for i = 0, . . . , bm − 1, we write the digital expansion of i in base b and multiply the

vector of its digits by C(j), modulo b, to obtain the digits or the expansion of ui,j, the jth

coordinate of ui. That is,
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i = ai,0 + ai,1b + · · · + ai,m−1b
m−1,







ui,j,1

ui,j,2
...






= C(j)











ai,0

ai,1
...

ai,m−1











ui,j =

∞
∑

ℓ=1

ui,j,ℓb
−ℓ, ui = (ui,1, . . . , ui,s).

In practice, we take w and m finite, but there is no limit on their size. If the generating

matrices are defined with an infinite number of columns, then we have a digital sequence

of points. If we have an infinite sequence of generating matrices, then the points can be

thought as having infinite dimension. Typically, these infinite sequences are defined via

recurrences, either for the successive columns or the successive generating matrices. Well-

known digital net constructions are those of Sobol’, Faure, Niederreiter, and Niederreiter-

Xing.

Equidistribution. Let (q1, . . . , qs) be a vector of nonnegative integers such that q =

q1+ . . .+qs ≤ m. A (q1, . . . , qs)-equidissection in base b is a partition of the unit hypercube

in bq1+···+qs rectangular boxes aligned with the axes, of equal volume b−q, defined by

dividing the interval [0, 1) along the j-th coordinate into bqj equal parts, for each j. A

point set Pn with n = bm is said to be (q1, . . . , qs)-equidistributed in base b if every cell

defined by the (q1, . . . , qs)-equidissection contains exactly bm−q points from Pn. It is easy

to see that a digital net in base b is (q1, . . . , qs)-equidistributed in base b if and only if the

matrix constructed with the first q1 rows of C(1), the first q2 rows of C(2), . . . , and the

first qs rows of C(s), has full rank q1 + · · · + qs. This is possible only if q1 + · · · + qs ≤ m.

These definitions apply more generally to lower-dimensional projections of Pn. For

I = {i1, . . . , iη} ⊆ {1, . . . , s}, Pn(I) denotes the η-dimensional projection of Pn on the

coordinates determined by I. The set Pn(I) is (qi1, . . . , qiη)-equidistributed in base b if each

box of the (qi1 , . . . , qiη)-equidissection has the same number of points. This is equivalent

to saying that Pn is (q̃1, . . . , q̃s)-equidistributed with q̃j = qih if j = ih ∈ I and q̃j = 0

otherwise. This equidistribution can thus be verified by checking the rank of a matrix as

explained earlier.

The t-value. A digital net in base b with n = bm points is a (t,m, s)-net in base b, also

denoted (t,m, s)b net, if it is (q1, . . . , qs)-equidistributed whenever q1+ · · ·+qs ≤ m−t [16].

The smallest integer t ≥ 0 such that this holds is called the t-value of the net. Ideally, we

want t to be as small as possible. But t = 0 is possible only if s ≤ b + 1 [16]. Otherwise,
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the best possible t-value can be much larger than 0; the best possible t-value as a function

of b and s, together with the best known t-values, can be found in the MinT tables of [24].

For example, in base b = 2, for m = 14 and s = 23, the best known t-value is t = 8.

This guarantees equidistribution only for q1 + · · · + qs ≤ 6, i.e., when considering no more

than 6 output bits. But why not be more demanding for low-dimensional projections?

For instance, an easily achieved requirement would be that all one-dimensional projections

be (m)-equidistributed. We could also ask that other low-dimensional projections have a

smaller t-value; in the previous example where t = 8, for instance, we may ask that several

of the two-dimensional projections have a t-value of 0.

Another way to compromise when the lower bound on the t-value is deemed too high is

to define a figure of merit that takes the worst case over a smaller number of equidissections,

i.e., fewer shapes of boxes. This is the direction we take in what follows.

Looking at square boxes only. We say that Pn or Pn(I) is η-distributed with ℓ digits of

accuracy if it is (ℓ, . . . , ℓ)-equidistributed. This means that if we partition the hypercube

into bηℓ cubic boxes or equal size, each box contains exactly bm−ηℓ points. The largest ℓ

for which this holds is the η-dimensional resolution of Pn(I) in base b, denoted ℓ(I). One

has ℓ(I) ≤ ⌊m/η⌋. The resolution gap of Pn(I) is defined by δ(I) = ⌊m/η⌋ − ℓ(I). This

can be used to define a worst-case criterion based on (cubic) equidistribution [12, 13]:

∆J = max
I∈J

δ(I)

where J is a selected class of sets I ⊆ {1, . . . , s}. The choice of J is arbitrary. If J contains

too many projections, typically there are inevitably some bad ones and the criterion loses

its discriminatory power, because it only cares about the worst projections. A leaner J

can concentrate on the most important projections, if it diminishes the theoretical lower

bound on ∆J . As a practical compromise, Lemieux and L’Ecuyer [13] suggested the form

J = {{0, 1, . . . , i} : i < s1} ∪ {{i1, i2} : 0 = i1 < i2 < s2} ∪ · · ·

∪ {{i1, . . . , id} : 0 = i1 < . . . < id < sd} (2)

for arbitrarily selected values of d, s1, . . . , sd.

3 A Coding Theoretic Link: Orthogonal Arrays

An orthogonal array OA(n, s, q, t) is an array of n rows and s columns, with entries in

{0, 1, . . . , q − 1}, such that in the submatrix formed by any t columns of the array, each of

the qt possibilities for a row appear equally often, namely n/qt times each. We say that

we have an orthogonal array (OA) with n words (or runs), length s (or s factors), q levels,

and strength t. For further details on OAs, see [3, 6, 19].
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We can define a correspondence between an OA and a point set Pn in [0, 1)s simply by

dividing each entry of the array by q and viewing each row of the array as representing an

s-dimensional point. With a slight abuse of language, we also call this point set an OA

(i.e., identify it with the OA). Note that all coordinates of all points in this point set are

multiples of 1/q. If q = bℓ for some positive integers b and ℓ, the OA(n, s, q, t) property

means that every t-dimensional projection of Pn is t-distributed with ℓ digits of accuracy,

in base b.

Let Jη denotes the class of all subsets of exactly η coordinates, i.e., of the form I =

{i1, . . . , iη} ⊆ {1, . . . , s}. If Pn is a point set whose coordinates are all multiples of b−ℓ,

then Pn is an OA(n, s, bℓ, η) if and only if

min
I∈Jη

ℓ(I) ≥ ℓ,

if and only if

∆Jη ≤ ⌊m/η⌋ − ℓ.

If Pn is a digital net with n = bm where b is prime, then the sum (digitwise, modulo b) of

two points of the net is again a point of the net; that is, the corresponding OA is an additive

OA, which is the dual of an additive error-correcting code (s, bℓs−m, η + 1)bℓ [3, 6]. In fact,

each additive error-correcting code gives an additive orthogonal array, and vice-versa.

Our aim here is to construct digital nets Pn in base b, such that Pn truncated to its

first ℓη digits is an OA(bm, s, bℓη , η), simultaneously for η = 1, 2, . . . , d, where each ℓη is as

large as possible. So our task is more than just looking up for existing OAs or codes. A

trivial upper bound for each ℓη is ℓη ≤ ⌊m/η⌋. Known bounds on the largest ℓ for which

there can exist an OA(bm, s, bℓ, η) are generally tighter than this trivial bound. In some

cases, there are known constructions that match the bounds. Note that the closer η is to

s/2, the more η-dimensional projections there are. To verify the OA property, ηℓ digits of

each projection are examined, so a larger ℓ means that more digits are involved (the boxes

have smaller volume) and the corresponding OA is then harder to construct.

Example 1 Take b = 2, s = 65, and m = 12, so n = 212. Table 1 gives upper bounds on

the largest ℓ for which there can be an OA(212, 65, 2ℓ, η), as well as the values of ℓ achieved

by known OA constructions.

The upper bounds from MinT [24] are obtained as follows. For η = 3 there is no

OA(163, 19, 24, 3) which is a consequence of the bound on OAs with index unity [5]. For

η = 4, from the linear programming bound we find that there is no OA(46, 30, 22, 4) [25].

For η = 5, there is no OA(212, 65, 2, 5), because otherwise its truncation would provide an

OA(211, 64, 2, 4), which would violate the sphere-packing bound [3].

The best known additive OAs, on the other hand, can be found from the best known

linear error-correcting codes [65, 65− 12/ℓ, η + 1]2ℓ . For the case η = 1, there is an obvious
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Table 1: Upper bounds on the values of ℓ for which there can exist an OA(212, 65, 2ℓ, η),
and values for which there exist known constructions.

η 1 2 3 4 5 6 7 · · · 12

⌊12/η⌋ 12 6 4 3 2 2 1 · · · 1
MinT upper bound for OA 3 1 0 0 0 · · · 0
Best known additive OA 12 6 3 1 0 0 0 · · · 0

Best known net 12 6 3 1 0 0 0 · · · 0

construction. For η = 2, there is a Hamming code [65, 65 − 2, 3]64. For η = 3, there is an

ovoid code [65, 65 − 4, 4]8. For η = 4, there is a binary linear code [65, 53, 5]2 .

Our strategy for building our nets will be to start with a good (known) OA(n, s, bℓ, η)

for some reasonably large η (and a rather small ℓ, necessarily) and fix the first ℓ digits

of the net; then, in a second stage, we “optimize” the other digits, either by algebraic

construction or via computer search, to obtain a point set whose ℓ(η′)-digit truncation is

an OA(n, s, bℓ(η′), η′) for reasonably large ℓ(η′), for all η′ ≤ η.

4 A Cyclic Net Construction

We call a digital net Pn cyclic if for any point (u0, . . . , us−2, us−1) ∈ Pn, we also have

(u1, . . . , us−1, u0) ∈ Pn. For a cyclic digital net Pn, whenever b is prime and gcd(b, s) = 1,

the net is a direct product of rings (principal ideal domains). These rings turn out to

be linear cyclic codes, one of the favorite classes of codes of coding theorists, and their

structure can be exploited for efficient computer search and algebraic constructions of

good instances of these nets. The following special case illustrates this.

A cyclic net construction. The following construction gives a cyclic digital net Pn in

base b = 2, with n = 24r points in s = 22r + 1 dimensions, for some integer r. The

dimensions of the generating matrices will be w = m = 4r. This net can be used to

approximate integrals in s′ ≤ s dimensions by taking only the first s′ coordinates of each

point. For s′ > s, we can take advantage of the cyclic property to get as many coordinates

as needed. The periodicity of the coordinates will be destroyed by the randomization (see

Section 5).

The generator matrices of the net are defined as follows. Recall that

F2 ⊂ F2r ⊂ F22r ⊂ F24r .

Let ζ ∈ F24r be a (22r + 1)th primitive root of unity, i.e., such that ζ22r+1 = 1. Such a

ζ exists because we know that there is an element ζ ′ of multiplicative order 24r − 1, so
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it suffices to take ζ = (ζ ′)2
2r−1, which has multiplicative order 22r + 1. Choose a basis

1 = α1, . . . , αr of F2r over F2 and choose some elements β ∈ F22r \F2r , and γ ∈ F24r \F22r .

Put

ai = αi, ai+r = βαi, ai+2r = γαi, ai+3r = γβαi,

for i = 1, . . . , r. Then, a1, . . . , ar form a basis of F2r , a1, . . . , a2r are a basis of F22r , and

a1, . . . , a4r are a basis of F24r .

To define the ith row of the matrix C(j), we compute aiζ
j ∈ F24r and represent it as a

vector of 4r elements (or coordinates) over F2.

Proposition 1 For r > 1, the cyclic net just constructed has the following properties:

(i) It is a digital (4r − 4, 4r, 22r + 1)-net in base 2

(ii) It is (4r)-equidistributed for all one-dimensional projections.

(iii) It is (2r, 2r)-equidistributed for all two-dimensional projections.

(iv) It is (r, r, r)-equidistributed for all three-dimensional projections..

(v) It is (1, 1, 1, 1)-equidistributed for all four-dimensional projections.

(vi) It is (1, . . . , 1)-equidistributed whenever I = {j, j + 1, . . . , j + 4r − 1}.

(vii) It is (r, r, r, r)-equidistributed whenever I = {j, j + 1, j + 2, j + 3} or I = {j, k, l,

m(j, k, l)}, for any pairwise different j, k, l and some 2r−2 different m(j, k, l). Thus,

the proportion of four-dimensional projections that are (r, r, r, r)-equidistributed is

approximately 1/(1 − 1/n2).

Proof. That the net is (4r)-equidistributed for all one-dimensional projections is equiva-

lent to the fact that the matrix C(j) has full rank. This is obvious, as the αi, βαi, γαi, γβαi

are a basis of F24r over F2 and ζj 6= 0.

Now we want to show that the net is (2r, 2r)-equidistributed for all two-dimensional

projections. We have to show that the first 2r rows of C(j) and the first 2r rows of C(j′)

have full rank. The first 2r rows of C(j) are of the form aiζ
j and the ai, for 1 ≤ i ≤ 2r, are

a basis of F22r . So we have to show that ζj and ζj′ are linearly independent over F22r . Let

W = {ζj |0 ≤ j < 22r + 1} ⊂ F4r be the group of elements of multiplicative order 22r + 1.

As gcd(22r + 1, 22r − 1) = 1, we have that W ∩F22r = {1}. So two different ζj, ζj′ ∈ W are

linearly independent over F22r .

For the (r, r, r)-equidistribution, with the same argument, we have to show the linear

independence of different powers of ζ over F2r . It is known, that the (22r + 1)-th roots of

unity, i.e., W is an ovoid in PG(3, 2r), where PG(k, q) denotes the k-dimensional projective

geometry over the finite field Fq [3, 7] (see the proof of Theorem 17 of [2]). The defining

property of the ovoid implies that the ζj ∈ W are a F2r -linear OA of strength 3. This



8 G–2007–19 Les Cahiers du GERAD

means that for any distinct indexes {j, j′, j′′}, ζj, ζj′ , ζj′′ are linearly independent over F2r .

Hence the net is (r, r, r)-equidistributed for all three-dimensional projections.

For the (r, r, r, r)-equidistribution we consider again the ζj as points in PG(3, 2r) (not

to be confused with the points of Pn). Consider four points ζj, ζk, ζ l, ζm(j,k,l). Since W is

an ovoid and three independent points define a plane in PG(3, 2r), the points ζm(j,k,l) that

are not independent from {ζj, ζk, ζ l} are those points of the ovoid that lie in the plane

generated by {ζj, ζk, ζ l}. The claimed property follows from the fact that every plane that

contains more than one point of the ovoid in PG(3, 2r) contains exactly 2r + 1 points of

the ovoid (Theorem 16.1.6.ii in [7]).

That the net is (r, r, r, r)-equidistributed for I = {j, j+1, j+2, j+3} follows from the fact

that {1, ζ, ζ2, ζ3} are linearly independent over F2r , because F24r is the smallest field that

contains ζ. That the net is (1, . . . , 1)-equidistributed whenever I = {j, j +1, . . . , j +4r−1}

follows from the fact that {1, ζ, . . . , ζ4r−1} are linearly independent over F2.

The net is (1, 1, 1, 1)-equidistributed for all four-dimensional projections. This follows

from the fact that the binary code we obtain by restriction to the first digit has strength

4; see [4] for the proof.

For the (t,m, s)-net property (i), we have to show that the net is (l1, l2, l3, l4)-equidis-

tributed whenever l1 + l2 + l3 + l4 = 4. The only case that is not covered by what we

already have shown is the (3, 1)-equidistribution for all two dimensional projections, for

r = 2. But for r = 2 we are exactly in the same situation as in [4], where the corresponding

(t,m, s)-net property is proved.

5 Numerical Illustrations

We report (a subset of) the results of numerical experiments where we try our cyclic nets

for estimating some multivariate integrals by RQMC. We compare their performance with

that of Sobol’ nets when both are randomized by a random binary digital shift [13, 21].

In each case, we estimate the variance per run, defined as n times the variance of the

average over the n points, and compare it with the empirical variance of standard Monte

Carlo (MC). The variance reduction factor (VRF) reported is the ratio of the MC variance

over the RQMC variance per run. The digital nets are randomized by a random digital

shift (DS), which consists in generating a single point u = (u1, . . . , us) uniformly over

[0, 1)s, and performing a digit-wise addition modulo b of uj with the jth coordinate of each

point of Pn, for each j. For b = 2, the digit-wise addition becomes a bitwise exclusive-

or. This randomization preserves the equidistribution for every equidissection in base 2;

in particular, it preserves the (t,m, s)-net properties. The primitive polynomials and the

direction numbers for the Sobol’ sequence were taken from [14].
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Example 2 This example is from [9] and [22]. We consider the function f defined by

f(u1, . . . , us) =

√

2

t(t − 1)

t−1
∑

j=0

j−1
∑

i=0

g(ui)g(uj),

where g(x) = 27.20917094x3 −36.19250850x2 +8.983337562x+0.7702079855 and s = 120.

We take n from 214 to 216 and we use RQMC with 100 independent digital random shifts

(DS) to estimate the variance for each method. Table 2 gives the VRF for different digital

nets. The F2w nets were proposed by Panneton and L’Ecuyer [22]; these authors tried 12

instances of these nets on this example and obtained VRFs ranging from 10 to 4 × 105.

With the (0, 2, 126)125-net, we obtain a competitive VRF. (Note that this net cannot be

written as a net in base 2.) These (0, 2, q + 1)q-nets are essentially the duals of Hamming

codes. They provide an optimal resolution for the projections in one and two dimensions,

which seems to be what we need for the function f considered here. With the net from

Proposition 1, with r = 4, we obtain a significantly larger VRF.

Example 3 This example is from [8] and [10]. We consider a Bermudan-Asian option on

c assets. For 1 ≤ i ≤ c, the value of asset i evolves as a geometric Brownian motion (GMB)

{Si(t), t ≥ 0} with drift parameter µi and volatility parameter σi. That is,

Si(t) = Si(0) exp [(µi − σi2/2)t + σiWi(t)]

where Wi is a standard Brownian motion. The Wi’s are also correlated, with Cov [Wi(t+

δ) − Wi(t), Wj(t + δ) − Wj(t)] = ρi,jδ for all δ > 0. The option has discounted payoff

e−rT max[S̄(A) − K, 0] for some constants K > 0 and T > 0, where

S̄(A) =
1

cd

c
∑

i=1

d
∑

j=1

Si(tj) (3)

Table 2: Variance reduction factors of RQMC compared with MC, with various digital
nets.

net n VRF

Sobol 214 2
Sobol 216 2
F2w -nets 214 − 216 10 to 4 × 105

(0, 2, 129)128-net 214 330
(0, 2, 126)125-net 56 8.3 × 104

Proposition 1 216 1.8 × 106
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is the arithmetic average at the fixed observation times tj = jT/d for j = 1, . . . , d. The

vector Y = (W1(t1), . . . ,Wc(t1),W1(t2), . . . ,Wc(t2), . . . ,W1(td), . . . ,Wc(td))
t, has a mul-

tivariate normal distribution with mean zero and covariance matrix Σ whose element

((i − 1)c + j), (i′ − 1)c + j′) is ρi,i′σiσi′ |tj′ − tj−1|) for j′ ≥ j.

To generate Y, we can decompose Σ as Σ = CCt for some matrix C, generate a vector

Z = (Z1, . . . , Zs) of independent N(0, 1) (standard normal) random variates by inversion

from s independent U(0, 1) random variates U1, . . . , Us, i.e., Zj = Φ−1(Uj), and return

Y = CZ. There are several possibilities for the choice of factorization Σ = CCt. For

instance, the Cholesky factorization, takes C lower triangular, whereas principal component

analysis (PCA) selects C so that each Zj accounts for the maximum amount of variance

conditional on Z1, . . . , Zj−1. Its combination with QMC was suggested in [1].

We take the same parameters as in Example 2 of [10]: c = 10, d = 25 (so s = 250),

ρi,j = 0.4 for all i 6= j, T = 1, σi = 0.1 + 0.4(i − 1)/9 for all i, r = 0.04, S(0) = 100, and

K = 100. We thus have a 250-dimensional integral. Simulations with a huge number of

runs told us that µ ≈ 5.818 and the MC variance is σ2 ≈ 72.3.

Recall that the Sobol’ nets are constructed to behave well for the projections over

the first successive coordinates, but not for arbitrary projections over coordinates with

a large index, whereas the net of Proposition 1 has been built precisely to have good

uniformity for projections over a small number of arbitrary coordinates. With the Cholesky

decomposition, the variance is spread over pretty much all coordinates, whereas PCA

pushes most of the variance in the first coordinates. Thus, we expect the Sobol’ nets to

work well when PCA is used and the new nets to be more competitive if one is forced to

use the Cholesky decomposition. The simulation results reported in Table 3 agree with

these expectations. We also tried with different values of r, from 0.03 to 0.07, and the

VRFs were similar. The VRFs are much larger with PCA than with Cholesky, due to the

fact that PCA reduces significantly the effective dimension in the truncation sense [8, 13].

But PCA is not always practical for real-life problems; for instance when the dimension is

very large. Then, one may have to use more traditional simulation schemes that do not

reduce the effective dimension in the truncation sense. The new nets can be useful in this

type of situation.

Table 3: Empirical variance reduction factors of RQMC with respect to MC for Example 3
(in 250 Dimensions), for a Sobol’ net and for the net of Proposition 1, with n = 216 points.

net Cholesky PCA

Sobol’ 16 6144

Proposition 1 50 2108
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[24] W. Ch. Schmid and R. Schürer. MinT, the database for optimal (t,m, s)-net param-

eters. http://mint.sbg.ac.at, 2005.
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