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Abstract

We investigate a first column generation (CG) formulation for the design of failure
independent path-protecting (FIPP) p-cycle survivable transport network. Previous
work has proposed different formulations and heuristics for FIPP p-cycles which ex-
tend span-protecting p-cycles by adding the property of providing end-to-end failure
independent path switching against either span or node failures. We develop a CG
model that additionally allows the exploration of FIPP p-cycles without imposing mu-
tual disjointness among working routes protected by the same cycle. The proposed CG
model decomposes the FIPP p-cycle design problem into the master problem which
takes care of the demand constraints, and the pricing problem which includes the con-
straints associated with the properties and the characteristics of a FIPP p-cycle. The
key feature of a CG model lies in a generation of cycles motivated by the value of
the reduced cost of the pricing problem, the key global indicator that is the driving
element of the simplex algorithm. Results show a clear advantage of the CG model
over the previous models, in particular in exploiting cycles that are not restricted to
those satisfying a mutual disjointness condition on the working paths. Although it is
not always possible to guarantee that the solutions obtained with the CG model are
optimal, it can be shown that they are very close to the optimal ones.

Key Words: Path protecting p-cycles, column generation, path protection, pre-
connection, failure-independent protection.



Résumé

Nous étudions une première formulation de génération de colonnes, notée (CG),
pour la conception de réseaux de transport fiables avec un schéma de protection de
type FIPP, c’est-à-dire avec des p-cycles en guise de chemins de protection dans le cas
de pannes indépendantes. Des travaux antérieurs ont proposé différentes formulations
et heuristiques pour la définition de p-cycles de type FIPP, en étendant des modèles
et algorithmes proposés pour la protection de liens à partir de p-cycles, en ajoutant
la propriété de fournir une protection de bout en bout contre la panne d’un nœud
ou d’un arc. Nous développons le modèle CG pour résoudre ce problème en ajoutant
l’exploration de FIPP p-cycles qui n’imposent pas de contraintes d’exclusion mutuelle
sur les routes d’opération protégées par un même p-cycle. Le modèle CG proposé
décompose le problème de conception de p-cycles FIPP en un problème mâıtre qui se
préoccupe des contraintes de demande, et un problème auxiliaire qui inclut les con-
traintes associées avec les propriétés et les caractérisques d’un p-cycle FIPP. Le point
central de ce modèle tient dans la génération de cycles motivée par le coût réduit du
problème auxiliaire, l’indicateur global clé de l’algorithme du simplex. Les résultats
montrent un avantage clair du modèle CG sur les modèles précédents, en particulier
avec l’exploitation des p-cycles à ceux qui satisfont une condition d’exclusion mutuelle
pour les chemins d’opération protégés par un cycle donné. Bien qu’il ne soit pas tou-
jours possible de garantir que les solutions obtenues à l’aide du modèle CG soient
optimales (temps de calcul excessif), nous montrons que les solutions obtenues sont
très proches des solutions optimales.

Mots clés : p-cycles, chemin de protection, génération de colonnes, protection avec
pannes indépendantes.
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1 Introduction

Failure-independent path-protecting (FIPP) p-cycles is a recently proposed architecture
for survivable networking that extends the concept of span-protecting p-cycles [1] to allow
for end-to-end path protection. The most important property inherited by FIPP p-cycles
is that of complete pre-connection of protection paths. This allows FIPP p-cycles to retain
the ’ring like speed’ of span protecting p-cycles while also gaining the property of failure
independence of the protection reaction for each path. In other words, when a failure occurs
on any span or node, the same end-node pre-planned protection switching response takes
effect. A single pre-determined and fully pre-cross-connected protection path is enabled
regardless of where the failure has occurred on the working path.

The fact that the protection path is completely known and completely pre-connected
before failure is beneficial from the network operator point of view because it means the
backup path can be tested and in a known working state before failure. This is advanta-
geous compared to architectures such as Shared Backup Path Protection (SBPP) [2] where
the protection route is known in advance, but no actual backup path is pre-connected and
ready to use: it must be cross-connected on the fly immediately after failure. Pre-cross-
connection means that adequate bit error rates (BER) can be assured when the protection
path is substituted in real-time for the failed working signal. This property becomes even
more important when considering transparent or translucent optical networks where nearly
20 [3] impairments need to be overcome before an 10Gb/s (or above) DWDM optical link
can be established.

The FIPP p-cycle concept uses cyclical protection structures that can be shared by a
set of working paths for protection as long as the working paths in this set are mutually
disjoint or, if they are not, their protection paths are mutually disjoint. If these criteria
are met, there will be no contention for spare capacity after a failure. Furthermore, the
end-nodes of the working paths must also be crossed by the cycle assigned to protect them.

The original work on FIPP p-cycles, including a spare capacity placement (SCP) ILP
model, are documented in [4]. Further work, as well as the disjoint route set (DRS) method,
is covered in [5]. As mentioned in these works, and in interaction among the collaborating
authors on this paper, a challenge for ongoing research on the FIPP p-cycle concept was
the difficulty of obtaining strictly optimal solutions for FIPP p-cycle network designs.

Access to optimal solutions may not be essential in practice, but it is important to
advance the basic networking science in this area. We need to know, for example, the
theoretical limits of how efficient FIPP p-cycle network designs can be, to understand
how this architecture really relates to SBPP, say, and to be able to approach the design of
good heuristics by observing the actual properties of optimal solutions for the architecture.
With this in mind, a CG-based approach appears to be a promising strategy to improve
the solution quality of FIPP p-cycle network designs in a reasonable amount of run time.
This paper accordingly proposes a CG-based method for FIPP p-cycle network design
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and reports comparative performance results of the CG method and previous ILP-based
solution models.

Note that the emphasis here is not on achieving a speed-up on the run times as might
be important in a production-use model. Rather, the goal is to keep solution times about
the same as were already being allowed or experienced with the initial approaches in [4] [5],
but to achieve known-optimal terminations, or solutions with a much reduced gap against
optimality.

2 Background and Literature

The logical operations of FIPP p-cycles are explained as follows by considering the different
protection relationships of a given FIPP p-cycle to working routes.

Straddling routes. A route in a pure straddling relationship to its protecting FIPP
p-cycle is such that it has no span in common with the p-cycle as the example shown
in Figure 1(a) where the working routes and cycles are represented by dashed and solid
connected lines, respectively. In this case, two distinct protection paths are available on
the cycle, and thus up to two working paths on this route can be protected in case of a
failure. This is a direct extension of the straddler concept from span protecting p-cycles
which is one of the strongest traits contributing to their efficiency. In case of a failure, only
the end-nodes of the route perform switching actions and any criteria can be adopted to
assign working paths to unique protection paths. The pre-assigned direction is stored at
the end-nodes where the switching action takes place as soon as a working path failure is
detected. Note that the pre-defined switching action does not depend on failure type or
location.
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Figure 1: Different relationships between working routes and FIPP p-cycles: (a) fully
straddling; (b) fully on-cycle.



Les Cahiers du GERAD G–2007–11 3

On-cycle routes. The pure on-cycle relationship arises when all spans of the working
route are crossed by the cycle protecting it as shown in Figure 1(b). This is the direct
extension of the on-cycle concept from span protecting p-cycles. The protection path for
such a relationship is unambiguously determined as the complementary part defined by
the spans of the cycle that are not shared by the working route.

Partially on-cycle routes. The partially on-cycle relationship, not faced by basic p-
cycles, arises from the extension to path protection. These occur when at least one but
not all spans in the working route are shared by the cycle assigned to protect it. There are
two operationally different types of this relationship:

Type 1. The type 1 partially on-cycle relationship occurs when the working path and the
protection path provided by the cycle are disjoint. This is illustrated by Figure 2(a) and
(b) where the dotted arrowed line represents the available protection path. Operationally,
this is the same as the pure on-cycle relationship where the assigned protection path is
enabled regardless of where the failure affects the working path.
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Figure 2: Examples of partially on-cycle routes.

Type 2. The type 2 partially on-cycle relationship (also known as the z-case) occurs when,
for a given working route, we cannot find a protection path on the p-cycle such that it does
not share at least one span with its respective working route, as illustrated by the example
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in Figure 2(c). In this case, two protection paths must be considered for protection and
the switching logic is performed as follows. In the example, let us set the path ℓ1 between
nodes A and M as the default pre-assigned protection path.

If segments x (A-B) or y (B-F-L) are affected by a failure, the protection path will
survive and the behavior is the same as before. However, a failure on segment z (L-M)
implies that the protection path defined by the default direction also fails and the affected
working path must now be protected by path ℓ2. Fortunately, this can be realized locally
at the end-nodes simply by determining which side of the cycle was affected by the failure
along with the working path. In case of coincidence of failure states on both working path
and its pre-assigned protecting path, the surviving protection path is selected for recovery.

Non-disjoint Working Route Sets

Prior work in [4] and [5] has focused on the idea of mutual disjointness between working
routes protected by the same cycle. Only disjoint sets of working routes were allowed to
share cycles for protection against failure. This was done to reduce the complexity of
the problem and efficient results were obtained while under this assumption. However,
as mentioned before, it is possible to protect non-disjoint routes using a single cycle as
well, as long as the protection paths provided by the cycle are mutually disjoint from each
other. This situation is illustrated in Figure 3(a) using the same network context as the
previous examples. In the referred figure, there are two working routes, A-F-D-G-C and
E-I-F-G-M, illustrated by a dotted and dashed line respectively. Although both routes go
through span F-G, they can be protected by the same cycle because their protection paths
(A-B-C and E-J-L-M) are mutually disjoint. Figure 3(b) shows an example in which two
non-disjoint working routes cannot share a cycle because their protection paths cannot be
disjoint. Note that the examples in Figure 3 only show an instance where non-disjoint
straddling routes are protected by the same cycle. The idea of non-disjointness applies
other route-cycle relationships as well, as long as the protection paths of the non-disjoint
routes are disjoint from one another.
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Figure 3: Protection of non-disjoint working paths by FIPP p-cycles.
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3 FIPP Mathematical Models

3.1 FIPP Models

Three different FIPP models are introduced in the following sections: FIPP-SCP-IH, FIPP-
SCP-DRS [5] and a new one, called FIPP-CG that makes use of column generation. All
correspond to a sequential optimization, i.e., working paths to be protected are defined in
such a way that they are all routed over the lowest cost route between the end-nodes of
each demand relation. While both FIPP-SCP models (Sections 4 and 5) assume that the
set of working paths protected by a given FIPP p-cycle must be pairwise disjoint, this is no
longer the case with the FIPP-CG model. The FIPP-SCP-DRS and FIPP-SCP-IH models
allow for type 2 partially on-cycle relationships in the solutions while the FIPP-CG model
does not, as it would entail too many variables to do so. Before going through the details
of the various models, we first present a quick overview of a column generation modeling,
as well as the common notations of the three models.

3.2 Motivation and Basic Theory for Column Generation

Column generation techniques offer solution methods for linear programs with a very large
number of variables (e.g., exponential) where constraints can be expressed implicitly. They
rely on a decomposition of the initial linear program into the master problem and the
pricing problem. The master problem corresponds to a linear program associated with
a restricted constraint matrix, with respect to the number of variables (or columns) of
the initial constraint matrix. The pricing problem is defined by the optimization of the
so-called reduced cost (refer to [6] if not familiar with linear programing) subject to the
implicit constraints expressed by the coefficients of the constraint matrix of the master
problem.

The column generation solution scheme is similar to that of the simplex algorithm: it
is an iterative process where, at each step, we attempt to add one or more columns to
the constraint matrix of the master problem in order to improve the value of its objective
function. The search for such columns is made through the solution of the pricing problem.
If its outcome corresponds to one or more columns with a negative reduced cost (assuming
we deal with minimization), then it entails an improvement of the value of the master
objective function; otherwise, if no solution of the pricing problem can be identified with
a negative cost, we then conclude that the current solution is indeed optimal.

Column generation can be combined with branch-and-bound techniques for solving inte-
ger linear programs with a large number of variables, see [7] for a nice overview. Branching
rules have to be devised properly in order to avoid generating a huge number of subprob-
lems in the search tree associated with the branch-and-bound, either by branching on the
variables of the master problem using cuts, or by branching on the variables of the pricing
problem using classical branching schemes or cuts.
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3.3 Notations

Consider a network represented by an undirected graph G = (V, S) where V is the set
of nodes and S is the set of spans, indexed by s. Let D be the set of demand relations,
indexed by r, where, for each demand relation, dr denotes the number of unit demand in
the bundle and, e1

r and e2
r represent its two endpoints. Finally, let cs be the cost of span s.

4 The FIPP-SCP Iterative Heuristic (IH) Method

The FIPP-SCP Iterative Heuristic (IH) is included for further comparison with the new
column generation approach. This method has not yet been published and is currently
undergoing further investigation at TRLabs. It works by solving a subproblem, called
FIPP-SCP IH Sub-problem, for every cycle in the network in order to determine the most
efficient working route set that can be protected by that cycle. Once this is done, the
most efficient cycle (i.e., with the lowest spare capacity cost per protected working route)
is recorded as being part of the solution and the working route set protected by this cycle
is removed form the demand set. The FIPP-SCP IH subproblem is re-solved for every
cycle in the network using the new demand set. This process continues until there are no
demands left to protect. Figure 4 summarizes the algorithm.

procedure FIPP SCP IH;
1 while there are unprotected demands do

2 for every cycle do

3 Solve max credit sub-problem
(FIPP-SCP-IH Sub-Problem) using
the remaining unprotected demands;

4 end-for;

5 Choose the cycle and route set combination
that resulted in the highest score;

6 Remove the demands protected by this cycle
from the remaining unprotected demands;

7 Record the cycle in the solution;
8 end-while;

end FIPP SCP IH;

Figure 4: The FIPP-SCP IH algorithm.

The following notation is introduced in order to present the FIPP-SCP IH subproblem:
sets

D+ = set of all non-zero demand relations, indexed by r.
P = set of eligible cycles, indexed by p.
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parameters

cp = cost of cycle p.

xp
r =







2, if demand r’s end-nodes are on cycle p and

its working route straddles p;

1, if demand r’s end-nodes are on cycle p and

its working route uses at least one span of p;

0, otherwise.

δs
r =

{

0, if demand r crosses span s;

1, otherwise.

variables

np
r =

{

1, if demand r is protected by cycle p;

0, otherwise.

The FIPP-SCP IH sub-problem is defined as follows:
for a cycle p ∈ P ,

max
∑

r∈D+

xp
rn

p
r/c

p

subject to:
∑

r∈D+

δs
rn

p
r ≤ 1 s ∈ S. (1)

np
r ∈ {0, 1} r ∈ D+, p ∈ P (2)

The objective function maximizes the number of demand units that the cycle protects
while taking the cost of the cycle into consideration. This value represents the efficiency
of the cycle. The resultant objective value is the credit score used to compare the cycles
in a single iteration. The cycle with the highest credit score is the cycle that gets added
to the solution. Constraints (1) ensure that the working routes sharing the same cycle for
protection are mutually disjoint.

5 The FIPP-SCP DRS Model

Briefly, the FIPP-SCP DRS method introduced in [5] works by first generating a large
number of disjoint route sets (DRSs) of maximum specified size. A parameter controls the
smallest number of DRSs that a demand is allowed to appear in. DRSs are generated by
individually considering working routes and checking if they are disjoint with the working
routes already in the DRS or not. If the route being considered is disjoint from the routes
in the DRS, then the route is added to the DRS and is left out of the DRS otherwise.
This process repeats until a given DRS size is reached. Once all the DRSs are generated,
a given number of lowest cost eligible cycles are enumerated for every DRS. The eligible
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route set as well as the eligible cycle set are both given as input to the solver, which uses
the FIPP-SCP DRS model to determine the lowest cost combination of DRSs and cycles
that satisfy the specified demand.

The FIPP-SCP DRS ILP model uses the following additional notation:
sets

A = set of eligible DRSs, indexed by a.
Pa = set of eligible cycles for DRS a, indexed by p.

parameters

xp
r =







2, if demand r’s end-nodes are on cycle p and

its working route straddles p;

1, if demand r’s end-nodes are on cycle p and

its working route uses at least one span of p;

0, otherwise.

δp
s =

{

1, if cycle p crosses span s;

0, otherwise.

variables

np
a = number of unit-capacity copies of cycle p used as a FIPP p-cycle to protect DRS

a.

The ILP formulation of the DRS-based FIPP p-cycle network design model (FIPP-SCP
DRS) is as follows ( [5]):

min
∑

s∈S

∑

p∈P

∑

a∈A

csδ
p
snp

a

subject to:
∑

a∈A

∑

p∈Pa

xp
rn

p
a ≥ dr r ∈ D (3)

np
a ∈ Z

+ a ∈ A, p ∈ P (4)

The objective function minimizes the total cost of placing spare capacity in the network.
Constraints (3) ensure that, for each demand relation r, a sufficient number of FIPP p-
cycles are assigned to protect all selected DRSs of which the working route of demand r is
a member.

6 A Column Generation Model

We now present a column generation model, called CG model, where, although it is a
formulation with an exponential number of variables, may lead to a more amenable ILP
formulation for efficient solution. Each variable will correspond to a so-called cycle config-
uration.
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A cycle configuration C is associated with a cycle pC , and is represented by a vector
aC = (aC

r )r∈D where

aC
r = number of protection units provided by cycle pC in configuration C for demand

relation r ∈ D, where aC
r ∈ {0, 1, ..., dr}.

The cost of a configuration is defined by costC =
∑

s∈pC

cs.

In order to reduce the number of configurations, we introduce the concept of maximal
configurations, i.e., a p-cycle configuration C is maximal if there does not exist another
p-cycle configuration C ′ such that aC′

≥ aC . Using maximal configurations, we may over-
satisfy the demand only when doing so does not require any additional cost over the cost
of satisfying the demand exactly.

A column generation always corresponds to a decomposition of the set of constraints
between the master problem and the pricing problem. Here, the master problem will
include the constraints that link the configurations, i.e., the demand constraints. The
pricing problem will contain the constraints that are associated to a configuration, they
will be detailed below in Paragraph 6.2.

6.1 Master Problem

The variables of the master problem, denoted by zC , are decision variables on the config-
urations and are defined as follows. Let C be the set of all configurations. For C ∈ C,
zC ∈ Z

+ is the number of copies of configuration C used for protection.

The master problem is formulated as follows:

min
∑

C∈C

costCzC

subject to:
∑

C∈C

aC
r zC ≥ dr r ∈ D (5)

zC ∈ Z
+ C ∈ C. (6)

Constraints (5) are the demand constraints where aC
r zC gives the demand units of

demand r protected by pC .

6.2 Pricing Problem

By definition, the pricing problem corresponds to the optimization problem of minimizing
the reduced cost (with respect to linear programming definition) subject to the constraints
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that must be satisfied by a given configuration, which are: definition of a cycle, identifica-
tion of the demand that can be protected by the cycle, prohibition for a span to be used
as a working and a protection span at the same time for the same demand.

Additional notation for the mathematical formulation of the pricing problem is as fol-
lows:

sets

ω(v) =
{

{v, j} : {v, j} ∈ S
}

: set of all spans adjacent to node v ∈ V .

S(V ′) =
{

{i, j} : i, j ∈ V ′
}

: set of all spans whose end-nodes belong to V ′, V ′ ⊆ V .

δ(V ′) =
{

{i, j} : i ∈ V ′, j ∈ V \V ′
}

: set of all spans whose one end-node belongs to V ′

and the other does not, for V ′ ⊆ V .
constants

ur = dual prices
cs = cost of span s
dr = destination of demand r

ρrr′ =







1, if working paths of demands r, r′

are non-disjoint;

0, otherwise.

δr
s =

{

1, if working path of demand r uses span s;

0, otherwise.

variables

xs =

{

1, if the cycle uses span s;

0, otherwise.

xr
s =







1, if any protection path for demand r

uses span s;

0, otherwise.

The mathematical formulation of the pricing problem as follows. Let us first give the
expression of its objective function corresponding to the reduced cost of a column of the
master problem, i.e., the cost of the cycle less the prices of the protected demands.

costC = costC −
∑

r∈D

aC
r ur =

costC

︷ ︸︸ ︷
∑

s∈S

xscs −
∑

r∈D

aC
r

︷ ︸︸ ︷
∑

s∈ω(e1
r)

xr
s ur.

Let us now express the set of constraints of the pricing problem.
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mincostC

subject to:

∑

s∈ω(v)

xs ≤ 2 v ∈ V (7)

∑

s′∈ω(v):s′ 6=s

xs′ ≥ xs v ∈ V, s ∈ ω(v) (8)

∑

s∈δ(V ′)

xs ≥ xs′ + xs′′ − 1 V ′ ⊆ V,

s′ ∈ S(V ′), s′′ /∈ S(V ′) (9)

xs ≥ xr
s s ∈ S, r ∈ D (10)

∑

s∈ω(e1
r)

xr
s =

∑

s∈ω(e2
r)

xr
s r ∈ D (11)

∑

s∈ω(v)

xr
s ≤ 2 r ∈ D, v ∈ V (12)

∑

s′∈ω(v)|s′ 6=s

xr
s′ ≥ xr

s r ∈ D, v ∈ V \{e1
r , e

2
r},

s ∈ ω(v) (13)

2 − xr
s − xr′

s ≥ ρrr′ s ∈ S, (r, r′) ∈ D2 : r 6= r′ (14)

xr
s ≤ 1 − δr

s e ∈ S, r ∈ D (15)

xr
s ∈ {0, 1} s ∈ S, r ∈ D (16)

xs ∈ {0, 1} s ∈ S (17)

The first three sets of constraints take care of the construction of the cycle. Constraints
(7) and (8) ensure flow circulation on the cycle variables, i.e., they address the cycle
construction by stating that, at all nodes, the number of incoming/outgoing flows must
be either 0 (p-cycle does not go through node v) or 2 (p-cycle contains node v and two
adjacent spans such that xs = 1, s ∈ ω(v)). Constraints (9) prevent subcycles, i.e., p-cycle
made of more than one cycle. Those constraints are a variant of the classical subcycle
elimination constraints of the Traveling Salesman Problem (TSP), with the difference that
a p-cycle does not necessarily include all nodes while a TSP tour must include all nodes
exactly once. A drawback of this formulation is that there is an exponential number of
subcycle elimination constraints. Notice, however, that the pricing problem DOES NOT
need to be solved exactly at each iteration, and if one is able to design an efficient heuristic
to solve it, we may need to solve exactly the pricing problem only once to confirm that the
heuristic has indeed found the optimal solution.
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The following sets of constraints will define the protection path. Constraints (10) es-
tablish the relationship between the set of variables associated with the cycle, and those
associated with the protection path. The next three sets of constraints correspond to the
definition of a protection path. These constraints address the flow between the two end
nodes of a demand relation and ensure that the amount of flow is equal to the protection
amount (it can be only a fraction of the number of unit demand of the demand relation)
provided by the cycle under construction. Constraints (11) state that the flow exchanged
between the end-nodes must be equal, i.e., a protection path must end at both end-nodes
of a demand. At the end-node, constraints (12) allow at most two protection paths for
each demand relation. At intermediate nodes, constraints (12) and (13) together ensure
flow conservation, i.e., the number of incoming/outgoing flows must be either 0 (protection
path of demand relation r does not use node v) or 2 (protection path contains node v and
two adjacent spans such that xr

s = 1, s ∈ ω(v)).

The last two sets of constraints take care of the exclusive use of a given span in either
working or protection path. Constraints (14) state that non-disjointly routed demands
cannot share a span for their protection. Constraints (15) prevents from using a given
span in both working and protection paths of each demand relation.

6.3 Solving the CG Model

In order to solve the CG model, we propose to use a branch-and-bound method assuming
the linear programing relaxation of the master problem is solved using column generation
techniques. Let us first address the issue of solving the linear programming relaxation of
the master problem, i.e., the problem described in 6.1 with constraints (6) relaxed to

zC ∈ [0, 1] C ∈ C.

The first difficulty lies in the solution of the pricing problem. As we mentioned before, that
the pricing problem does not need to be solved exactly at each iteration of the column gen-
eration process, as long as we are able to find a configuration with a negative reduced cost
in order to be able to iterate. The pricing problem can be described as multi-commodity
flow problem with side constraints corresponding to the definition of a cycle (that is usu-
ally not a Hamiltonian cycle) on which the flows circulate. Constraints (9) that prevent
from considering sub-cycles are very costly as there are an exponential number of them. In
order to overcome this difficulty, we introduce them only as needed following the principle
of the ”lazy constraints” feature of CPLEXtm: it means that the pricing problem is solved
iteratively, starting with no (or a very small number of) sub-cycle constraints, and adding
some sub-cycle constraints that are violated by the final solution if any. In order to save
computing time, we also stop the solution of the pricing problem as soon as we obtain a
solution (i.e., a configuration) with a negative reduced cost. Therefore, in the iterative
process with the lazy constraint like feature, the final solution is the first found solution
with a negative reduced cost. In practice, we need to introduce a very small number of
sub-cycle constraints, and therefore the computing cost of iterative process which leads
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to possibly several solutions of the pricing problem is counter balanced by the smaller
sizes of the pricing problems that need to be solved. Indeed, in practice, we very rarely
needed to solve the pricing problem more than twice. Note that we never eliminate any
sub-cycle constraints that have been introduced. Consequently their number increases as
we go further down in the branch-and-bound search tree. Although, we could eliminate
some of them, it offers the advantages that in practice, most of the time, at each iteration,
the solution of the first pricing problem is very often feasible, i.e., satisfies all sub-cycle
constraints even if only a small number of them have been explicitly introduced in the
pricing problem.

It was observed that the number of columns generated for exactly solving the linear
programming relaxation of the master problem was rather limited (see the details in Sec-
tion 7). Because of this we did not develop any branch-and-bound to get integer solutions
for the master problem, but instead we used CPLEXtm to solve the ILP restricted master
problem with the set of columns generated for the exact solution of its linear programming
solution. Although we cannot claim that we have obtained the optimal solution of the
CG model, the obtained solutions are already quite satisfactory in comparison with those
obtained with previous models, as it is shown in Section 7.

7 Computational Results

The solutions for the FIPP CG, FIPP SCP IH and FIPP SCP DRS design models were
obtained by implementing the prior model in C++ and the latter two models in AMPL
9.0. The FIPP SCP IH and FIPP SCP DRS models were solved using CPLEX 9.0 MIP
solver and the results obtained are based on complete terminations with a MIPGAP of
0.01. The FIPP CG model was solved using CPLEX 10.0 MIP solver. The models were
run using the COST239 European network [8] containing 11 nodes and 26 spans as well as
a 15 node family of networks with spans varying from 16 to 30 [9]. The number of demand
relations is 55 for the COST239 instance, and 105 for all instances of the 15 node family.

For the FIPP SCP DRS solutions provided in this paper, 30 DRSs were generated per
demand in the network. This means that every demand appeared in at least 30 different
DRSs. For every DRS, 3 lowest cost cycles eligible to protect that DRS were enumerated
and added as input to the problem. The maximum number of working routes per DRS
was set to 12. Additionally, to remain true to the method used in [5], a single route DRS
was generated for every demand to counteract the effects of any strong forcer demands. In
other words this was done to prevent any particularly high demand from forcing the solver
to place additional large cycles where it could instead use a small dedicated cycle to protect
that demand. The FIPP SCP IH solutions were obtained by running the FIPP SCP IH
algorithm where all possible cycles in the network were considered as eligible candidates.

The FIPP-CG method uses the results obtained by FIPP-SCP IH heuristic as starting
feasible solutions. The results for this method are summarized in Table 1. The table
reports the final cost of spare capacity as well as the gap against optimality, i.e., the gap
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Table 1: Results obtained by the FIPP-CG Algorithm

Problem
Cost Gap (%)

# Unit # Distinct Overall # Configurations # Non-disjoint Overall #

Instances Cycles Cycles zC > 0 zC = 0 Configurations Cycles

COST239 68840 2.5 17 13 15 534 6 286 (20)

15n30s1-16s 387958 0.0 185 3 73 169 0 3 (3)

15n30s1-17s 286901 0.2 140 6 72 217 18 7 (6)

15n30s1-18s 266080 0.2 126 7 60 350 22 11 (10)

15n30s1-19s 229854 0.1 108 11 59 338 20 21 (16)

15n30s1-20s 217963 0.1 108 13 64 472 22 31 (23)

15n30s1-21s 192269 0.4 101 17 63 412 26 50 (27)

15n30s1-22s 182550 0.6 101 19 66 411 30 72 (34)

15n30s1-23s 177432 0.5 100 27 61 505 32 111 (45)

15n30s1-24s 175990 0.6− 100 29 58 636 23 178 (45)

15n30s1-25s 157140 0.9− 92 36 56 504 21 196 (43)

15n30s1-26s 106526 6.1− 55 39 45 395 18 287 (39)

15n30s1-27s 117220 5.5− 61 41 45 399 28 287 (51)

15n30s1-28s 114055 4.5− 59 44 46 333 23 303 (44)

15n30s1-29s 106449 2.6− 56 33 42 534 28 345 (39)

15n30s1-30s 110738 1.0− 62 40 51 473 34 326 (38)

between the optimal solution of the linear relaxation of the master problem and the best
known solution. In some cases, where the method reached a running time limit of 5 hours
for solving the linear relaxation, this gap is only an under-estimation (values followed by −).
We also provide the total number of unit cycles used in the final solution, i.e.,

∑

C∈C
zC , along

with the number of distinct cycles used (of which there could be more than one instance of).
Average length of the cycles in the final solution varies between 9.5 and 11.6 spans for the
15 node family. In the following two columns, we indicate the overall number of generated
configurations by distinguishing between the number of null and positive master variables
(zC). The second last column contains the number of configurations which take advantage
of non-disjointness. We observe than about half of the configurations are associated with
non pairwise disjoint working paths. Finally, the last column contains the overall number
of generated cycles (the number in parenthesis corresponds to the distinct number of cycles
in the initial solution). Note that the initial set of columns provided to the CG model (in
parenthesis in the last column) is composed of the cycles and configurations deduced from
the best solution of the FIPP-SCP IH model. Although using these solutions has no impact
on the solution of the CG model (assuming that no time limit is set), it certainly speeds up
the convergence, allowing the generation of more meaningful values for the dual variables,
hence the generation of better configurations. In terms of the number of configurations in
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the best solution (as indicated by the number of configurations such that zC > 0), it is
usually rather close to the number of cycles except for the first instances of the 15 node
family as the number of eligible cycles is very limited for the first three instances. Although
we can certainly look at an enhanced, more compact column generation model where each
configuration would be associated to a cycle and vice-versa, it will not significantly reduce
the number of generated columns.

The results for FIPP SCP DRS and FIPP SCP IH are documented in Tables 2 and 3,
respectively. These tables contain the final design costs along with the number of unit
cycles as well as the number of distinct cycles used in these solutions. Furthermore the
relative cost difference to the CG solutions is also reported in the last column of these
tables. Note that Table 2 only contains the results for the 15m30s network family up to
the 23rd span instance. It was at this point that the solver did not return with a solution
within the specified MIPGAP due to the large increase in the number of constraints due
to the large number of parameters used.

One of the weaknesses of the DRS method is that it does not scale very well with
the increase in network size. The more DRS/cycle combinations there are to consider, the
harder it becomes to get the DRS method to solve the problem to completion. It is possible
to reduce the number of parameters, but this severely degrades the quality of the solution
that the solver arrives at. The DRS method is capable of reaching the optimal solution,
but only if all possible combinations of cycles and DRSs are given to it as input. This
cannot be done for anything larger than the simplest network because of the huge number
of DRS/cycles possible even for a medium sized network. Therefore whenever parameters
are introduced, the DRS method does not yield an optimal solution, in general, but only
the optimal combination of the DRSs and cycles given to it as input.

Table 2: FIPP-SCP DRS Results

Problem Cost of # Unit # Distinct Cost

Instances spare Cycles Cycles FIPP-CG (%)

COST239 93345 24 17 36 %

15n30s1-16s 393094 189 3 1 %

15n30s1-17s 305065 146 6 6 %

15n30s1-18s 272661 127 8 2 %

15n30s1-19s 246035 110 12 7 %

15n30s1-20s 239942 113 17 10 %

15n30s1-21s 208501 101 26 8 %

15n30s1-22s 202771 101 40 11 %

15n30s1- ≥23s - - - -



16 G–2007–11 Les Cahiers du GERAD

Table 3: FIPP-SCP IH Results

Problem Cost of # Unit # Distinct Cost

Instances spare Cycles Cycles FIPP-CG (%)

COST239 94095 25 20 37 %

15n30s1-16s 396935 192 3 2 %

15n30s1-17s 310094 152 6 8 %

15n30s1-18s 291047 139 10 9 %

15n30s1-19s 259825 129 16 13 %

15n30s1-20s 246505 124 23 13 %

15n30s1-21s 215708 114 27 12 %

15n30s1-22s 198789 104 34 9 %

15n30s1-23s 199378 106 45 12 %

15n30s1-24s 201207 107 45 14 %

15n30s1-25s 179897 100 43 14 %

15n30s1-26s 115848 60 39 9 %

15n30s1-27s 137887 74 51 18 %

15n30s1-28s 128957 71 44 13 %

15n30s1-29s 126745 73 39 19 %

15n30s1-30s 132294 79 38 19 %

As an alternative to the FIPP SCP DRS method, the iterative heuristic method was
introduced. It was possible to get solutions for the entire 15n30s network family using this
method as documented in Table 3.

It can be observed that the spare capacity cost of the CG method is lower than both
the DRS and the IH method solutions and that the DRS and the IH methods are relatively
close to each other in cost. The cost improvement when comparing the DRS and IH results
to the FIPP CG solutions is as much as 19% for the 15n30s and is 37% for the cost 239
network. Also it can be seen that the relative difference to the CG solutions increases as the
number of spans is increased from 16 to 30 in the 15n30s family of networks. Taking into
account that around half of the configurations in the final solution of the CG method take
advantage of non disjoint working paths, it is unclear at this point whether the improved
solutions are due to this effect or to the global search scheme entitled by the column
generation method.

The benefit of the CG method is twofold: it is able to consider a more general view
of the route sets that can be protected while also being able to arrive at nearly optimal
solutions by being able to consider only the configurations that reduce the objective value
of the master problem. The DRS method considers not only a smaller range of route com-
binations, but also only a small subset of all possible combinations and is thus not able
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to achieve the efficiencies of the CG method. Likewise, the IH method also only consid-
ers route combinations that are disjoint from one another and while is able to optimally
determine the best disjoint route combination for a given cycle that maximizes the credit
score, it is unable to consider the problem as a whole and thus does not gain any benefit
from the interdependencies of the cycles and their protected sets.

8 Conclusion

We have investigated a first column generation (CG) model for the efficient design of FIPP
p-cycles, and compared it successfully against the FIPP-CSP DRS method as well as the
FIPP-SCP IH heuristic. While previous FIPP-SCP methods work under the assumption
that working paths are pairwise disjoint, this is not the case for the FIPP-CG model. This,
in addition to the fact that the CG method is capable of generating near optimal solutions,
can provide us with insight into what a really good FIPP solution actually looks like and
and can thus help with the invention and improvement of heuristic methods. Despite the
quality of the solutions presented, there is still room for improvement of the CG-model. In
particular it could be sped up if a heuristic for the pricing problem, that is able to generate
configurations with negative reduced cost, is found. Additionally, a more compact/exact
CG model can still be designed.
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