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Abstract

This paper deals with the stability analysis and the stabilization for the class of
continuous-time systems with time-varying delay. The time delay is assumed to be
differentiable with respect to time with finite bound not necessary less one and appear
in the state. Delay-dependent sufficient conditions on stability and stabilizability are
developed. These conditions use some weighting matrices to reduce the conservatism.
A design algorithm for a state feedback controller which guarantees that the closed-
loop dynamics will be stable is proposed in terms of the solutions to linear matrix
inequalities.

Key Words: Delayed systems; linear matrix inequality (LMI) stability; stabilizabil-
ity; state feedback.

Résumé

Cet article traite des problèmes de stabilité et de stabilisation de la classe des
systèmes continus avec retards variants dans le temps. Les retards sont sur les vari-
ables d’états du système. Des conditions suffisantes de stabilité et de stabilisation sont
développées. Ces conditions utilisent des matrices appropriées pour réduire le conser-
vatisme. Un algorithme de design pour un contrôleur par retour d’état qui assure la
stabilité de la boucle fermée du système est proposé.
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1 Introduction

Time delays may be encountered in many practical systems and it is well known that
their existence in the dynamics is one of the causes of instability and poor performance
degradation. Therefore, analysis and synthesis of systems with time-delay have been and
continue to be a hot subject of research. Systems with time-delay have attracted researchers
from mathematics and control communities. In the literature, we can find different results
on deterministic and stochastic systems with time-delay. For stochastic systems with time-
delay, we refer the reader to Mahmoud et al. [8], Boukas and Liu [1, 3, 2] Boukas et al.
[6], Shi and Boukas [10], Cao and Lam [5] and the references therein. For deterministic
systems, we refer reader to He et al. [7], Chen and Zheng [4] and the references therein.

More recently, we witnessed the development of a new approach for the study of delay-
dependent stability conditions by introducing some free weighting matrices to express the
links between the terms in the Leibnitz-Newton formula (see Chen and Zheng [4], He et al.
[7] and the references therein). This approach has shown less conservatism compared to the
other ones that have been proposed in the past. All the results reported in the literature
dealt with the stability problem and the one of stabilization (using free weighting matrices)
remains an open problem.

This paper deals with the class of continuous-time systems with time-varying delays
and focus mainly on the problems of stability analysis and stabilization for this class of
systems. In terms of a set of linear matrix inequalities (LMIs), we present first a delay-
dependent sufficient condition, which guarantees stability of such systems. Based on this, a
delay-dependent sufficient condition for the existence of a state feedback controller ensuring
stability of the closed-loop dynamics is proposed. Finally, a numerical example is provided
to demonstrate the effectiveness of the proposed methods. Some appropriate weighting
matrices are introduced in this paper to reduce the conservatism as it will be shown by
the proposed example. Our results will be compared with the ones developed in the recent
literature to show that they are less conservative.

The rest of this paper is organized as follows. In Section 2, the problem is stated and
the goal of the paper is clarified. In Section 3, the main results are given and they include
results on stability and stabilizability. A memoryless state feedback controller is used in
this paper and a design algorithm in terms of the solutions to linear matrix inequalities is
proposed to synthesize the controller gain we are using.

Notation. Throughout this paper, R
n and R

n×m denote, respectively, the n dimen-
sional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes
matrix transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are
symmetric matrices, means that X −Y is positive semi-definite (respectively, positive def-
inite). I is the identity matrices with compatible dimensions. L2 is the space of integral
vector over [0,∞). ‖ · ‖ will refer to the Euclidean vector norm whereas ‖ · ‖ denotes the
L2-norm over [0,∞) defined as ‖f‖2 =

∫
∞

0 fT (t)f(t) dt. We will use ⋆ as an ellipsis for
terms that are introduced by symmetric in the LMIs.
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2 Problem statement

Consider a continuous-time system with time-varying delay with the following dynamics:

{
ẋ(t) = Ax(t) + Adx(t − d(t)) + Bu(t),

x(s) = φ(s),−h ≤ s ≤ 0
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input system, A, Ad and
B are known real matrices with appropriate dimensions, d(t) > 0 represents the system
delay satisfying 0 ≤ d(t) ≤ h, ḋ(t) ≤ µ < ∞, φ(.) is the initial functional such that

x(s) = φ(s) ∈ L2[−h, 0]
∆
={f(·)|

∫
∞

0 f⊤(t)f(t)dt < ∞}.

In this paper we are interested in the design of a stabilizing memoryless controller of
the following form:

u(t) = Kx(t) (2)

where K is a design parameter that has to be determined.

Plugging the controller expression (2) in (1) we get the following closed-loop dynamics:

{
ẋ(t) = Aclx(t) + Adx(t − d(t))

x(s) = φ(s),−h ≤ s ≤ 0
(3)

where Acl = A + BK.

This paper studies the stability and the stabilizability of the class of systems (1). Our
goal is to design a state feedback controller guaranteing that the closed-loop is stable using
some appropriate weighting matrices to reduce the conservatism. In the rest of this paper,
we will assume that all the required assumptions are satisfied, i.e. the complete access
to the system state. The conditions we will develop here are in terms of the solutions to
linear matrix inequalities that can be easily obtained using LMI control toolbox. These
conditions are delay-dependent, which makes them less conservative. And the fact to use
the weighting matrices will reduce more the conservatism as it was shown in many studies
(see He et al. [7] and the references therein).

Lemma 1 For any symmetric and positive-definite matrix P and a time-varying delay h >

d(t) > 0, if there exists a differentiable vector function x(t) with appropriate dimensions

such that the integrals
∫

t

t−h
ẋ⊤(s)Pẋ(s)ds and

∫
t

t−d(t) ẋ(s)ds are well defined, then we have:

[∫
t

t−d(t)
ẋ(s)ds

]⊤
P

[∫
t

t−d(t)
ẋ(s)ds

]
≤ h

∫
t

t−d(t)
ẋ⊤(s)Pẋ(s)ds ≤ h

∫
t

t−h

ẋ⊤(s)Pẋ(s)ds
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3 Main results

In this section, firstly we will develop results that assure that the unforced system (i.e.
u(t) = 0 for all t ≥ 0) is stable. Then, we will design a memoryless state feedback
controller of the form (2) that guarantees the same goal. The following theorem gives the
results on the stability of the unforced system (1).

Theorem 2 The unforced system (1) is stable if there exist a symmetric and positive-
definite matrix P , matrices W1, W2, W3, W4 and symmetric and positive-definite matrices
Q, R and S such that the following LMI holds:

M =




M11 M12 M13 M14

⋆ M22 M23 M24

⋆ ⋆ M33 M34

⋆ ⋆ ⋆ M44


 < 0. (4)

where

M11 = A⊤P + P⊤A + Q + R − W1 − W⊤

1 + hA⊤SA,

M12 = −W2 + W⊤

1 + PAd + hA⊤SAd,

M13 = −W3,

M14 = −W4 + W⊤

1

M22 = −(1 − µ)Q + W2 + W⊤

2 + hA⊤

d SAd,

M23 = W3,

M24 = W4 + W⊤

2 ,

M33 = −R,

M34 = W⊤

3 ,

M44 = W4 + W⊤

4 −
1

h
S.

Proof. To prove this theorem let us consider the following Lyapunov functional:

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t))

where

V1(x(t)) = x⊤(t)Px(t),

V2(x(t)) =

∫
t

t−d(t)
x⊤(s)Qx(s)ds

V3(x(t)) =

∫
t

t−h

x⊤(s)Rx(s)ds,
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V4(x(t)) =

∫ 0

−h

∫
t

t+θ

ẋ⊤(s)Sẋ(s)dsdθ

with P > 0, Q > 0, R > 0 and S > 0.

The derivatives of these Lyapunov functionals with respect to time along the solution
of the unforced system (1) are given by:

V̇1(x(t)) = x⊤(t)
[
A⊤P + AP

]
x(t) + 2x⊤(t)PAdx(t − d(t))

V̇2(x(t)) = x⊤(t)Qx(t) − (1 − ḋ(t))x⊤(t − d(t))Qx(t − d(t))

≤ x⊤(t)Qx(t) − (1 − µ)x⊤(t − d(t))Qx(t − d(t))

V̇3(x(t)) = x⊤(t)Rx(t) − x⊤(t − h)Rx(t − h)

V̇4(x(t)) =

∫ 0

−h

ẋ⊤(t)Sẋ(t)dt −

∫ 0

−h

ẋ⊤(t + θ)Sẋ(t + θ)dθ

= hẋ⊤(t)Sẋ(t) −

∫
t

t−h

ẋ(s)Sẋ(s)ds

≤ x⊤(t)hA⊤SAx(t) + x⊤(t)hA⊤SAdx(t − d(t))

+ x⊤(t − d(t))hA⊤

d SAx(t) + x⊤(t − d(t))hA⊤

d SAdx(t − d(t))

−
1

h

(∫
t

t−d(t)
ẋ⊤(s)ds

)⊤

S

(∫
t

t−d(t)
ẋ⊤(s)ds

)

Notice that from Leibnitz-Newton formula, we have:

[Ψ(x(t), ẋ(t))]⊤ ×

[∫
t

t−d(t)
ẋ(s)ds − x(t) + x(t − d(t))

]
= 0

[∫
t

t−d(t)
ẋ(s)ds − x(t) + x(t − d(t))

]⊤
× Ψ(x(t), ẋ(t)) = 0

with Ψ(x(t), ẋ(t)) = W1x(t) + W2x(t − d(t)) + W3x(t − h) + W4

∫
t

t−d(t) ẋ(s)ds.

Using all these relations, we get:

V̇ (x(t)) ≤ x⊤(t)M11x(t) + x⊤(t)M12x(t − d(t))

+ x⊤(t)M13x(t − h) + x⊤(t)M14

∫
t

t−d(t)
ẋ(s)ds

+ x⊤(t − d(t))M⊤

12x(t) + x⊤(t − d(t))M22x(t − d(t))

+ x⊤(t − d(t))M23x(t − h) + x⊤(t − d(t))M24

(∫
t

t−d(t)
ẋ(s)ds

)
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+ x⊤(t − h)M⊤

13x(t) + x⊤(t − h)M⊤

23x(t − d(t))

+ x⊤(t − h)M33x(t − h) + x⊤(t − h)M34

(∫
t

t−d(t)
ẋ(s)ds

)

+

(∫
t

t−d(t)
ẋ(s)ds

)⊤

M⊤

14x(t) +

(∫
t

t−d(t)
ẋ(s)ds

)⊤

M⊤

24x(t − d(t))

+

(∫
t

t−d(t)
ẋ(s)ds

)⊤

M⊤

34x(t − h) +

(∫
t

t−d(t)
ẋ(s)ds

)⊤

M44

∫
t

t−d(t)
ẋ(s)ds

which can be rewritten as follows:

V̇ (x(t)) ≤ η⊤(t)Mη(t)

where

η(t) =

[
x⊤(t) x⊤(t − d(t)) x⊤(t − h)

(∫
t

t−d(t)
ẋ(s)ds

)⊤ ]⊤
.

Using (4) and following similar steps as in [3], we can deduce that the unforced system
(1) is stable. This completes the proof.

Let us now concentrate on the design of a state feedback controller of the form (2) which
guarantees that the closed-loop system will be stable. For this purpose, using the results of
Theorem 2, the dynamics (3) will be stable if there exist a symmetric and positive-definite
matrix P , matrices W1, W2, W3, W4 and symmetric and positive-definite matrices Q, R

and S such that the LMI (4) holds with A replaced by Acl.

Firstly, notice that M̃ can be rewritten as follows:

M̃ =




M̃11 M̃12 M̃13 M̃14

⋆ M̃22 M̃23 M̃24

⋆ ⋆ M̃33 M̃34

⋆ ⋆ ⋆ M̃44


+




A⊤

cl

A⊤

d

0
0


 [hS]

[
Acl Ad 0 0

]

with

M̃11 = A⊤

clP + P⊤Acl + Q + R − W1 − W⊤

1 ,

M̃12 = −W2 + W⊤

1 + PAd,

M̃13 = −W3

M̃14 = −W4 + W⊤

1 ,

M̃22 = −(1 − µ)Q + W2 + W⊤

2
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M̃23 = W3,

M̃24 = W4 + W⊤

2 ,

M̃33 = −R,

M̃34 = W⊤

3 ,

M̃44 = W4 + W⊤

4 −
1

h
S.

If the following holds:

hS < εP, ε > 0, (5)

M̃ can be rewritten as follows:

M̃ =




M̃11 M̃12 M̃13 M̃14 A⊤

cl

⋆ M̃22 M̃23 M̃24 A⊤

d

⋆ ⋆ M̃33 M̃34 0

⋆ ⋆ ⋆ M̃44 0
Acl Ad 0 0 −1

ε
P−1




Let X = P−1. Pre- and post-multiply (5) respectively by X, we get:

hS̄ < εX, ε > 0,

where S̄ = XSX.

Let Y = KX, Q̄ = XQX, R̄ = XRX, W̄1 = XW1X, W̄2 = XW2X, W̄3 = XW3X,

W̄4 = XW4X. Pre- and post-multiply M̃ respectively by diag (X,X,X,X, I), we get the
following sufficient condition for the design of the memoryless state feedback controller of
the form (2).

Theorem 3 Let ε be a given positive scalar. There exists a state feedback controller of
the form (2) such that the closed-loop system (1) is stable if there exist a symmetric and
positive-definite matrix X, matrices W̄1, W̄2, W̄3, W̄4 and symmetric and positive-definite
matrices Q̄, R̄ and S̄ such that the following set of coupled LMIs holds:

hS̄ < εX, ε > 0, (6)



M̄11 M̄12 M̄13 M̄14 XA⊤ + Y ⊤B⊤

⋆ M̄22 M̄23 M̄24 XA⊤

d

⋆ ⋆ M̄33 M̄34 0
⋆ ⋆ ⋆ M̄44 0
⋆ ⋆ ⋆ ⋆ −1

ε
X




< 0. (7)
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where

M̄11 = XA⊤ + AX + BY + Y ⊤B⊤

+ Q̄ + R̄ − W̄1 − W̄⊤

1 ,

M̄12 = −W̄2 + W̄⊤

1 + AdX, M̄13 = −W̄3,

M̄14 = −W̄4 + W̄⊤

1 , M̄22 = −(1 − µ)Q̄ + W̄2 + W̄⊤

2

M̄23 = W̄3, M̄24 = W̄4 + W̄⊤

2 , M̄33 = −R̄,

M̄34 = W̄⊤

3 , M̄44 = W̄4 + W̄⊤

4 −
1

h
S̄.

The stabilizing memoryless controller gain is given by K = Y X−1.

4 Numerical examples

To show the less conservatism of our results let us consider that has been used in Park and
Ko [9] to compare their results with previous ones. The data of this system are:

A =

[
−2.0 0.0
0.0 −0.9

]
, Ad =

[
−1.0 0.0
−1.0 −1.0

]
.

Using our results of Theorem 2 for different µ ∈ [0, 1) we found out that our results are
the same of the ones in Park and Ko [9] despite that our Lyapunov functional are different.

To show the validness of our results on stabilizability which is the main goal of this
paper, let us consider a system of the class we treating with state in R

2. The data of this
system are as follow:

A =

[
−0.5 −2.0
1.0 −1.0

]
, Ad =

[
−0.5 −1.0
0.0 0.6

]
, B =

[
0.0
1.0

]
.

First of all notice that the matrix A of the system is stable. In He et al. [7], this
system has been considered to show the validness of their results on robust stability. For
the condition, we developed in this paper for stability we get h = 1.1 when 0.5.

For the design of the controller, we modify the matrix A to get a non stable one given
by:

A =

[
−0.5 −2.0
1.0 1.0

]
.

Fixing now ε = 0.1, h = 7.9, µ = 0.5 and solving the LMIs (6)-(7), we get:

X =

[
0.4919 0.2920
0.2920 0.4872

]
, Y =

[
−0.4254 −2.8263

]
,
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which gives K = [4.0026 − 8.2001]. The other matrices are not of importance to compute
the controller gain and we omit to give them.

For this system there is no limit for h to get a state feedback controller.

Remark 4 We have to keep in mind that our goal in this paper is to develop delay-
dependent conditions to design a stabilizing state feedback controller for systems with time-
varying delay using the free weighting matrices techniques and this aim has been reached
and the results of the example presented in this paper proves that.

5 Conclusion

This paper dealt with the class of continuous-time linear systems with time-varying delay in
the state vector. Results on stability and stabilizability are developed. The LMI framework
is used to establish the different results on stability and stabilizability. The conditions we
developed are delay-dependent. The results we developed can easily be solved using any
LMI toolbox in the marketplace.
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