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Abstract

This paper describes a new heuristic for the well-known Undirected Rural Postman
Problem. It consists of two steps: it first constructs a partial solution using the Ant
Colony Optimization metaheuristic, and the remaining required edges are then grad-
ually inserted. Computational results on a set of benchmark instances are presented
and comparisons with alternative heuristics are performed. The optimality gap is also
computed by running a branch-and-cut algorithm.

Key Words: Ant Colony Optimization, Arc Routing, Undirected Rural Postman
Problem, Heuristics.

Résumé

Cet article décrit une nouvelle heuristique pour le problème du postier rural non
orienté. Cette heuristique est constituée de deux étapes : dans une phase on cons-
truit une solution partielle à l’aide d’un algorithme de fourmis; dans une deuxième
phase, les arêtes restantes sont graduellement insérées. Des résultats numériques sur
des problèmes tests permettent de comparer l’heuristique proposée à d’autres heuris-
tiques. L’écart d’optimalité est aussi calculé à partir des résultats obtenus par un
algorithme de séparation et coupes.

Mots clés : algorithme de fourmis, tournées sur les arcs, problème du postier rural
non orienté, heuristiques.
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1 Introduction

The Undirected Rural Postman Problem (URPP) is defined on an undirected graph G =
(V,E), where V is the vertex set, E is the edge set, cij ≥ 0 is the cost of traversing edge
(vi, vj) ∈ E, dij is the cost of a shortest chain between vi and vj , and ER ⊆ E is a
set of required edges. Let VR be the set of vertices incident to a required edge, and let
GR = (VR, ER) the subgraph induced by ER. The graph GR consists of p disconnected
subgraphs called connected components. Let Ci be the ith connected component of the
subgraph GR, and let Vi be its vertex set. The URPP consists of determining a minimum
cost tour traversing each edge of ER at least once. An URPP feasible solution is represented
by a closed sequence of vertices S = (v0, . . . , vn = v0), covering all edges of ER. A URPP
partial solution is a sequence of vertices S = (v0, . . . , vn = v0), covering a subset E′

R of
required edges.

The URPP was introduced by Orloff [33] and was shown to be NP-hard by Lenstra
and Rinnooy Kan [31]. Some URPP applications arise in the control of plotting and
drilling machines [27], and in the optimization of laser-plotter beam movements [24]. Exact
algorithms for the URPP have been proposed by Christofides et al. [5], Corberán and
Sanchis [6], Letchford [32], Ghiani and Laporte [26] and Fernández et al. [21]. Constructive
heuristics for the URPP have been presented by Frederickson [22], and by Pearn and Wu
[34], while improvement procedures have been described by Hertz, Laporte and Nanchen-
Hugo [29], and Groves and van Vuuren [28].

The aim of this paper is to describe an ant colony optimization (ACO) metaheuristic for
the URPP. The remainder of the paper is organized as follows. In Section 2 we introduce
the ACO metaheuristic for the URPP, called ANTURPP, and we describe the procedures
that have been implemented. In Section 3 we introduce F-Race, a procedure employed to
set the ANTURPP parameters. Computational results follow in Section 4.

2 ANTURPP: An ant colony heuristic for the URPP

ACO is a metaheuristic introduced by Dorigo [11] and successively extended by Dorigo in
[12, 13, 14, 15], Cordón et al. [7], and Dorigo and Stützle in [16, 17]. Interesting applications
of ACO were described by Gambardella, Taillard and Agazzi [23] and Doerner et al. [9]
for the Vehicle Routing Problem. Recent applications were proposed by Doerner et al. [10]
and Lacomme, Prins and Tanguy [30] for the Capacitated Arc Routing Problems. The ACO
paradigm is inspired from the behaviour of real ants. Ants build a shortest path between
a food source and their nest. Initially, they explore the area surrounding their nest in a
random manner. When an ant finds a source of food, it carries some of it to the nest and
deposits a pheromone trail on the ground. The quantity of deposited pheromone depends
on the quantity and quality of the food found and will guide other ants to the food source.
This indirect communication between the ants via the pheromone trails allows them to find
a shortest path between their nest and food sources. In ACO algorithms, the pheromone
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trails are simulated via a parameterized probabilistic model called the pheromone model,
which consists of a set of parameters whose values are called the pheromone values, and
used to probabilistically generate solutions. In general the ACO optimization strategy
consists of iterating the following two steps:

1. solutions are built using a pheromone model, that is, a parameterized probability
distribution over the solutions space;

2. the solutions built in earlier iterations are used to modify the pheromone values so
as to bias the search toward high quality solutions.

In the following, we introduce the basic procedures of ANTURPP. An ant is a simple
interacting software agent capable of building a partial solution for the URPP. An anthill
k is a set of bk ants, and B is the set of anthills. For all anthills k ∈ B and for all ants
j = 1, . . . , bk, M t

j is the set of indices of the connected components that remain to be
served at the beginning of iteration t. When a connected component Ci is traversed by ant
j at iteration t, i is removed from M t

j . The idea is that an ant decides at each iteration
which connected component should be served and how it should be served. These decisions
are made by the ant in a probabilistic manner, taking into account the pheromone values
associated with each possible way of linking two connected components.

2.1 Algorithm structure

The aim of this section is to present the general structure of the ANTURPP algorithm.
It starts constructing an auxiliary multigraph Ga = (N,A) from G = (V,E), using the
procedure AUXILIARYGRAPH (Section 2.2.2). Let L be the chain linking together as
many as possible required edges belonging to the connected component Ci. Let L be the
set of all Li. This set is determined by the procedure CHAIN (Section 2.2.1). To each chain
Li corresponds a vertex ni of N . The arc set A is defined as {(ni, nh) : ni, nh ∈ N, i 6= h}
(Section 2.2.2).

Two anthills are located at each vertex of N . An anthill is added at the end vertices
of each chain Li(i = 1, . . . , p) corresponding to node ni of the auxiliary multigraph Ga.
Therefore, the number of anthill is |B| = 2p. Each ant starts from its anthill and moves
on Ga to construct a partial URPP solution. The movement of the ants is made in a
probabilistic manner and is driven by the pheromone trails updated by an ant only after
coming back to its anthill. For each anthill, when all the ants have completed their job, the
minimum cost partial URPP solution found by them is selected. The best partial URPP
solution is obtained by taking the best partial solution found at each anthill and choosing
the least cost one. The output of ANTURPP algorithm is an upper bound obtained adding
to the best partial URPP solution the remaining required edges. An anthill is added at
the end vertices of each chain Li(i = 1, . . . , p) corresponding to node ni of the auxiliary
multigraph Ga. Therefore, the number of anthill is |B| = 2p.

At iteration t, ant j of the kth anthill (k = 1, . . . , 2p) starts from node ni, and considers
all feasible ways of connecting to another node nh. The ant gradually builds a partial URPP
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solution by moving from its anthill to all nodes of Ga, selecting at each step the next chain
to be served. The movement of ant j is controlled by procedure MOVE (Section 2.2.4).
At iteration t, when all nodes of N have been traversed by ant j, the algorithm returns
the partial solution St

j . At the end of the algorithm, the set S(k) = {S1, . . . , Sbk
}, for

each k ∈ B, contains all the partial URPP solutions built by each ant of the kth anthill.
Let F (k) = {F1, . . . , Fbk

} be the set of related values of the URPP objective function,
F (k)min = min{Fj : j = 1, . . . , bk} is defined as the minimum value of the objective
function found by the ants of the kth anthill. Let S(k) be the related best partial solution
found by the ants of the kth anthill. Then S is the best partial solution such that F =
min{F (k)min : k = 1, . . . , 2p}. To create a feasible URPP solution, the partial solution S
is increased by adding all required edges that do not belong to any chain Li (i = 1, . . . , p).
Let E be the set of the required edges belonging to S. Then the procedure ADD [29]
returns the feasible solution whose cost F represents an upper bound for the URPP.

2.2 Description of the main procedures of ANTURPP

In this section, the procedures outlined in the previous section are described in more detail.
A step-by-step description of the ANTURPP algorithm is presented in Figure 1.

1. Call CHAIN(C) (Section 2.2.1).
2. Construct the auxiliary graph Ga (Sec-

tion 2.2.2).
3. Set the ACO parameters (list of the parameters)

(Section 3.1).
4. Initialize

(a) all the values of Γ to 1;

(b) all the values of P to the initial probabili-
ties;

(c) all the values of ∆Γ to 0;

(d) the set S := Ø and F := ∞.

5. Construct the best partial solution S. For each
anthill k ∈ B and for each ant j = 1, . . . , bk, call

(a) MOVE (Section 2.2.4);

(b) UPDATEPROBABILITY (Section 2.2.3).

6. Determine the best upper bound S calling, for
each edge e = (vu, vw) /∈ E, ADD procedure [29].

Figure 1: Step-by-step description of the ANTURPP algorithm
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2.2.1 Procedure CHAIN(C)

This procedure uses as input the set C of connected components. For each connected
component Ci ∈ C, the chain Li with the maximum number of required edges is built.
The length of a chain Li is defined as the number of required edges it contains.

• Step 1: For all vu ∈ Vi (i = 1, . . . , p), find the minimum spanning tree MST i
u

starting from vu. Select the minimum spanning tree MST i (i = 1, . . . , p) with the
smallest number of odd degree vertices.

• Step 2: For all MST i (i = 1, . . . , p), find the set of vertices with the maximum
degree, called cross-road vertices. For each cross-road vertex vr the two longest
disjoint chains, starting from vr, are built (Figure 2).

• Step 3: For all MST i (i = 1, . . . , p) and for each cross-road vertex vr, merge the
two disjoint longest chains in vr and define a set Ii (i = 1, . . . , p) of chains for each
connected component Ci (i = 1, . . . , p).

• Step 4: Select the chain Li ∈ Ii (i = 1, . . . , p) with the maximum length (Figure 3).

2.2.2 Procedure AUXILIARYGRAPH(G, L)

This procedure returns the auxiliary multigraph Ga = (N,A), where N = {n1, . . . , np}
is the set of nodes associated with the p longest chains of L, and A is the set of edges
associated with all possible ways of reconnecting every pair of chains in L.

Let vi
u and vi

w be the extremes vertices of the chain Li (i = 1, . . . , p). For each pair
of chains Li, Lh ∈ L, there are four ways of connecting them by vertices vi

u, vi
w ∈ Li and

vh
u, vh

w ∈ Lh (Figure 4):

1. starting from vi
u and arriving at vh

u by a shortest chain of length dih
uu(Figure 5a);

2. starting from vi
u and arriving at vh

w by a shortest chain of length dih
uw (Figure 5b);
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3. starting from vi
w and arriving at vh

u by a shortest chain of length dih
wu (Figure 5c);

4. starting from vi
w and arriving at vh

w by a shortest chain of length dih
ww (Figure 5d);

Therefore, there are 2p(p− 1) connection possibilities .
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2.2.3 Procedure UPDATEPROBABILITY(Ga,Γ,∆Γ, P )

The matrix Γ contains the intensity of chains, the matrix ∆Γ is made up by the trails of
pheromones deposited on the selected chains, and the matrix P contains the probabilities
associated with each edge of Ga. This procedure returns the updated matrix P .
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Let m =
∑

k∈B bk be the total number of ants. At the beginning of each iteration t,
an ant j leaves from each anthill k to build a partial solution St

j . The ants coming from
the two anthills corresponding to the same node ni ∈ N visit in the opposite direction the
shortest chain Li of Ci (i = 1, . . . , p) represented by this node. At the end of iteration t,
the ants have constructed 2p partial URPP solutions St

j (j = 1, . . . , 2p). They then deposit
pheromones on the edge of Ga chosen to build the partial solutions St

j (j = 1, . . . , 2p). On
the other edges the pheromone evaporates, and their probability of being selected by the
next ants thus decreases. A chain connecting two nodes ni and nh of Ga corresponds to an
edge e=(ni, nh)∈ A. The updating of the pheromone value on edge e is determined by each
ant between iterations t and t + 1. Let τ e(t + 1) be the intensity of the chain generated at
the beginning of iteration t + 1:

τ e(t + 1) = ρτ e(t) + ∆τ e(t, t + 1), (1)

where ρ is the evaporation coefficient, and the values ∆τ e(t, t+1) represent the quantity of
pheromones deposited on edge e by the ant at the end of iteration t. The values ∆τ e(t, t+1)
are stored in the matrix ∆Γ. Let τ e(0) be the intensity of the chain associated with edge
e at iteration t = 0, whose value can be arbitrarily set to 1 in our experiments. The values
of τ e(t) are stored in a matrix Γ. The ant j, being on a node ni at iteration t, reads
the indices of vertices to be visited from the memory list M t

j . If M t
j is not empty, the

probability of visiting the other nodes is distributed as follows. Let de be the length of the
shortest chain associated to the edge e and let ηe = 1/de be the visibility of the chain. The
transition probability from vertex ni ∈ N to vertex nh ∈ N is defined as:

pe(t) =
[τ e(t)]α[ηe(t)]β∑

w∈A:w=(ni,nv),v∈Mt
j
[τw(t)]α[ηw(t)]β

. (2)

Equation (2) is used if t ≥ 1, when 2p ants have already computed their partial solu-
tion. For the ants that leave from the anthills located at node ni at iteration t = 0, the
distribution of the transition probability is computed using a formula that attributes a
larger probability to serve the closest nodes than the others. It is called the greedy initial
probability. Therefore, we can write:

pe(0) =

∑
w∈A:w=(ni,nv),v∈M0

j
dw − de

(
∑

w∈A:w=(ni,nv),v∈M0
j

dv)(2|M0
j | − 1)

. (3)

It is worth nothing that ∑
w∈A:w=(ni,nv),v∈M0

j

pw(0) = 1. (4)

The values of the probabilities are stored in the matrix P .
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2.2.4 Procedure MOVE(Ga, j, k,M t
j , S

t
j ,∆Γ)

This procedure returns the next anthill at node nh ∈ N , the new memory list M t
j of ant j,

the new current partial URPP solution St
j at iteration t generated by ant j starting from

anthill k, and the updated matrix ∆Γ.

We apply the ACO to connect all vertices of the auxiliary multigraph Ga . This way,
a cycle that crosses all connected components of G through the associated longest chains
(Figure 6) is generated. This cycle represents a partial URPP solution because some
required edges are not included in it. Procedure MOVE implements the single decision
that ant j has to make every time it is at node ni ∈ N and has to serve another node
nh ∈ N , with h ∈ M t

j . We observe that the new memory list M t
j is obtained by eliminating

the index corresponding to node nh. This procedure is called iteratively as long as a partial
URPP solution has not been built. Otherwise, M t

j is empty and the ant j can go back to
its anthill.
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At the beginning the ant is located at its anthill. We have positioned two anthills at
each node ni ∈ N , one for each way of serving the longest chain Li: from vi

u to vi
w and vice

versa. The ant is initially forced to serve the required edge corresponding to its anthill in
a given direction. For example, suppose that ant j is initially positioned at node ni ∈ N ,
corresponding to the longest chain Li, and suppose it is forced to serve Li from vi

u to vi
w.

The ant has to make the following decisions: which longest chain Lh should be served
next time, then which node of Ga should be reached next. If the ant decides to serve the
longest chain Lh with the shortest chain from vi

w to vh
u, it will have to move from vh

u to vh
w

(Figure 7). Otherwise, if it serves Lh with the shortest chain from vi
w to vh

w , it will have
to move from vh

w to vh
u (Figure 8).

The sequence of operations performed at iteration t is described as follows:

1. Ant j constructs the feasible decisions set Dt
j (Figure 9).

2. Ant j computes the probabilities assigned to each feasible case using the UPDATE-
PROBABILITY procedure (Section 2.2.3).

3. Ant j randomly decides to cross the shortest chain {vi
u, . . . , vh

w} , and updates the
memory list M t

j = M t−1
j \ {h} and the current partial solution S

t
j = St−1

j

⋃
{vi

u, . . . ,

vh
w}. Let dih be the length of a shortest chain between vi

u and vh
w and let Q1 be a

constant quantity of pheromone deposited by ant j on the shortest chain chosen at
iteration t, to go from vi

u to vh
w.

Let e = (ni, nh) ∈ A be the edge associated to the shortest chain {vi
u, . . . , vh

w} on Ga,
then it is possible to define

∆τ e(t, t + 1) =
{

Q1/dih if the ant j goes from ni to nh between t and t + 1
0 otherwise.

(5)

According to (5), the pheromone intensity increases on the shortest chain when ant j
goes from ni to nh and is inversely proportional to dih. Let ∆Γ be the updated matrix ∆Γ
such that the element corresponding to the edge e = (ni, nh) is

∆Γe = ∆Γe + ∆τ e(t, t + 1). (6)

3 ACO parameters

As described in Section 2.2.3, in order to initialize the ANTURPP algorithm, it is nec-
essary to define parameters ρ, α, β and bk, the number of ants associated to the kth

anthill. In our computational study we have tested following feasible ranges for the previ-
ous parameters: bk ∈ B = {10, 15, 20, 25, 30, 35, 40, 45, 50, 55}, ρ ∈ R = {0.5, 0.6, 0.7, 0.8},
α ∈ A = {1, 1.5, 2, 2.5, 3}, and β ∈ H = {1, 1.5, 2, 2.5, 3}.
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3.1 F-Race for the ANTURPP algorithm

The F-Race procedure is used to find an optimal setting for the parameters of a meta-
heuristic approach to a combinatorial optimization (CO) problem [2]. Let θ = {θ1, . . . , θn}
be the set of all possible parameters configurations, I = {I1, . . . , Im} the set of the bench-
mark instances for CO, and χ(m,n) a matrix whose number of rows is equal to m and the
number of columns is equal to n. The heuristic algorithm Υ, used to solve CO runs for
a fixed time T on each couple (Ii,θj), where Ii ∈ I and θj ∈ θ. Each element χIiθj

is the
best solution found by Υ at time T on instance Ii, using configuration θj . The F-Race
procedure is able to find the optimal setting for the parameters using a statistical test,
starting from data matrix χ.

In our specific case, the set of all possible configurations has cardinality n = |θ| =
|B| × |R| × |A| × |H| = 10× 4× 5× 5 = 1000, and algorithm Υ is the ANTURPP.

4 Computational results

ANTURPP was implemented in C++ and was executed on a processor Itanium (1 GHz)
NEC TX-7. It was tested on two sets of the URPP benchmark instances introduced by
Ghiani and Laporte [26]: Type A graphs whose vertices are randomly generated in a plane.
To ensure they are connected a specific test is used. In practice, ER is always disconnected
in these graphs. Type C graphs whose vertex degrees are equal to 4 and ER is disconnected.
We have tested our algorithm on 29 instances of type A and 20 of type C.

For each instance, we compared the ANTURPP heuristic with the classical Frederickson
algorithm [22] and with the recent constructive insertion heuristic [25]. Moreover, we
compared our solutions with those generated by the application of the 2-OPT procedure
[29] to the solutions provided by Frederickson and the insertion heuristics. Finally, we
compared our solutions with the optimal ones provided by a branch-and-cut algorithm
[26]. Computational results are presented in Tables 1 and 2.

The column headings are as follows:

• OBJ : objective function value. In the case of ANTURPP, it is the best value found
over ten simulation runs;

• SEC : computational time (in seconds) corresponding to the best solution identified
by ANTURPP;

• Fred : solution provided by the Frederickson heuristic [22];
• Ins: solution value given by the Ghiani, Laganá and Musmanno heuristic [25];
• Fred2-OPT : solution value provided by the Frederickson constructive algorithm

[22], followed by the 2-OPT improvement procedure of Hertz, Laporte and Nanchen-
Hugo [29];
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• Ins2-OPT : solution value given by the constructive algorithm of Ghiani, Laganá
and Musmanno [25] followed by the 2-OPT improvement procedure of Hertz, Laporte
and Nanchen-Hugo [29];

• ANTURPP : the result provided by the ANTURPP algorithm;
• BC : optimal solution value provided by the branch-and-cut algorithm of Ghiani and

Laporte [26];
• R1 : best solution value provided by the ANTURPP heuristic divided the value

provided by the Frederickson + 2-OPT heuristic;
• R2 : best solution value provided by the ANTURPP heuristic divided the value

provided by the Ins+ 2-OPT heuristic;
• DEV1 (%): percentage gap between the best value provided by ANTURPP heuristic

and the optimal value.

Our results (Tables 1, 2 and 3) show that we obtain the best performance on eight
type A instances out of 29, on 14 type C instances out of 20 and, finally, on 13 Christofides
instances out of 23. Regarding the type A instances, we can see that the deviation among
the ANTURPP upper bound and the optimal objective value does not exceed 1.67% for

Table 1: Computational results for type A instances

Instance Name |V | |R| Fred Ins Fred2-OPT Ins2-OPT ANTURPP BC R1 R2 DEV1

A0500001 50 18 6497 0,09 6379 0,55 5471 21,87 5471 33,01 5501 0,76 5471 1,01 1,01 0,55

A0500002 50 17 6031 0,08 5903 0,56 5208 8,68 5255 13,68 5314 0,85 5164 1,02 1,01 2,90

A0500003 50 13 4689 0,08 4147 0,56 4141 11,20 4141 11,80 4141 0,39 4141 1,00 1,00 0,00

A0500004 50 22 6822 0,08 6613 0,39 6064 13,02 6064 25,93 6349 0,36 6064 1,05 1,05 4,70

A0500005 50 24 7495 0,09 6927 0,81 6905 33,68 6927 20,44 6846 2,05 6846 0,99 0,99 0,00

A0800001 80 34 7761 0,11 7818 0,92 7400 42,37 6924 99,36 6962 5,02 6911 0,94 1,01 0,74

A0800002 80 34 7029 0,13 7110 0,67 6639 45,61 6641 90,35 6820 2,58 6554 1,03 1,03 4,06

A0800003 80 41 10370 0,13 9694 1,36 9231 149,67 9361 91,23 8814 6,62 8772 0,95 0,94 0,48

A0800004 80 24 6901 0,09 7157 0,73 6726 22,76 7021 37,68 6975 1,97 6726 1,04 0,99 3,70

A0800005 80 20 6101 0,09 5384 0,99 5281 22,31 5259 44,98 5263 1,42 5247 1,00 1,00 0,30

A1500001 150 57 10543 0,20 9499 2,34 9270 193,18 8682 546,45 9067 65,12 8664 0,98 1,04 4,65

A1500002 150 148 25812 2,4 26961 20,54 25288 3221,27 25068 1791,05 27543 41,63 24664 1,09 1,10 11,67

A1500003 150 73 12309 0,28 11590 2,33 11516 260,68 11098 446,32 11565 97,72 10898 1,00 1,04 6,12

A1500004 150 46 8853 0,20 8520 1,88 7916 279,79 8158 219,43 7848 26,01 7691 0,99 0,96 2,04

A1500005 150 48 9813 0,2 9577 1,97 8701 557,87 8745 567,54 8780 29,99 8650 1,01 1,00 1,50

A2000001 200 82 10680 0,39 11444 2,50 10441 562,77 10756 778,46 10447 112,20 10092 1,00 0,97 3,52

A2000002 200 108 15726 0,53 16848 2,25 14429 1459,15 14279 1238,48 14389 127,13 13823 1,00 1,01 4,09

A2000003 200 104 13568 0,52 14381 4,70 12763 1740,32 12839 889,29 13137 170,85 12426 1,03 1,02 5,72

A2000004 200 77 11026 0,42 10947 2,08 9337 1281,58 10027 353,67 9311 70,51 9173 1,00 0,93 1,50

A2000005 200 91 13184 0,50 13316 2,69 11726 1824,62 11918 960,02 11255 99,16 10635 0,96 0,94 5,83

A2500001 250 105 13562 0,61 13328 4,32 12199 1720,49 12099 2782,75 12560 300,60 11864 1,03 1,04 5,87

A2500002 250 69 9893 0,58 9830 3,67 8961 654,51 9280 1212,81 9333 119,50 8906 1,04 1,01 4,79

A2500003 250 102 13659 0,63 13866 3,82 12344 1221,66 12139 3183,37 12247 391,23 11633 0,99 1,01 5,28

A2500004 250 146 17153 5,89 17006 7,8 15986 1826,8 16057 3545,77 16440 311,171 15505 1,03 1,02 6,03

A2500005 250 94 12711 0,59 12798 3,87 11536 1065,81 11897 2308,96 11611 359,051 11087 1,01 0,98 4,73

A3000001 300 99 13615 0,95 13663 4,82 12343 1549,66 12202 5462,95 12140 586,79 11610 0,98 0,99 4,57

A3000002 300 78 11368 0,92 10602 4,98 9609 1109,44 9348 3010,08 9311 321,418 8914 0,97 1,00 4,45

A3000003 300 144 16536 1,11 18205 4,89 15641 3168,64 15819 9170,91 15881 1055 15253 1,02 1,00 4,12

A3000005 300 116 15256 1,04 14034 4,73 13235 2101,46 13197 1190,22 13616 647 13115 1,03 1,03 3,82
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Table 2: Computational results for type C instances

Instance Name |V | |R| Fred Ins Fred2-OPT Ins2-OPT ANTURPP BC R1 R2 DEV1

C0500301 50 24 7437 0,09 6801 0,56 6371 25,06 6043 63,82 6271 0,76 6043 0,98 1,04 3,77

C0500302 50 30 6708 0,08 7508 0,64 6362 50,27 6362 84,75 6362 0,91 6362 1,00 1,00 0,00

C0500303 50 18 5280 0,09 5716 0,64 4443 21,14 4443 94,36 4443 0,56 4443 1,00 1,00 0,00

C0500304 50 22 6895 0,09 5725 0,74 5725 17,49 5725 19,39 5725 0,92 5725 1,00 1,00 0,00

C0500305 50 22 7517 0,09 6742 0,81 6283 34,20 6283 43,83 6283 1,82 6283 1,00 1,00 0,00

C1000301 100 61 10074 0,17 10621 1,27 8995 233,84 9158 515,81 8974 11,69 8873 1,00 0,98 1,14

C1000302 100 45 10906 0,13 10297 1,75 8721 200,31 8721 389,53 8656 14,84 8578 0,99 0,99 0,91

C1000303 100 60 10874 0,14 11593 1,84 10184 241,41 10319 235,74 10194 31,72 9955 1,00 0,99 2,40

C1000304 100 57 10971 0,13 11618 2,13 9878 148,24 10289 547,17 10056 37,32 9593 1,02 0,98 4,83

C1000305 100 56 9642 0,13 9444 1,88 8931 236,12 8741 462,53 8645 39,16 8492 0,97 0,99 1,80

C1500301 150 75 11159 0,88 10903 6,97 10175 1277,51 10207 1567,89 9845 103,56 9762 0,97 0,96 0,85

C1500302 150 86 13665 0,88 14129 7,80 12178 859,80 12456 2638,18 11812 112,46 11808 0,97 0,95 0,03

C1500303 150 82 11185 0,82 11936 7,14 9850 961,36 10109 614,45 9808 76,24 9624 1,00 0,97 1,91

C1500304 150 75 13619 0,93 13739 7,41 11565 1297,28 11685 2220,91 11724 96,89 11326 1,01 1,00 3,51

C1500305 150 88 12758 1,04 13254 6,76 11803 1339,3 11669 2827,34 11475 117,97 11353 0,97 0,98 1,07

C2000301 200 89 12577 1,38 12674 9,78 11203 3247,25 11183 2106,94 10857 152,86 10818 0,97 0,97 0,36

C2000302 200 116 14372 1,6 14851 9,01 13442 2129,52 13753 3128,83 12959 227,72 12736 0,96 0,94 1,75

C2000303 200 107 15524 1,38 16369 9,88 13490 5175,85 14122 3621,13 13864 334,97 13330 1,03 0,98 4,01

C2000304 200 113 14109 1,43 14358 8,63 12666 6736,62 13026 3453,44 12930 282,327 12417 1,02 0,99 4,13

C2000305 200 108 12922 1,48 12768 10,32 11681 3099,50 12407 3556,87 11567 298,13 11511 0,99 0,93 0,49

Table 3: Computational results for Christofides instances

Instance Name |V | |R| Fred Ins Fred2-OPT Ins2-OPT ANTURPP BC R1 R2 DEV1

Chr1 11 7 76 0 79 0,39 76 1,69 76 2,05 79 0,04 76 1,04 1,04 3,95

Chr2 14 12 155 0 153 0,00 152 3,08 153 2,50 152 0,30 152 1,00 0,99 0,00

Chr3 28 26 105 0 107 0,41 102 9,05 107 10,28 117 0,14 102 1,15 1,09 14,71

Chr4 17 22 84 0 89 0,30 84 6,39 86 9,70 86 0,08 84 1,02 1,00 2,38

Chr5 20 16 130 0 127 0,47 124 9,30 124 5,03 124 0,11 124 1,00 1,00 0,00

Chr6 24 20 107 0 121 0,66 102 16,81 104 12,91 102 1,42 102 1,00 0,98 0,00

Chr7 23 24 130 0 137 0,30 130 9,20 130 14,42 132 0,10 130 1,02 1,02 1,54

Chr8 17 24 122 0 123 0,20 122 7,70 122 7,09 125 0,06 122 1,02 1,02 2,46

Chr9 14 14 83 0 84 0,30 83 3,45 83 3,75 84 0,04 83 1,01 1,01 1,20

Chr10 12 10 80 0 91 0,39 80 2922,00 80 5,36 80 0,17 80 1,00 1,00 0,00

Chr11 9 7 26 0 23 0,30 23 0,77 23 1,09 23 0,01 23 1,00 1,00 0,00

Chr12 7 5 22 0 19 0,30 19 0,61 19 0,67 19 0,01 19 1,00 1,00 0,00

Chr13 7 4 35 0 35 0,30 35 0,49 35 0,69 35 0,01 35 1,00 1,00 0,00

Chr14 28 31 207 0 218 0,56 202 33,27 202 44,67 202 0,48 202 1,00 1,00 0,00

Chr15 26 19 445 0 459 0,00 441 23,22 441 17,49 441 0,51 441 1,00 1,00 0,00

Chr16 31 34 215 0 207 0,66 205 30,48 203 16,67 203 0,74 203 0,99 1,00 0,00

Chr17 19 17 116 0 117 0,48 112 7,44 112 7,06 112 0,15 112 1,00 1,00 0,00

Chr19 33 29 274 0 274 0,66 257 29,73 274 15,52 258 0,55 257 1,00 0,94 0,39

Chr20 50 63 402 0 408 0,67 400 58,97 400 103,89 398 2,07 398 1,00 1,00 0,00

Chr21 49 67 372 0 393 0,58 366 77,31 378 58,86 366 1,82 366 1,00 0,97 0,00

Chr22 50 74 633 0 669 0,59 622 190,63 647 151,70 626 2,54 621 1,01 0,97 0,81

Chr23 50 78 479 0 489 0,58 475 78,33 480 139,09 484 3,29 475 1,02 1,01 1,89

Chr24 41 55 411 0 413 0,66 405 60,16 405 50,56 417 1,64 405 1,03 1,03 2,96

type A instances, and 5.17% for type C instances. For both instance types, our algorithm
requires a very low CPU time to identify the final solution compared with other ones. On
the Christofides instances, we can see that, except for the instance Chr3, the maximum
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deviation among the ANTURPP solution and the optimal value is about 3.95%. The
instance Chr3 is the only one in which the optimality gap is high. After examining the
results related to this instance, we can deduce that the high optimality gap is due to a
stagnation of the search. The reason could be related to the structure of this instance and
to the use of an ACO algorithm which, contrary to a MAx Min Ant System (MMAS, [35]),
does not consider a limit on the amount of pheromone. In other words, this high gap could
be related to the fact that the best solution, found by the ants, with a high optimality
gap, has a high pheromone concentration. This concentration could tend to increase itself
and could force the ants to build the same solution. It is important to observe that this
problem occurs only on this instance, because, with the other, the ANTURPP is able to
find good solutions.

Therefore the ANTURPP algorithm obtains, within a reasonable computational time,
a tight upper bound, in particular with the instances defined on a large number of required
edges. Moreover, we have shown that the proposed method outperforms all existing URPP
algorithms in terms of computational times.
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[8] O. Cordón, F. Herrera, and T. Stützle. A review on the ant colony optimization metaheuristic:
Basis, models and new trends. Mathware and Soft Computing, 9(2-3):141–175, 2002.

[9] K.F. Doerner, M. Gronalt, R.F. Hartl, M. Reimann, C. Strauss, and M. Stummer. Savings
ants for the vehicle routing problem. In E. Hart M. Middendorf G.R. Raidl S. Cagnoni,
J. Gottlieb, editors, Applications of Evolutionary Computing, pages 11–20. Springer-Verlag,
Berlin, 2002.

[10] K.F. Doerner, R.F. Hartl, V. Maniezzo, and M. Reimann. Applying ant colony optimization to
the capacitated arc routing problem. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella,
and F. Mondada, editors, Ant Colony Optimization and Swarm Intelligence: 4th International
Workshop, ANTS 2004, pages 420–421. Springer-Verlag, Berlin, 2004.

[11] M. Dorigo. Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politecnico di
Milano, 1992.

[12] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw-Hill,
Englewood Dliffs, NJ, 1999.

[13] M. Dorigo, G. Di Caro, and L.M. Gambardella. Ant algorithms for discrete optimization.
Artificial Life, 5:137–172, 1999.

[14] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learning approach to
the travelling salesman problem. Transaction on Evolutionary Computation, 5:53–66, 1997.

[15] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26:1–13, 1996.
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