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Abstract

This chapter deals with the control of production systems and presents models for
production and maintenance planning. The production systems are supposed to be
subject to random abrupt changes in their structures that may results from break-
downs or repairs. Two categories of models are presented. The first one uses dynamic
programming and some appropriate numerical methods to compute the policies, while
the second category is totally based on linear programming.

Key Words: Production systems with random breakdown, Production planning,
Preventive maintenance.

Résumé

Ce chapitre traite de la commande des systèmes de production et présente un cer-
tain nombre de modèles pour la planification de la production et de la maintenance.
Les systèmes de production sont supposés être soumis à des changements brusques dans
leur structure qui peuvent provenir des pannes ou des réparations. Deux catégories
de modèles sont prśentées. La première utilise la programmation dynamique et une
méthode numérique approporiée pour calculer la solution, quand à la deuxième, la pro-
grammation linéaire est employée pour trouver la solution au problème de planification.
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1 Introduction

Production systems are the facilities by which we produce most of the goods we are con-
suming in our daily life. These goods ranges from electronics parts to cars and aircrafts.
The production systems are in general complex systems and represent a challenge for the
researchers from operations research and control communities. Their modeling and control
are among the hardest problems we can have.

In the literature, we can found two main approaches that have been used to tackle the
control problems for manufacturing systems (see [1, 6, 11, 39, 50, 57, 61, 63, 72] and the
references therein). The first one supposes that the production system is deterministic
(neglecting all the random events that may occur) and uses either the linear program-
ming or dynamic programming to solve the production planning problem (see [53] and the
references therein). Some attempts to include the maintenance have also been proposed.
The second approach includes the random events like breakdowns, repairs, etc. that are
inevitable in such systems and uses either the control theory or operations research tools
to deal with the production and the maintenance planning.

In the last decades the production and maintenance planning problem has been an
active area of research. The contribution on this topic can be divided into two categories.
The first one ignores the production planning and considers only the maintenance planning
for more details on this directions we refer the reader to [69] and the references therein,
while the second category combines the production and the maintenance planning (see [54]
and the references therein). For a recent review of maintenance policies that have been
used for production systems we refer the reader to the recent survey on the topics by [69]
and also to the reference therein.

The aim of this chapter is to propose models that provide simultaneously the produc-
tion and maintenance planning for manufacturing systems with random breakdowns. Two
models are covered. The first one uses the continuous-time framework and based on dy-
namic programming approach the policies of production and maintenance are computed.
The second one use discrete-time framework and proposes a hierarchical approach with
two levels with an appropriate algorithm to compute the production and maintenance. At
the two levels, the problems are formulated as linear programming problems.

The rest of this chapter is organized as follows. In Section 2, the production and
maintenance planning is formulated. In section 3, the approach that uses the dynamic
programming is presented and the procedure to solve the problem is developed. In Sec-
tion 4, the approach that uses the linear programming is presented and the hierarchical
algorithm is developed to compute the production and maintenance policies.

2 Problem statement and preliminary results

Let us consider a manufacturing systems with random breakdowns. The system is assumed
to be composed of m unreliable machines and producing p part types. Since the machines
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are unreliable, it results that the production capacity will change randomly which will
make it difficult to respond in some cases to a given demand. The preventive maintenance
is a way to keep the average system capacity in a desired range and therefore be able to
respond to the desired demand. This requires a good planning of the maintenance and at
the same time the production.

The problem we will tackle in this chapter consists of determining the production and
the maintenance policies we should adopt in order to satisfy the desired demand despite
the random events that may disturb the production planning. This chapter will propose
two ways to deal with the production and maintenance planning. The first approach that
will be developed in Section 3, uses the continuous-time framework and based on dynamic
programming proposes a way to compute the solution of the production and maintenance
planning. This approach unfortunately needs a lot of numerical computations. To avoid
this another approach is proposed at Section 4 and it uses a hierarchical algorithm with
two levels. It separates the production and the maintenance at the two levels and treats
them separately as linear programming optimization problems.

Before ending this section, let us recall some results that will be used in Section 3.
Mainly, we recall the piecewise deterministic problem and its dynamic programming solu-
tion and the numerical method that can be used to solve the Hamilton Jacobi Bellmann
equation.

Let E be a countable set and ℓ be a function mapping E into N, i.e. ℓ : E → N. For
each α ∈ E , E0

α denotes a Borel set of R
ℓ(α) , i.e. E0

α ⊂ R
ℓ(α). Define

E0 =
⋃

α∈S

E0
α = {(α, z) : α ∈ E , z ∈ E0

α},

which is a disjoint union of E0
α’s. For each α ∈ E , where we assume the vector field

gα : E0
α → E0

α

is a locally Lipschitz continuous function, determining a flow φα(x). For each x = (α, z) ∈
E0, define

t∗(x) =

{

inf{t > 0 : φα(t, z) ∈ ∂E0
α},

∞ if no such time exists,

where ∂E0
α is the boundary of E0

α. Thus t∗(x) is the boundary hitting time for the starting
point x. If t∞(x) denotes the explosion time of the trajectory φα(·, z), then we assume
that t∞(x) = ∞ when t∗(x) = ∞, thus effectively ruling out explosions. Now define

∂±E0
α = {z ∈ ∂E0

α : z = φα(±t, ξ) for some ξ ∈ E0
α, t > 0},

∂1E
0
α = ∂−E0

α\∂
+E0

α,

Eα = E0
α

⋃

∂1E
0
α.
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With these definitions, the state space and boundary of a piecewise deterministic Markov
process (PDP) can be respectively defined as follows:

E =
⋃

α∈E

Eα, state space, (1)

Γ∗ =
⋃

α∈E

∂+E0
α, boundary. (2)

Thus the boundary of the state space consists of all those points which can be hit by the
state trajectory. The points on some ∂E0

α which cannot be hit by the state of the trajectory
are also included in the state space. The boundary of E consists of all the active boundary
points, i.e. points in ∂E0

α that can be hit by the state trajectory.

The evolution of a PDP taking values in E is characterized by its three local charac-
teristics:

1. a Lipschitz continuous vector field fα : E → R
n, which determines a flow φα(t, z) in E

such that, for t > 0.

d

dt
φα(t, z) = fα(t, z), φα(0, z) = z,∀x = (α, z) ∈ E.

2. a jump rate q : E → R+, which satisfies that for each x ∈ E, there is an ε > 0 such
that

∫ ε

0
q(α, φα(t, z))dt < ∞.

3. a transition measure Q : E → P(E), where P(E) denote the set of probability measures
on E.

By using these characteristics, a right-continuous sample path {xt : t > 0} starting at
x = (α, z) ∈ E can be constructed as follows. Define

xt
∆
= (α, φα(t, z)), if 0 ≤ t < τ1,

where τ1 is the realization of the first jump time T1 with the following generalized negative
exponential distribution

P (T1 > t) = exp

(

−

∫ t

0
q(α, φα(s, z))ds

)

.

Having realized T1 = τ1, we have xT−

1

∆
= (α, φα(τ1, z) and the post-jump state xτ1 which

has the distribution given by
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P ((α′, zτ1) ∈ A|T1 = τ1) = Q(A,x
τ−

1

)

on a Borel set A in E.

Restarting the process at xτ1 and proceeding recursively according to the same recipe,
one obtains a sequence of jump-time realizations τ1, τ2, · · · . Between each two consecutive
jumps, α(t) remains constant and z(t) follows the integral curves of fα. Considering this
construction as generic yields the stochastic process {xt : t ≥ 0, x0 = x} and the sequence
of its jump times T1, T2, · · · . It can be shown that xt is a strong Markov process with right
continuous, left-limited sample paths ( see [29]).

Piecewise-deterministic processes include a variety of stochastic processes arising from
engineering, operation research, management science, economics and inventory system etc.
Examples are queuing systems, insurance analysis ( see Dassios and Embrechts [28]), capac-
ity expansion (see Davis, Dampster, Sethi and Vermes [32]), permanent health insurance
model ( Davis [29]), inventory control model (see Sethi and Zhang [61]), production and
maintenance model (see Boukas and Haurie [11]). Due to its extensive applications, the op-
timal control problem has received considerable attention. Gatarek [38], Costa and Davis
[27], and Davis [29] have studied the impulse control of PDPs. In the context of nonsmooth
analysis, Dempster [33] developed the condition for the uniqueness of the solution to the
associated HJB equation of PDPs optimal control involving Clarke generalized gradient.
The existence of relaxed controls for PDPs was proved by Davis [29]. Soner [64], Lenhart
and Liao [51] used the viscosity solution to formulate the optimal control of PDPs. For
more information on the optimal control of PDPs, the reader is referred to Davis [29] and
Boukas [9].

In this chapter, the models for the production and maintenance control in manufac-
turing system that we are treating here can be presented as a special class of piecewise
deterministic Markov processes without active boundary points in the state space and the
state jump can be represented by a function g. The model can be described as follows:

ż(t) = fα(t)(z(t), u(t)), ∀t ∈ [Tn, Tn+1), (3)

z(Tn) = gα(Tn)(z(T−
n )), n = 0, 1, 2, . . . (4)

where z = [z1, . . . , zp]
T ∈ R

p, u = [u1, . . . , uq]
T ∈ R

q are respectively, the state and control

vectors, fβ = [fβ
1 , . . . , fβ

p ]T and gβ = [gβ
1 , . . . , gβ

p ]T represent real valued vectors, and
xT denotes the transpose of x. The initial conditions for the state and for the jump
disturbance, i.e the mode, are respectively z(0) = z0 ∈ R

p and α(0) = β0 ∈ E . The set E
is referred as the index set.

α = {α(t) : t ≥ 0} represents a controlled Markov process with right continuous tra-
jectories and taking values on the finite state space E . When the stochastic process α(t)
jumps from mode β to mode β′, the derivatives in (3) change from fβ(z, u) to fβ′

(z, u).
Between consecutive jump times the state of the process α(t) remains constant. The evo-
lution of this process is completely defined by the jump rates q(β, z, u) and the transition
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probabilities π(β′|β, z, u). The set E is assumed to be finite. Tn (random variable) is the
time of the occurrence of the nth jump of the process α. For each β ∈ E , let q(β, z, u) be
a bounded and continuously differentiable function. At the jump time Tn, the state z is
reset at a value z(Tn) defined by Eq. (4) where gβ(.) : R

p 7→ R
p is, for any value β ∈ E , a

given function.

Remark 2.1 This description of the system dynamics generalizes the control framework
studied in depth by Rishel [58], Wonham [70] and Sworder and Robinson [65], etc. The
generalization lies in the fact that the jump Markov disturbances are controlled, and also
from the discontinuities in the z-trajectory generated by Eqs. (3)–(4).

For each β ∈ E , let fβ(., .) : R
p×R

q 7→ R
p be a bounded and continuously differentiable

function with bounded partial derivatives in z. Let U(β), β ∈ E , (a closed subset of R
q)

denotes the control constraints. Any measurable function with values in U(β), for each
β ∈ E , is called an admissible control. Let U be a class of stationary control functions
uβ(z), with values in U(β) defined on E × R

p, called the class of admissible policies. The
continuous differentiability assumption is a severe restriction on the considered class of
optimization problems, but it is the assumption which allows the simpler exposition that
was given in Boukas and Haurie [12]. Later, in the practical models, the restriction will
be removed by introducing the notion of viscosity solution of Hamilton-Jacobi-Bellman
equation.

The optimal control problem may now be stated as follows: given the dynamical system
described by Eqs. (3)–(4), find a control policy uβ(z) ∈ U such that the expected value of
the cost functional

J(β, z, u) = Eu

{

∫ ∞

0
e−ρtc(α(t), z(t), u(t))dt|α(0) = β, z(0) = z

}

(5)

is minimized over U .

In Equation (5), ρ (ρ > 0) represents the continuous discount rate, and c(β, ., .) :
R

p×R
q 7→ R

+, β ∈ E , is the family of cost rate functions, satisfying the same assumptions
as fβ(., .).

We now proceed to give more precise definition of the controlled stochastic process. Let
(Ω,F) be a measure space. We consider a function X(t, ω) defined as:

X : D × Ω 7→ E × R
p, D ⊂ R

+,

X(t, ω) = (α(t, ω), z(t, ω))

which is measurable with respect to BD ×F (BD is a σ-field).

Let Ft = σ{X(s, .) : s ≤ t} be the σ-field generated by the past observations of X up
to time t. We now assume the following:
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Assumption 2.1 The behavior of the dynamical system (3)–(4) under an admissible con-
trol policy uβ(.) ∈ U is completely described by a probability measure Pu on (Ω,F∞).
Thus the process Xu = (X(t, .),Ft, Pu), t ∈ D, is well defined. For a given ω ∈ Ω with
z(0, ω) = z0 and α(0, ω) = β0, we define:

T1(ω) = inf{t > 0 : α(t, ω) 6= β0},

β1(ω) = α(T1(ω), ω),

...

Tn+1(ω) = inf{t > Tn(ω) : α(t, ω) 6= α(Tn, ω)},

βn+1(ω) = α(Tn+1(ω), ω),

...

Assumption 2.2 For any admissible control policy uβ(.) ∈ U , and almost any ω ∈ Ω,
there exists a finite number of jump times Tn(ω) on any bounded interval [0, T ], T > 0.
Thus the function Xu(t, ω) = (αu(t, ω), zu(t, ω)) satisfies:

αu(0, ω) = β0

zu(t, ω) = z0 +

∫ t

0
fβ0(zu(s, ω), uβ0

(z(s, ω)))ds, ∀t ∈ [0, T1(ω)),

...

αu(t, ω) = βn(ω)

zu(t, ω) = gβn(ω)(zu(T−
n (ω), ω)) +

∫ t

Tn(ω)
fβn(ω)(zu(s, ω), uβn

(z(s, ω)))ds,

∀t ∈ [Tn(ω), Tn+1(ω)),

...

Assumption 2.3 For any admissible control policy uβ(.) ∈ U , we have:

Pu

(

Tn+1 ∈ [t, t + dt]| Tn+1 ≥ Tn, α(t) = βn, z(t) = z
)

= q(βn, z, uβn
(z))dt + o(dt),

Pu

(

α(t) = βn+1| Tn+1 = t, α(t−) = βn, z(t−) = z
)

= π(βn+1|βn, x, u).

Given these assumptions and an initial state (β0, z
0), the question which will be ad-

dressed in the rest of this section is to find a policy uβ(.) ∈ U that minimizes the cost
functional defined by (5) subject to the dynamical system (3)–(4).

Remark 2.2 From the theory of the stochastic differential equations and the previous as-
sumptions on the functions fβ and gβ for each β, we recall that the system (3)–(4) admits
a unique solution corresponding to each policy uβ(z) ∈ U . Let zβ(s; t, z) denote the value
of this solution at time s.
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The class of control policies U is such that for each β, the mapping uβ(.) : z → U(β) is
sufficiently smooth. Thus for each control law u(.) ∈ U , there exists a probability measure
Pu on (Ω,F) such that the process (α, z) is well defined and the cost (5) is finite. Let the
value function V (β, z) be defined by the following equation:

V (β, z) = inf
u∈U

Eu

{

∫ ∞

0
e−ρτc(α(τ), z(τ), u(τ))dτ |α(0) = β, z(0) = z

}

.

Under the appropriate assumptions, the optimality conditions of the infinite horizon prob-
lem are given by the following theorem:

Theorem 2.1 A necessary and sufficient condition for a control policy uβ(.) ∈ U to be
optimal is that for each β ∈ E its performance function V (β, z) satisfies the nonlinear
partial differential equation:

ρV (β, z) = min
u(.)∈U(β)

{

c(β, z, u) +

p
∑

i=1

∂

∂zi
V (β, z)fβ

i (z(t), uβ(z)) − q(β, z, uβ(z))V (β, z)

+
∑

β′∈E−{β}

q(β, z, u)V (β′, gβ′

(z(t)))π(β′|β, z, u)
}

, ∀β ∈ E (6)

where ∂
∂zi

V (β, z) stands for the partial derivative of the value function V (β, z) with respect
to the component zi of the state vector z.

Proof. The reader is referred to Boukas and Haurie [12] for the proof of this theorem.

As we can see the system given by (6) is not easy to solve since it combines a set
of nonlinear partial derivatives equations and optimization problem. To overcome this
difficulty, we can approximate the solution by using numerical methods. In the next section,
we will develop two numerical methods to solve these optimality conditions and which we
believe that they can be extended to other class of optimization problems especially the
nonstationary case.

To approximate the solution of the Hamilton-Jacobi-Bellman (HJB) equation corre-
sponding to the deterministic or the stochastic optimal control problem, many approaches
have been proposed. For this purpose, we refer the reader to Boukas [8] and Kushner and
Dupuis [49].

In this section we will give an extension of some numerical approximation techniques
which were used respectively by Kushner [48], Kushner and Dupuis [49] and by Gonzales
and Roffman [42] to approximate the solution of the optimality conditions corresponding
to other class of optimization problems. Kushner has used his approach to solve an ellip-
tic and parabolic partial differential system associated with a stochastic control problem
with diffusion disturbances. Gonzales and Roffman have used their approach to solve a
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deterministic control problem. Our aim is to use these approaches to solve a combined
nonlinear set of coupled partial differential equations representing the optimality condi-
tions of the optimization problem presented in last subsection. The idea behind these
approaches consists, within a finite grid Gh

z with unit cell of lengths (h1, ..., hp) for the
state vector and a finite grid Gh

u with unit cell of lengths (y1, ..., yq) for the control vector,
of using an approximation scheme for the partial derivatives of the value function V (β, z)
which will transform the initial optimization problem to an auxiliary discounted Markov
decision problem. This will allow us to use the well-known techniques used for this class
of optimization problems such as successive approximation or policy iteration.

Before presenting the numerical methods, let us define the discounted Markov decision
process (DMDP) optimization problem. Consider a Markov process Xt which is observed
at time points t = 0, 1, 2, . . . to be in one of possible states of some finite state space
S = {1, 2, . . . , N}. After observing the state of the process, an action must be chosen from
a finite space action denoted by A.

If the process Xt is in state s at time t and action a is chosen, then two things occur:
i) we incur a cost c(s, a) which is bounded and ii) the next state of the system is chosen
according to the transition probabilities Pss′(a).

The optimization problem assumes a discounted factor δ ∈ (0, 1), and attempts to
minimize the expected discounted cost. The use of δ is necessary to make the costs incurred
at future dates less important than the cost incurred today. A mapping γ : S → A is called
a policy. Let A be set of all the policies. For a policy γ, let

Vγ(s) = Eγ

[

∞
∑

t=0

δtc(Xt, at)| X0 = s
]

,

where Eγ stands for the conditional expectation given that the policy γ is used.

Let the optimal cost function be defined as:

Vα(s) = inf
γ

V (s).

In the following, we will recall some known results on this class of optimization problems.
The reader is referred to Haurie and L’Ecuyer [43] for more information on the topic and
for the proofs of these results.

Lemma 2.1 The expected cost satisfies the following equation:

Vα(s) = min
a∈A

{

c(s, a) + δ
N

∑

s′=1

Pss′(a)Vα(s′)
}

, ∀s ∈ S.
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Let B(I) denote the set of all bounded real-valued functions defined on the state space
S. Let the mapping Tα be defined by:

Tα : B(I) → B(I),

(Tαw)(s) = min
a∈A

{

c(s, a) + δ
N

∑

s′=1

Pss′(a)w(s′)
}

, ∀s ∈ S. (7)

Let T k
α be the composition of the map Tα with itself k times.

Lemma 2.2 The mapping Tα defined by (7) is contractive.

Lemma 2.3 The expected cost Vα(.) is the unique solution of the following equation:

Vα(s) = min
a∈A

{

c(s, a) + δ
N

∑

s′=1

Pss′(a)Vα(s′)
}

, ∀s ∈ S.

Furthermore, for any w ∈ B(I) the mapping T n
α w converges to Vα as n goes to infinity.

Let us now see how we can put our optimization problem in this formalism. Since our
problem has a continuous state vector z and a continuous control vector u, we need first to
choose an appropriate discretization of the state space and the control space. Let Gh

z and
Gh

u denote respectively the corresponding discrete state space and discrete control space
and assume that they have finite elements with respectively nz points for Gh

z and nu points
for Gh

u.

For the mode of the piecewise deterministic system, we do not need any discretization.
Let S denote the global state space, S = E × Gh

z and N its number of elements. As we
will see later, the constructed approximating Markov process Xt will jump between these
states, (s = (α, z) ∈ S), with the transition probabilities Pss′(a), when the control action
a is chosen from Gh

u. These transition probabilities are defined as:

Pss′(a) =

{

pβ
h(z, z + h; a), if z jumps

p̃β
h(β, z;β′, a), if α jumps ,

where pβ
h(z, z + h; a) and p̃β

h(β, z;β′, a) are the probability transition between state s when
the action a is used. The corresponding instantaneous cost function c(s, a) and the discount
factor δ of the approximating DMDP depend on the used discretization approach. Their
explicit expressions will be defined later.

Let hi denote the finite difference interval, in the coordinate i, and ei the unit vector
in the ith coordinate direction. The approximation that we use for ∂

∂zi
V (β, z) for each

β ∈ E , will depend on the sign of fβ
i (z, u). Let Gh

z denote the finite difference grid which
is a subset of R

p.
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This approach was used by Kushner to solve some optimization problems and it consists
of approximating the value function V (β, z) by a function Vh(β, z), and to replace the first
derivative partial derivative of the value function, ∂

∂zi
V (β, z), by the following expressions:

∂

∂zi
V (β, z) =

{

1
hi

[Vh(β, z + eihi) − Vh(β, z)], if ż(t) ≥ 0
1
hi

[Vh(β, z) − Vh(β, z − eihi)], otherwise.
(8)

For each β, define the functions pβ
h(.; ., .), p̃β

h(., .; ., .) and Qβ
h(., .) respectively as follows:

Qβ
h(z, u) = q(β, z, u) +

p
∑

i=1

[|żi(t)|/hi],

pβ
h(z; z ± eih, u) = f±

i (z, u)/[hiQ
β
h(z, u)],

p̃β
h(β, z;β′, u) = q(β, z, u)π(β′|β, z, u)/Qβ

h(z, u),

f+
i (z, u) = max(0, fβ

i (z, u)),

f−
i (z, u) = max(0,−fβ

i (z, u)).

Let pβ
h(z; z ± h, u) = 0 for all points z not in the grid.

Putting the finite difference approximation of the partial derivatives as defined in (8)
into (6), and collecting coefficients of the terms Vh(β, z), Vh(β, z ± eihi), yields, for a finite
difference interval h applying to z,

Vh(β, z) =
{ c(β, z, u)

Qβ
h(z, u)

[

1 + ρ

Q
β
h
(z,u)

] +
1

[

1 + ρ

Q
β
h
(z,u)

]

[

∑

z′∈Gh

pβ
h(z; z′, u)Vh(β, z′) +

∑

β′∈E−{β}

p̃β
h(β, z;β′, u)Vh(β′, gβ′

(z))
]}

. (9)

Let us define c(s, u) and δ as follows:

c(s, u) =
cβ(z, u)

Qβ
h(z, u)

[

1 + ρ

Q
β
h
(z,u)

] ,

δ =
1

1 + ρ

Q
β
h
(z,u)

.

A careful examination of Eq. (9) reveals that the coefficient of Vh(., .) are similar to
transition probabilities between points of the finite set S since they are nonnegative and
sum to, at most, unity. c(s, u) is also nonnegative and bounded. δ, as defined, represents
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really a discount factor with values in (0, 1). Then, the Eq. (9) has the basic form of the
cost equation of the discounted Markov decision process optimization for a given control
action. The approximating optimization problem built on the finite state space S has then
the following cost equation:

Vh(β, z) = min
u∈Gh

u

{ c(β, z, u)

Qβ
h(z, u)[1 + ρ

Q
β
h
(z,u)

]
+

1

[1 + ρ

Q
β
h
(z,u)

]

[

∑

z′∈Gh

pβ
h(z; z′, u)Vh(β, z′) +

∑

β′∈E−{β}

p̃β
h(z, β;β′, u)

Vh(β′, gβ′

(z))
]}

. (10)

Based on the results presented previously, we claim the uniqueness and the existence of
the solution of the approximating optimization problem. It is plausible that the algorithms
used in the discounted Markov process optimization would be helpful in computing this
solution.

3 Dynamic programming approach

Let us consider a manufacturing system that has m machines and produces n part types.
When staying in stock, the produced parts of type j will deteriorate with constant rate
γj, 1 ≤ j ≤ n. Suppose the machines are failure-prone and assume that every machine
has p modes denoted by S = {1, · · · , p}. The mode of machine i is denoted by ri(t) and
r(t) = (r1(t), · · · , rm(t))⊤ ∈ S = Sm denotes the state of the system. ri(t) = p means that
machine i is under repair and ri(t) = j 6= p means that machine i is in mode j. In this
mode, the machine can produce any part type with an upper production capacity ūj . ri(t)
is assumed to be a Markov process taking values in state space S with state transition
probabilities

P [ri(t + h) = l|ri(t) = k] =

{

qklh + o(h), if l 6= k

1 + qkkh + o(h), otherwise
(11)

with qkl ≥ 0 for all l 6= k and qkk = −
∑

l∈S,l 6=k qkl for all k ∈ S, and limh→0
o(h)

h
= 0.

Assume that {rj(t), t ≥ 0}, 1 ≤ j ≤ m are independent. From these assumptions it follows
that {r(t), t ≥ 0} is a Markov process, with state space S and generator Λ = (λαα′),
α = (α1, · · · , αm), α′ = (α′

1, · · · , α′
m) ∈ S. These jump rates can be computed from the

individual jump rates of the machines.
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Suppose the demand rates of the products are constants and denoted by d = (d1, · · · ,
dn)⊤. Let uij(t) be the production rate of part type j on machine i and write

u(t) =











u11(t) · · · um1(t)
u12(t) · · · um2(t)

...
...

...
u1n(t) · · · umn(t)











which are the control variables in this paper. To complete our model, let us give some
notations. For any x ∈ R, x+ = max(x, 0), x− = max(−x, 0). For any x ∈ Rn, let

x⊕ = (x+
1 , · · · , x+

n )⊤, x⊖ = (x−
1 , · · · , x−

n )⊤, |x| = (|x1|, · · · , |xn|)
⊤

and ‖x‖ denote the Euclidian norm.

Under above assumptions, the differential equation that describes the evolution of the
inventory of our facility is therefore given by:

ẋ(t) = f(x(t), u(t), r(t)), x(0) = x0, r(0) = α, (12)

where

f(x(t), u(t), r(t)) = −γx⊕(t) + u(t)e − d, (13)

with γ = diag{γ1, · · · , γn} and e = (1, · · · , 1)⊤ ∈ R
m. In (12) u(t) ∈ R

n×m
+ is the control

vector which is assumed to satisfy the following constraints

u(t) ∈ U(r(t))
∆
=

{

u(t) : 0 ≤ bu(t) ≤ ūr(t)

}

(14)

where ūr(t) = (ūr1(t), · · · , ūrm(t)) is the production capacity of the system and b = (b1, · · · ,
bn) with bl ≥ 0 is a constant scalar.

Our objective in this paper is to seek a control law that minimizes the following cost
function:

J(x0, α, u(·)) = E

[∫ ∞

0
e−ρtg(x(t), r(t))dt|x(0) = x0, r(0) = α

]

, (15)

where ρ (ρ ≥ 0) is the discount factor and E stands for the mathematical expectation
operator, g(x(t), r(t)) = [c+x⊕(t) + c−x⊖(t)] with c+ ∈ R

1×n
+ being the inventory holding

cost and c− ∈ R
1×n
+ is the shortage cost.

This optimization problem falls into the framework of the optimization of the class of
systems with Markovian jumps. This class of systems has been studied by many authors
and many contributions have been reported to the literature. Among them, we quote
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Krasovskii and Lidskii 1960, Rishel 1975, Boukas 1993, Sethi and Zhang 1994 and the
references therein.

The goal of the rest of this section is to determine what would be the optimal production
rate u(t) that minimizes the cost function (15). Before determining this control, let us
introduce some useful definitions.

Definition 3.1 A control u(·) = {u(t) : t ≥ 0} with u(t) ∈ Rn×m
+ is said to be admissible

if: (i) u(·) is adapted to the σ-algebra generated by the random process r(·), denoted as
σ{r(s) : 0 ≤ s ≤ t}, and (ii) u(t) ∈ U(r(t)) for all t ≥ 0.

Let U denote the set of all admissible controls of our control problem.

Definition 3.2 A measurable function u(x(t), r(t)) : R
n × S → R

n×m is an admissible
feedback control, or simply the feedback control, if (i) for any given initial continuous state
x and discrete mode α, the following equation has an unique solution x(·):

ẋ(t) = −γx⊕(t) + u(x(t), r(t))e − d, x(0) = x (16)

and (ii) u(·) = u(x(·), r(·)) ∈ U .

Let the value function v(x(t), r(t)) be defined by:

v(x(t), r(t)) = min
u(t)

J(x(t), r(t), u(·)). (17)

Using the dynamic programming principle (see Boukas, 1993), we have

v(x(t), r(t)) = min
u(t)

E

[
∫ ∞

t

e−ρ(s−t)g(x(s), r(s))ds|x(t), r(t)

]

. (18)

Formally, the Hamilton-Jacobi-Bellman equation can be given by the following:

min
u(t)∈U(r(t))

[(Auv)(x(t), r(t)) + g(x(t), r(t))] = 0, (19)

where (Auv)(x(t), r(t)) is defined as follows:

(Auv)(x(t), r(t)) = f⊤(x(t), u(t), r(t))
∂v

∂x
(x(t), r(t)) +

∑

β∈S

λr(t)βv(x(t), β). (20)

To characterize the optimal control, let us establish some properties of the value func-
tion.

Theorem 3.1 For any control u(·) ∈ U , the state trajectory of (12) has the following
properties.
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( i) Let xt be the state trajectory with initial state x0, then there exists C1 ∈ R
n
+ such that

|xt| ≤ |x0| + C1t. (21)

(ii) Let x1
t , x2

t be the state trajectories corresponding to (x1, u(·)) and (x2, u(·)) respec-
tively, then there exists a constant C2 > 0 such that

|x1
t − x2

t | ≤ C2|x1 − x2|, (22)

implying
‖x1

t − x2
t ‖ ≤ C2‖x1 − x2‖.

Proof. For the proof of this theorem, we refer the reader to Boukas and Liu [14].

Theorem 3.2 ( i) For each r(t) ∈ S, the value function, v(x(t), r(t)), is convex;

(ii) There exists a constant C3, such that

v(x(t), r(t)) ≤ C3(1 + ‖x(t)‖);

(iii) For each r(t) ∈ S, the value function, v(x(t), r(t)) is Lipschitz.

Proof. For the proof of this theorem, we refer the reader to Boukas and Liu [14].

Theorem 3.3 Suppose that there is a continuously differentiable function v̂(x(t), r(t))
which satisfies the Hamilton-Jacobi-Bellman equation (19). If there exists u⋆(·) ∈ U , for
which the corresponding x⋆(t) satisfies (12) with x⋆(0) = x, and

min
u∈U(r(t))

[

(Auv̂)(x∗(t), r(t))

]

= (Au∗ v̂)(x∗(t), r(t)) (23)

almost everywhere in t with probability one, then v̂(x, α) is the optimal value function and
u⋆(.) is optimal control, i.e.

v̂(x, α) = v(x, α) = J(x, α, u⋆(.)).

Proof. For the proof of this theorem we refer the reader to Boukas and Liu [14].

This discussion shows that solving the optimal control problem involves solving HJB
equation (19), which often doesn’t have closed form solution in the general case. However,
in the simplest case, Theorem 3.3 reveals that the optimal control has some special struc-
ture, which may be helpful to design the controller. In the sequel of this paper, we will
restrict our study to the case of one machine that has two modes and produces one part
type, i.e. m = 1, p = 2, n = 1, S = {1, 2}. In this case, the deteriorating rate, production
capacity and demand are denoted by γ, ū and d respectively.
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Let us also assume that the value function is continuously differentiable with respect to
the continuous arguments. Using the expressions for the functions f(·) and g(·) and the
HJB equation given by Eq. (19), one has

ρv(x, 1) = min
u

[

(

−γx+ + u − d
)

vx(x, 1) + q11v(x, 1)

+q12v(x, 2) + c+x+ + c−x−
]

, (24)

ρv(x, 2) =
[

(

−γx+ − d
)

vx(x, 2) + q21v(x, 1)

+q22v(x, 2) + c+x+ + c−x−
]

. (25)

Based on the structure of the optimality conditions, it results that the optimal control
law is given by:

u⋆(t) =











ū, if vx(x(t), 1) < 0 and r(t) = 1,

γx+(t) + d, if vx(x(t), 1) = 0 and r(t) = 1,

0, otherwise.

(26)

Moreover, by the convexity of v(x, 1) we have

u⋆(t) =







ū, if x < x∗(t), and r(t) = 1
γI{x≥0}x

∗ + d, if x = x∗(t) and r(t) = 1

0, otherwise
(27)

where x∗ is the minimal point of v(x, 1), i.e. vx(x∗, 1) = 0.

Let the optimal control be u⋆ and define:

q12 = λ, (28)

q21 = µ, (29)

V (x) =

[

v(x, 1)
v(x, 2)

]

. (30)

With these definitions and if we let x⋆ (Without loss of generality, we assume x∗ to
be greater than 0, other cases can be handled similarly) denote the minimum of the value
function at mode 1, the optimality conditions become:

• x > x⋆, then u⋆ = 0 and the optimality conditions become:

Vx(x) =

[

− λ+ρ
γx+d

λ
γx+d

µ
γx+d

− µ+ρ
γx+d

]

V (x) +

[

c+x
γx+d
c+x

γx+d

]

(31)
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• x = x⋆, then γx + d = u⋆ and the optimality conditions become:

v(x, 1) =

[

λ

ρ + λ

]

v(x, 2) +

[

c+x

ρ + λ

]

(32)

and

vx(x, 2) =

[

−
ρ(ρ + λ + µ)

(ρ + λ)(γx + d)

]

v(x, 2) +

[

ρ + µ + λ

ρ + λ

]

c+x (33)

• 0 ≤ x < x⋆ then u⋆ = ū and the optimality conditions become:

Vx(x) =

[

− λ+ρ
γx+d−ū

λ
γx+d−ū

µ
γx+d

− µ+ρ
γx+d

]

V (x) +

[

c+x
γx+d−ū

c+x
γx+d

]

(34)

• x ≤ 0 then u⋆ = ū and the optimality conditions become:

Vx(x) =

[

−λ+ρ
d−ū

λ
d−ū

µ
d

−µ+ρ
d

]

V (x) −

[

c−x
d−ū
c−x
d

]

(35)

To solve the HJB equations, we can use the numerical method used in Boukas 1995. This
method consists of transforming the optimization problem to a Markov decision problem
(MDP) with all the nice properties that guarantee the existence and the uniqueness of the
solution. The key point of this technique is first to discretize the state space R and control
space [0, ū] to get a discrete state space Gx = [−x,−x + hx, · · · , x̄] with x, x̄ great enough
and a discrete control space Gu = [0, hu, · · · , ū], and then define a function vh(x, i) on
Gx × S by letting vh(x, i) = v(x, i). By replacing vx(x, i) by

{

1
hx

[v(x + hx, i) − v(x, i)] , if f(x, u, i) ≥ 0,
1

hx
[v(x, i) − v(x − hx, i)] , otherwise

and substituting vh(x, i) into (24) and (25) gives the following MDP problem:

vh(x, 1) = min
u∈Gu

[

c(x, 1) +
1

1 + ρ

Q1
hx

(

(−γx+ + u − d)+

hxQ1
hx

vh(x + hx, 1)

+
(−γx+ + u − d)−

hxQ1
hx

vh(x − hx, 1) +
q12

Q1
hx

vh(x, 2)

)]

, (36)

vh(x, 2) = c(x, 2) +
1

1 + ρ

Q2
hx

[

| − γx+ − d|

hxQ2
hx

vh(x − hx, 2) +
q21

Q2
hx

vh(x, 1)

]

, (37)

where hx is the discretization step for the x, c(x, α), Q1
h and Q2

h are defined by:

c(x, α) =
c+x+ + c−x−

Qα
hx

[

1 + ρ
Qα

hx

] , for all α ∈ S, (38)
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Q1
hx

=
|γx+ − u + d|

hx
+ |q11|, (39)

Q2
hx

=
|γx+ + d|

hx
+ |q22|. (40)

The successive approximation technique and the policy iteration technique can be used to
find an approximation of the optimal solution. For more information on these techniques,
we refer the reader to Bertsekas 1987, Boukas 1995 or Kushner and Dupuis 1992 and the
references therein.

Remark 3.1 By the same argument as in Boukas et al. 1996, it is easy to prove that
limh→0 vh(x, i) = v(x, i),∀i ∈ S, which establishes the convergence of the approximation
algorithm.

4 Linear programming approach

In the previous section we developed an approach to plan the production and maintenance
using a continuous-time model. With this model we were able to compute simultaneously
the production and maintenance. But this approach requires a lot of computations before
the solution can be obtained. To overcome this, we propose a new approach that uses linear
programming and an hierarchical algorithm for this purpose. To show how this approach
works, we will restrict ourself to one machine one part type, but we have to keep in mind
that the model we propose here is valid for any number of machines and part types. For
this purpose, let us consider a production system with one machine that produces one part
type and assume that the system must satisfy a given demand d(k), k = 0, 1, 2, · · · that
can be constant or time varying. Let the dynamics of the production system be described
by the following difference equation:

x(k) = x(k − 1) + u(k) − d(k), x(0) = x0 (41)

where x(k) ∈ R, u(k) ∈ R and d(k) ∈ R represent respectively the stock level, the produc-
tion and the demand at period kT , k = 0, · · · , N .

The stock level, x(k) and the production u(k) must satisfy at each period kT the
following constraints:

0 ≤ u(k) ≤ ū (42)

x(k) ≥ 0 (43)

where ū is known positive constant that represents the maximum production the system
can have.

Remark 4.1 The upper bound constraint on the production represents the limitation of
the capacity of the manufacturing system, while the one of the stock level means that we
do not tolerate the negative stock. Notice that we can also include an upper bound of the
stock level.
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The objective is to plan the production in order to satisfy the given demand during a
finite horizon. Since the capacity may change with time in a random way, it is therefore
required to include the preventive maintenance and combine it to the production plan-
ning problem. By performing maintenance we keep the capacity in average in a certain
acceptable values.

To solve the simultaneous production and maintenance planning problem, we use the
following hierarchical approach with two levels

1. at level one we plan the preventive maintenance

2. and at level two, using the results of level one, we try satisfy the demand during the
periods the machine is up

To present each level in this algorithm let:

• T be the time period that can be one hour, one day, one month, etc.

• x(k) be the stock level at time kT

• u(k) be production at time kT

• d(k) be the demand at time kT

• Tupi
be the amount of units of time during which the machine is working before the

ith maintenance takes place (Tupi
is a multiple of T )

• Td be the amount of units of time of the ith maintenance takes (Td is a multiple of
T and it is assumed to be the same for all the interventions)

• NT be the total time for the planning (N is a positive integer)

• v be the upper bound of Tupi

• µ be the number of preventive-maintenance taking place in NT

• wi(k) the number of deferred items at time kT for i period

• av be the availability of the machine

• ū be the upper bound of u(k)

The algorithm we will adopt is summarized as follows:

1. Initialization: Choose the data N , T , µ, Td

2. Solve a LP problem that gives the dates of the preventive intervention during the
interval of time [0, NT ]

3. Test: If the problem is feasible go to Step 4, otherwise increase µ and go Step 2

4. Solve the LP problem for production planning to the determine the decision variables

5. Test: If the problem is feasible stop otherwise the interval of time [0, NT ] is not
enough to respond to the demand and no feasible solution can be obtained. We can
increase the interval and repeat the steps.

The problem at level one tries to divide the planning interval [0, NT ] in successive
periods for production, Tupk and maintenance Tdk (Tdk is supposed to be constant here),
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k = 1, 2, · · · , µ, that sum to a time that is less or equal to NT . It is also considered that
the availability of the machine should be greater or to a given av. We should also notice
that Tupk is between 0 and v for any k. The formulation of the optimization problem at
this level is given by:



































minmax
[
∑µ

k=1 [Tupk
+ Td]

]

s.t. :
∑µ

k=1{Tupk
+ Td} ≤ NT

Pµ
k=1

Tupi
Pµ

k=1
Tupi

+µTd
≥ av

0 ≤ Tupi
≤ v

(44)

That can be transformed to:

P1 :











































min Z

s.t. :
∑µ

k=1 Tupi
≤ Z − µTd

∑µ
k=1 [Tupk

+ Td] ≤ N
Pµ

k=1
Tupi

Pµ
k=1

Tupi
+µTd

≥ av

0 ≤ Tupi
≤ v

(45)

which is a linear programming problem that can be easily solved using the powerful existing
tools for this purpose.

The optimization problem at level two consists of performing the production planning
inside the time during which the machine is up in order to satisfy the demand and all the
system constraints by penalizing the stock level and the production with appropriate unit
costs. This problem is given by:

P2 :











































min
∑N

k=1 [cxx(k) + cuu(k)]

s.t. :

x(k) = x(k − 1) + u(k) − d(k), x(0) = x0

u(k) ≤ ū

u(k) ≥ 0

x(k) ≥ 0

(46)

and which is also a linear programming optimization problem.

Both the problems at the two levels are linear which make them easier to solve with
the existing tools and for high dimensions problems. This can include production systems
with multiple machines multiple part types.



20 G–2007–105 Les Cahiers du GERAD

To show the validness of the approach of this section, let us consider the system with
the data of Table 1.

Table 1: System data

T N Td v µ cx cu ū

1 20 1 7 4 2 3 4

Solving the previous optimization problems following the proposed algorithm with these
data, we get the results of Figures 1–5.

Figure 1 gives the solution of the optimization problem at level one and it illustrates
the sequence of the phases up and down for the considered machine. Since we don’t impose
conditions on the state of the machine when the age grows, the results at level one shows
that we can perform periodic preventive maintenance that will take constant time as we
did in this example.

Figure 2 shows the results of the solution of the optimization problem at level two for
a given deterministic demand. This figure shows that the cumulative stock levels tracks
well the given time-varying demand.

Figure 3 illustrated the production at each period obtained by the solution of the
optimization problem at level two. As it can be seen from these figures all the constraints
are satisfied.

With the same data, we have generated randomly the time-varying demand and solved
the two levels optimization problems and the solution is illustrated by Figures 4–5.

In some circumstances due to reduction in the system capacity, we may defer the demand
by some periods and pay a penalty cost. As first extension of the previous model let us
now add the ability of deferring some items in the demand to the next period and see how
to solve the production and maintenance planning for this case. Firstly notice that the
optimization problem at level one will not change since it is independent on the demand.
The changes will affect mainly the second optimization problem, more specifically the cost
function should take care of the cost incurred by the deferred items and the dynamics that
must be changed to include the deferred items. The rest of the constraints on the stock
level and the production stay unchanged. The changes in this case are:

• the previous cost function can be changed by the following:
∑N

k=1[c
xx(k) + cuu(k)

+ cww(k)]

• and the new dynamics is: x(k) = x(k − 1) + u(k) + w(k) − w(k − 1) − d(k)
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Figure 1: State of the machine
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Figure 2: Stock level and demand (deterministic case)
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Figure 3: Production Rate (deterministic case)
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Figure 4: Stock level and demand (stochastic case)
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Figure 5: Production Rate (stochastic case)

The optimization problem at level two becomes:

P2′











































min
∑N

k=1 [cxx(k) + cuu(k) + cww(k)]

s.t. :

x(k) = x(k − 1) + u(k) + w(k) − w(k − 1) − d(k), x(0) = x0

u(k) ≤ ū

u(k) ≥ 0

x(k) ≥ 0

(47)

With the same date of the Table 1 solving the optimization problems ate the two level,
we get the results illustrated by Figures 6–11. Figure 6 gives the same results as for the
case without deferred items. The other figures give the stock level and the production at
different periods for the deterministic case and the stochastic one as we did for the previous
model.

As a second extension, let us now add the ability of deferring some items of the demand
up to three periods. For this case the changes we have to make to our second optimization
problem at level two concern the cost and dynamics. These changes are:
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Figure 6: Stock level and demand (deterministic case
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Figure 7: Production Rate (deterministic case)
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Figure 8: Deferred items (deterministic case)
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Figure 9: Stock level and demand (stochastic case)
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Figure 10: Production Rate (stochastic case)
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Figure 11: Deferred items (stochastic case)
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• the cost function becomes:

N
∑

k=1

[cxx(k) + cuu(k) + cw1w1(k) + cw2w2(k) + cw3w3(k)]

• the dynamics become:

x(k) = x(k − 1) + u(k) + w1(k) − w1(k − 1) + w2(k) − w2(k − 2)

+w3(k) − w3(k − 3) − d(k)

The optimization problem at level two becomes:

P3′



















































min
∑N

k=1 [cxx(k) + cuu(k) + cw1w1(k) + cw2w2(k) + cw3w3(k)]

s.t. :

x(k) = x(k − 1) + u(k) + w1(k) − w1(k − 1) + w2(k) − w2(k − 2)

+w3(k) − w3(k − 3) − d(k), x(0) = x0

u(k) ≤ ū

u(k) ≥ 0

x(k) ≥ 0

(48)

With the same data of the Table 1 solving the optimization problems at the two levels,
we get the results illustrated by Figures 12–18. Figure 12 gives the same results as for the
case without deferred items. The other figures give the stock level and the production at
different periods.

We can make more extensions for our model to include the following facts:

1. model with depreciation

2. model with depreciation after some periods of time

3. model with setups

5 Conclusion

In this chapter, we tackled the production and preventive maintenance control problem
for manufacturing system with random breakdowns. This problem is formulated as a
stochastic optimal control problem where the state of the production system is modeled as
a Markov chain, the demand is constant and the produced items are assumed to deteriorate
with a given rate γ. With some assumptions, the optimal production rate is still hedging
point policy with some changes at the hedging point x⋆. The production and preventive
maintenance problem has also been solved using a hierarchical approach with two levels.
The level one determines the instants when the maintenance has to be performed. The
level two determines the production to track the demand. Some extensions of this model
have been proposed.
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Figure 12: Stock level and demand (deterministic case)
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Figure 13: Production Rate (deterministic case)
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Figure 14: Deferred items for one period (deterministic case)
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Figure 15: Deferred items for two period (deterministic case)
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Figure 16: Deferred items for three period (deterministic case)
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Figure 17: Production rate (stochastic case)
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Figure 18: Stock level and demand (stochastic case)
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Figure 19: Deferred items for one period (stochastic case)
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Figure 20: Deferred items for two period (stochastic case)
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Figure 21: Deferred items for three period (stochastic case)
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