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Abstract

In One-to-Many-to-One Single Vehicle Pickup and Delivery Problems a vehicle
based at the depot must make deliveries and pickups at customers locations before
returning to the depot. Several variants can be defined according to the demand struc-
tures and sequencing rules imposed on pickups and deliveries. In recent years there has
been an increased interest in this family of problems. New formulations and efficient
heuristics capable of yielding general solutions (unrestricted in shape) have been pro-
posed. In addition, some new and interesting extensions have been analyzed, including
problems with selective pickups and problems with capacitated customers. The pur-
pose of this chapter is to review these developments.

Key Words: Pickups and deliveries, clustered traveling salesman problem, back-
hauls, lasso, double-path, general solutions, reverse logistics, selective pickups, trans-
shipment, capacitated customers.

Résumé

Dans les problèmes de cueillette et livraison de type “un-à-plusieurs-à-un”, un
véhicule basé au dépôt doit effectuer des cueillettes et livraisons chez un ensemble
de clients avant de retourner au dépôt. On peut définir plusieurs variantes de ces
problèmes selon la structure de la demande et les règles de séquencement imposées
sur les cueillettes et les livraisons. Au cours des dernières années, on a assisté à un
intérêt accru pour ces problèmes. En particulier, on a proposé de nouvelles formu-
lations donnant lieu à des solutions dont la forme n’est pas contrainte (des solutions
dites générales). De plus, plusieurs nouvelles extensions intéressantes ont été analysées,
incluant des problèmes avec cueillettes sélectives ou avec clients de capacité limitée.
Le but de ce chapitre est de passer ces développements en revue.

Mots clés : cueillettes et livraisons, problème du voyageur de commerce avec groupes
de clients, cueillettes de retour, lasso, chemins doubles, solutions générales, logistique
inverse, cueillettes sélectives, transbordement, clients à capacité limitée.
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1 Introduction

One-to-Many-to-One Single Vehicle Pickup and Delivery Problems (1-M-1 SVPDPs) are
defined on a graph G = (V,A), where V = {0, 1, . . . , n} is a vertex set and A = {(i, j) :
i, j ∈ V, i 6= j} is an arc set. Vertex 0 is a depot while the remaining vertices are customers.
A vehicle of capacity Q is based at the depot. Each customer i has a pickup demand pi and

a delivery demand di satisfying pi ≥ 0, di ≥ 0,
n
∑

i=1
pi ≤ Q and

n
∑

i=1
di ≤ Q. A non-negative

cost cij is associated with each arc (i, j). The aim is to construct a least cost route starting
and ending at the depot, and making all pickups and deliveries without ever exceeding the
vehicle capacity. We assume that pickup and delivery demands are unsplittable and that
no transshipments are allowed.

In the 1-M-1 SVPDP, the expression “one-to-many-to-one” means that all delivery
demands are initially located at the depot, and all pickup demands are destined to the
depot. Taken collectively, all delivery demands can be viewed as a single commodity, and
all pickup demands can be viewed as a second commodity. These problems are different
from many-to-many (M-M) problems, like the Swapping Problem (Anily and Hassin, 1992)
in which commodities of several types have to be shifted among vertices, and from one-to-
one (1-1) problems, like the Stacker Crane Problem (Frederickson, Hecht and Kim, 1978)
in which commodities must be moved between specific origin-destination pairs.

Applications of 1-M-1 SVPDPs arise in several reverse logistics operations involving,
for example, in the delivery of full bottles and the collection of empty ones (Dethloff, 2001;
Tang and Galvão, 2002, 2006; Privé et al., 2006), in mail services (Wasner and Zäphel,
2004), and in the servicing of offshore platforms (Gribkovskaia, Laporte and Shlopak,
2006).

It is convenient to distinguish between two variants of 1-M-1 SVPDPs. In the first
variant, denoted by P/D, and referred to as the SVPDP with single demands, each customer
i has a positive pickup or a positive delivery demand, but not both, i.e., pi = 0 or di = 0.
In the second variant, denoted by P&D, customers may have positive pickup and delivery
demands. We will refer to this variant as the SVPDP with combined demands.

In recent years, several new algorithms and applications have been proposed for 1-M-1
SVPDPs. A number of interesting properties have also been identified. While the problems
can readily be formulated as mixed integer linear programs, only relatively small instances
can be solved optimally with such formulations. Most research has therefore been devoted
to the development of heuristics. These include construction and improvement schemes
based on classical mechanisms, and more powerful methods based on metaheuristics, al-
most exclusively tabu search. In a number of cases, heuristics with a bounded worst-case
performance ratio have been put forward.

Our purpose is to review these developments with an emphasis on theoretical properties
and tabu search. The remainder of this chapter is organized as follows. Sections 2 and 3 are
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devoted to the SVPDP with single demands and to the SVPDP with combined demands,
respectively. Some extensions of the models of Section 3 are presented in Section 4, followed
by conclusions in Section 5.

2 The SVPDP with single demands (P/D)

In the SVPDP with single demands, two cases are possible. In the SVPDP with backhauls,
all delivery customers must be visited before pickup customers. In the mixed SVPDP, no
a priori sequence is imposed.

2.1 The SVPDP with backhauls

The SVPDP with backhauls is more commonly known as the Traveling Salesman Problem

with Backhauls (TSPB). In this problem, customers with delivery demands are called
linehaul customers, while customers with pickup demands are called backhaul customers.
The TSPB is essentially a Clustered TSP (CTSP) (Chisman, 1975) with the three clusters:
{0},D = {i ∈ V : di > 0 and pi = 0}, and P = {i ∈ V : pi > 0 and di = 0}. As
suggested by Chisman (1975), the CTSP can be transformed into a Traveling Salesman

Problem (TSP) by adding an arbitrarily large constant M to the cost of all arcs linking
any two of the sets {0}, D and P .

We are interested in the case where the costs cij are symmetric, so that each pair of
arcs {(i, j), (j, i)} can be replaced with a single edge (i, j), where i < j. In the case of
symmetric costs satisfying the triangle inequality, Chisman’s transformation preserves this
property and allows the application of the Christofides (1976) heuristic to the transformed
instance. While this heuristic has a worst-case ratio of 1.5 for the TSP, it yields a useless
bound for the TSPB (Gendreau, Hertz and Laporte, 1997). However, a heuristic with a
worst-case performance ratio of 1.5 for the TSPB can still be constructed as follows:

Step 1. Construct a spanning tree S of G whose edge set consists of (1) the edges of SD,
a minimum cost spanning subtree of the graph induced by D, (2) edge (0, d) with
c0d = min

j∈D
{c0j}, (3) edge (0, p) with c0p = min

j∈P
{c0j}, (4) the edges of SP , a minimum

cost spanning tree of the graph induced by P .

Step 2. Let R be the set of odd-degree vertices in S. (Note that 0 /∈ R, |R| is even, |R∩D|
is odd, and |R ∩ P | is odd). Determine a minimum cost matching H on the edges of
the graph induced by R with respect to the transformed costs.

Step 3. Construct a Eulerian subgraph using the edges of S∪H. This graph contains edges
(0, d), (0, p) and a single edge (d̄, p̄) between D and P . Using a shortcut technique
(Christofides, 1976), extract from this Eulerian graph a Hamiltonian chain (d, . . . , d̄)
on the graph induced by D, linking a Hamiltonian chain (p̄, . . . , p) on the graph
induced by P . The tour T = (0, d, . . . , d̄, p̄, . . . , p, 0) is a feasible TSPB solution.
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Gendreau, Hertz and Laporte (1997) show that if z is the cost of T and z∗ is the op-
timal TSPB cost, then z/z∗ ≤ 1.5 and this bound is tight. The authors have applied this
heuristic to randomly generated instances and have shown that it yields average devia-
tions of 30% but this value can be brought down to 5% by applying a postoptimization
phase. Mladenović and Hansen (1997) have later improved this value slightly by means of
a variable neighbourhood search heuristic.

2.2 The mixed SVPDP

The mixed SVPDP has been called the TSP with Pickups and Deliveries by Mosheiov
(1994), the TSP with Delivery and Backhauls by Anily and Mosheiov (1994), and the
Mixed TSP by Nagy and Salhi (2005).

An interesting result due to Mosheiov (1994) is that a feasible solution of the mixed

SVPDP always exists provided
n
∑

i=1
pi ≤ Q and

n
∑

i=1
di ≤ Q. Such a solution can be generated

as follows:

Step 1. Construct a Hamiltonian circuit (i1, . . . , in, i1) on the graph induced by V \{0},
disregarding pickup and delivery demands.

Step 2. Let ir be such that
r

∑

t=1
(pit − dit) is maximized.

Step 3. Then, the Hamiltonian circuit (0, ir+1, . . . , in, i1, . . . , ir, 0) is feasible.

Moreover, if a TSP algorithm with a worst-case performance ratio of α is used in
Step 1, then the worst-case performance ratio of the algorithm just described is 1+α. The
algorithm is called PDαT. If the Christofides (1976) algorithm is used in Step 1 (assuming
costs are symmetric and satisfy the triangle inequality), then the overall algorithm has a
worst-case performance ratio of 2.5.

Mosheiov (1994) presented another heuristic, based on that of Golden et al. (1980)
with an unbounded worst-case performance ratio but a better empirical performance. It
first constructs a TSP solution on D and then gradually inserts the vertices of P using a
cheapest insertion criterion, while maintaining feasibility.

Anily and Mosheiov (1994) have later proposed another heuristic called 2MST. In what
follows, the net demand of a subtree is the total demand of its pickup vertices, minus the
total demand of its delivery vertices.

Step 1. Compute a minimum spanning tree on G.

Step 2. Starting at vertex 0, traverse the tree in a depth-first fashion, visiting first the
subtrees with a positive net demand. Vertices with a delivery demand are served the
first time they are visited, while vertices with a pickup demand are served after all
vertices in the subtree rooted at them have been served.
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(Q = 2)

b) All edges are traversed once or three
times (Q = 2)

Figure 1: Two possible solutions (full lines) to the mixed SVPDP on a circular graph. The
pickup and delivery amounts are indicated by (pi, di).

Step 3. Construct a Hamiltonian tour by following the tree in a depth-first fashion and
applying shortcuts.

The authors have proved that the solution produced by this heuristic is always feasible.
Moreover, if the cost matrix is symmetric and satisfies the triangle inequality, then the
worst-case performance ratio of heuristic 2MST is equal to 2.

Another heuristic for the same problem was proposed by Gendreau, Laporte and Vigo
(1999). The authors first consider the SVPDP defined on a cycle. They show that there
always exists an optimal solution in which one edge is not visited and all other edges are
visited twice, or all edges are visited once or three times. In the first case the edge having the
highest cost is unvisited. In the second case, assuming the order of the vertices on the cycle

is (0, 1, . . . , n), then edge (i, i+1) is visited three times if and only if
∑

j≤i

(pj−dj) > Q−
n
∑

j=1
dj .

The authors provide a linear time exact algorithm called C, for visiting each edge the correct
number of times. Figure 1 depicts two solutions for the mixed SVPDP.

Given this, the following O(n2) heuristic, called H, can be applied to a general graph.

Step 1. Determine a TSP solution on G by means of the Christofides (1976) heuristic.

Step 2. Apply heuristic C to the Hamiltonian cycle corresponding to the TSP solution.

Step 3. Derive a Hamiltonian solution by applying shortcuts.

Since the cost of this solution is at most twice that of the TSP solution and the
Christofides heuristic has a worst-case performance ratio of 1.5, heuristic H has a worst-
case performance ratio of 3. While this ratio is larger than that of the Mosheiov (1994)
heuristic, it has been shown to have a better empirical performance. Gendreau, Laporte
and Vigo (1999) have also developed a tabu search heuristic that performs 2-opt exchanges,
which outperformed all previous heuristics at the expense of larger computing times.
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Finally, we mention that Baldacci, Hadjiconstantinou and Mingozzi (2003) have de-
veloped an exact branch-and-cut algorithm for this problem, based on a two-commodity
flow formulation. It can solve instances involving up to 200 vertices within one hour of
computing time.

3 The SVPDP with combined demands (P&D)

We distinguish between two cases of the SVPDP with combined demands. In the first
case, denoted by PD and known as the Traveling Salesman Problem with Pickup and

Deliveries (TSPPD), each customer is visited exactly once for a combined pickup and
delivery operation. It will be shown that this case reduces to the mixed SVPDP. In the
second case, denoted by P-D, and called the general SVPDP, the pickup and delivery
operations may be performed within the same visit or in two separate visits.

3.1 The Traveling Salesman Problem with Pickup and Deliveries (PD)

The TSPPD reduces to the mixed SVPDP. Indeed, if pi > di, redefine the pickup demand
of customer i as p′i = pi − di, and its delivery demand as d′i = 0; if pi ≤ di, the delivery
demand of i becomes d′i = di − pi and its pickup demand is p′i = 0. Then redefine the

vehicle capacity as Q′ = max

{

n
∑

i=1
p′i,

n
∑

i=1
d′i

}

. Note that this transformation is only valid

under the assumption that each customer is visited only once, which makes it possible to
work with net demands. All methods of Section 2.2 are applicable to this problem.

3.2 The general SVPDP (P-D)

Gribkovskaia et al. (2006) distinguish between four solution shapes for the general SVPDP:
general (G), lasso (L), Hamiltonian (H), and double-path (D). A general solution is un-
restricted in that any customer can be visited once for a combined pickup and delivery
service, or twice if these two operations are performed separately. In a lasso solution, the
vehicle first performs deliveries along a path rooted at the depot to a subset S of customers,
until it reaches a certain vertex k. All vertices of (V \{0})\S are then visited once for a
combined service along a loop until the vehicle reaches k again and performs deliveries to
the customers of S by following a path leading to the depot. If S = ∅, the lasso reduces
to a Hamiltonian solution, which yields a TSPDP. If S = V \{0}, the lasso reduces to a
double-path solution. A double-path solution can also be obtained by solving a TSPB. This
is achieved by duplicating the customer set into the union of a set of linehaul customers
with delivery demands di and zero pickup demands, and a set of backhaul customers with
zero delivery demands and pickup demands pi. The four solution shapes are illustrated in
Figure 2.

Denote by zG, zL, zH and zD the costs of the optimal general, lasso, Hamiltonian and
double-path solutions, respectively, associated with the same instance. Gribkovskaia et al.
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a) General (G) b) Lasso (L)

c) Hamiltonian (H) d) Double path (D)

Figure 2: Four solution shapes for the general SVPDP with combined demands on a
Euclidean graph.

(2006) prove that if the (cij) matrix satisfies the triangle inequality, then the following
relation holds: zG ≤ zL ≤ zH ≤ zD ≤ 2zG. Figure 3 depicts an instance for which the
non-lasso solution (0, 1, 2, 3, 5, 4, 6, 3, 0) of cost 9 is optimal.

The general SVPDP with combined demands can be formulated as follows. Let i and
i+n be two copies of vertex i, where pi+n = pi and di+n = 0. The model allows two service
possibilities for each customer i. The pickup and delivery operations may be performed
simultaneously, in which case vertex i is visited and vertex i+n is not visited. Otherwise,
customer i is visited twice: delivery is made at vertex i and pickup at vertex i + n. We

1 0 2 3
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1 1 1
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(6,15)
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Q = 26

1

√

3/2

Figure 3: Euclidean instance for which the non-lasso solution (0, 1, 2, 3, 5, 4, 6, 3, 0) is opti-
mal. The pickup and delivery demands are indicated by (pi, di).
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define an extended cost matrix C̄ = (c̄ij)(2n+1)×(2n+1) where

cij =























cij if i ≤ n and j ≤ n

ci−n,j if i > n and j ≤ n

ci,j−n if i ≤ n and j > n

ci−n,j−n if i > n and j > n.

We also define the following variables:

xij =











1, if the vehicle travels directly from i to j(i, j = 0, . . . , 2n;

i 6= j; j 6= i+ n if 1 ≤ i ≤ n; j 6= i− n if i > n)

0, otherwise.

yi =











1, if pickup and delivery are performed simultaneously

at customer i(i = 1, ..., n)

0, otherwise.

wi = an upper bound on the total pickup amount in the vehicle upon
leaving vertex i(i = 0, . . . , 2n)

zi = an upper bound on the total delivery amount in the vehicle upon
leaving vertex i(i = 0, . . . , 2n).

The general SVRPPD model is to

minimize

2n
∑

i=0

2n
∑

j=0

c̄ijxij (1)

subject to

2n
∑

j=0

xij = 1 (i = 0, . . . , n) (2)

2n
∑

i=0

xij = 1 (j = 0, . . . , n) (3)

2n
∑

j=0

xij = 1 − yi−n (i = n+ 1, . . . , 2n) (4)

2n
∑

i=0

xij = 1 − yj−n (j = n+ 1, . . . , 2n) (5)
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w0 = 0 (6)

z0 =

n
∑

i=1

di (7)

0 ≤ wi + zi ≤ Q (i = 1, . . . , 2n) (8)

wj ≥ wi + pjyj − (1 − xij)Q (i = 0, . . . , 2n; j = 1, . . . , n) (9)

wj ≥ wi + pj(1 − yj−n) − (1 − xij)Q (i = 0, . . . , 2n; j = n+ 1, . . . , 2n) (10)

zj ≥ zi − dj − (1 − xij)Q (i = 0, . . . , 2n; j = 1, . . . , n) (11)

xij ∈ {0, 1} (i, j = 0, . . . , 2n, i 6= j; j 6= i+ n if 1 ≤ i ≤ n; j 6= i− n if i > n) (12)

yi ∈ {0, 1} (i = 1, . . . , n). (13)

In this formulation, constraints (2) and (3) mean that the first vertex associated with
each customer is visited once, either for a single delivery or for a simultaneous pickup and
delivery. Constraints (4) and (5) express the fact that the second vertex associated with a
customer is visited only if a combined pickup and delivery does not occur at the first vertex.
Constraints (6) and (7) define the vehicle load upon leaving the depot, while constraints (8)
guarantee that the vehicle load will never exceed the vehicle capacity. Constraints (9)
and (10) state that the pickup amount in the vehicle is increased by pj if vertex j is visited
immediately after vertex i and a pickup takes place at that vertex. Constraints (11) mean
that the delivery amount in the vehicle decreases by dj if vertex j is visited immediately
after vertex i. Constraints (12) and (13) impose the binary conditions on the variables.
As in Desrochers and Laporte (1991), constraints (11) prevent the formation of subtours.

The size of instances that can be solved optimally using this model is relatively small
and heuristics must therefore be used on practice. One such heuristic is an adaptation of
the Unified Tabu Search Heuristic (UTSA) of Cordeau, Laporte and Mercier (2001). This
heuristic has proved to be highly efficient on a host of vehicle routing problems and it
easily adapts to several situations. The main features of the tabu search algorithm for the
general SVPDP can be summarized as follows.

Initial solution UTSA is essentially an improvement procedure which can be applied to
any solution, but as Gribkovskaia et al. (2006) have shown, it can pay to start from a good
solution. These authors have developed construction heuristics specialized to the general
SVPDP with combined demands which yields an excellent performance of the tabu search
post-optimizer. One of the best construction heuristics can be summarized as follows. First
construct a Hamiltonian undirected cycle (0, i1, . . . , in, 0) by means of a TSP construc-
tive heuristic, and consider the two directed circuits (0, i1, . . . , in, 0) and (0, in, . . . , i1, 0).
From the first circuit, derive several solutions by removing one arc: for the first circuit
1) remove arc (0, i1) and construct the double-path solution (0, in, . . . , i1, i2, . . . , in, 0); 2)
remove arc (it, it+1) where 1 ≤ t ≤ n− 1, and construct the solution (0, i1, . . ., it, it−1, . . .,
i1, in, in−1, . . ., it+1, it+2, . . . , in, 0). Only the first of these solutions is guaranteed to be fea-
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sible for the SVPDP. Proceed similarly for the second circuit. Note that all these solutions
contain one or two double-paths. Then apply the following backward merging procedure

to each solution. Starting with the penultimate vertex of a double-path, combine the two
visits made at that vertex into a single visit if this is feasible. Proceed to the previous
vertex of the double-path, moving towards the depot, and continue until all vertices of the
double-path have been scanned. Then go to the penultimate vertex of the other double-
path if there are two double-paths, and continue until all vertices have been considered.
Select the overall best feasible solution.

Penalized objective function In order to allow a mix of feasible and infeasible solutions,
the algorithm works with a penalized function f(s) = c(s) + αq(s), where c(s) is the cost
of solution s, q(s) is the total vehicle capacity violation of s, and α is a self-adjusting
parameter. At each iteration, α is divided by 1 + δ > 1 if the current solution is feasible,
and multiplied by 1+δ otherwise, where δ is a user-controlled parameter. This mechanism
is identical to that of Cordeau, Gendreau and Laporte (1997).

Neighbourhood structure and attribute set At each iteration, the neighbourhood
N(s) of a solution s is defined as the set of all solutions reachable from s by changing the
number v of visits of a customer. With s is associated an attribute set B(s) = {(i, v) :
i ∈ V \{0} and v = 1 or 2}. A transition from s to a neighbour s′ is called a move, which
can be defined as the removal of an attribute (i, v) from B(s) and the inclusion of (i, v′)
in B(s′), where v′ 6= v. There are two possible moves.

1. If v = 1, a second visit of i is inserted in the current solution so as to yield the
smallest increase of f(s). Visiting i twice will typically increase c(s) and decrease
q(s).

2. If v = 2, the second occurrence of vertex i in the solution is deleted and its predecessor
and successor are linked together. As a result pickup and delivery are now performed
simultaneously at vertex i. Visiting i once will typically decrease c(s) and increase
q(s).

Tabu status of an attribute If (i, v) is replaced with (i, v′), then the reinclusion of
(i, v) in B(s) is forbidden for θ iterations, where θ is a user-controlled parameter.

Aspiration criterion The aspiration level σiv of attribute (i, v) is initially defined as
the cost of the initial solution s if (i, v) ∈ B(s) and s is feasible; otherwise, σiv = ∞. Every
time a feasible solution is identified, the aspiration level of attribute (i, v) is updated
to min{σiv , c(s)}. When considering a solution s′ obtained by the inclusion of a tabu
attribute (i, v) in B(s′), the tabu status of (i, v) is revoked if q(s′) = 0 and c(s′) < σiv. Let
M(s) ⊆ N(s) be the subset of neighbour solutions satisfying the aspiration criterion, i.e.
solutions for which (i, v′) ∈ B(s′)\B(s) and s′ is non-tabu, or s′ is feasible and c(s′) < σiv.
In other words, the search only moves to a tabu solution if this yields a new best solution
among those possessing attribute (i, v).
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Diversification In order to diversity the search, any solution s′ ∈ M(s) such that
f(s′) ≥ f(s) is penalized by a term p(s′) = ζρivc(s), where ζ is a positive parameter,
and ρiv is the relative frequency of all iterations for which attribute (i, v) has been in
B(s′); if f(s′) < f(s), then p(s′) = 0. The best s′ ∈ M(s) is the solution for which
g(s′) = f(s′) + p(s′) is minimized. This type of diversification scheme was introduced by
Glover (1989) and was later fine tuned by Taillard (1993).

Local reoptimization Route reoptimization is performed every ϕ iterations, where ϕ
is a user-controlled parameter, or whenever a new best feasible solution is encountered.
This is done by means of an improvement heuristic (Gribkovskaia et al., 2006) in which
the penalized function f(s) is used instead of c(s).

Termination criterion The algorithm is applied for a fixed number η of iterations,
where η is a user-controlled parameter.

The algorithm just described was extensively tested by Gribkovskaia et al. (2006)
on benchmark instances derived from VRPLIB (http://www.er.deis.unibo.it/research pages/

ORinstances/VRPLIB/VRPLIB.html) containing between 16 and 101 vertices. It was ob-
served that 38% of all solutions were non-Hamiltonian and 18% were non-lasso. This
shows that it would have been suboptimal to impose a predefined shape on the solution.
The frequency of multiple visits is higher in instances containing customers located close
to the depot and having a large pickup demand compared with their delivery demand, so
that it is preferable to perform the delivery and pickup operations separately.

4 Extensions of the general SVPDP

There exist several natural and meaningful extensions of the 1-M-1 general SDVRP, all of
which have only received limited attention. We will consider four such extensions. In these
extensions, visiting customers twice may be dictated by feasibility considerations.

4.1 Periodic SVPDPs

In periodic problems customer pickup and delivery requirements are spread over a period
of several days and the problem is then to simultaneously determine a subset of customers
and the order of visits for each day. This problem is encountered in the planning of
reverse logistics operations, for example when new household appliances and furniture
such as washing machines, fridges or mattresses must be delivered and used items must
be collected. Alshamrani, Mathur and Ballou (2007) have studied the case where the
pickup and delivery operations may be spread over several days but a maximum time
limit is imposed between the pickup and the delivery operations in order to avoid product
deterioration. The problem studied by these authors is motivated by the blood distribution
system of the American Red Cross.
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4.2 SVPDPs with selective pickups

An interesting case, also arising in reverse logistics, is where pickups are optional, but gen-
erate a profit when performed. An example described by Privé et al. (2006) is the delivery
of beverages to supermarkets and convenience stores, and the collection of empty recyclable
containers. This case was recently studied by Gribkovskaia, Laporte and Shyshou (2006).
To handle this variant, the authors introduce an additional binary variable ui(i = 1, . . . , n)
to the model of Section 3.2, equal to 1 if and only if pickup is performed during the second
visit to customer i. If the pickup associated with customer i generates a revenue ri, then
the objective becomes

minimize
2n
∑

i=0

2n
∑

j=0

c̄ijxij −
n

∑

i=1

riyi −
2n
∑

j=n+1

rj−nuj−n. (14)

The right-hand sides of constraints (4) and (5) become ui−n and uj−n, respectively. It is
also necessary to impose the constraints

ui + yi ≤ 1 (i = 1, . . . , n) (15)

and to modify constraints (10) as follows:

wj ≥ wi + pj−nuj−n − (1 − xij)Q (i = 0, . . . , 2n; j = n+ 1, . . . , 2n). (16)

In the tabu search algorithm for this problem, the neighbourhood structure is similar
to that of the general SVPDP, but a status is assigned to each customer: PD for a simul-
taneous pickup and delivery, D for a single delivery, and P-D for a separate pickup and
delivery operations. Then,

1) if v = 1, a second visit of i is inserted in the current solution so as to yield the
smallest increase of f(s). In other words, for each vertex with status PD or D change
to status P-D is evaluated;

2) if v = 2, the second occurrence of vertex i in the solution is deleted and its predecessor
and successor are connected. Or, in terms of vertex statuses, for each vertex with
status P-D two possible modifications to the status PD or D are evaluated and only
the modification yielding the smaller increase of f(s) is considered for each vertex.
As a result either pickup and delivery are performed simultaneously at vertex i or
only delivery demand is satisfied.

In addition local reoptimization is applied whenever a new best feasible solution is
identified. This is done by means of two improvement heuristics, called SP and RC, which
are used every ψth and ϕth iteration, respectively, where ψ and ϕ are user-controlled
parameters. Heuristic SP (shifting pickups) attempts to improve the solution by delaying
the pickup operation of PD customers, and thus freeing some space on the vehicle; heuristic
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RC (resequencing of customers) attempts to improve the solution by iteratively removing
from the route vertices visited once and reinserting them in the most profitable position.

Several variants of this algorithm were extensively tested. One of the best two yielded
solutions within 3.98% of the minimal reachable routing cost, and 0.24% of the optimal
revenue; for the other one, these figures were 3.35% and 0.55%.

Finally, we mention that Süral and Bookbinder (2003) have also formulated and solved
a version of the SVPDP with selective pickups in which each customer has a pickup or a
delivery but not both.

4.3 SVPDPs with intermediate drops

Another variant of the general SVPDP with combined demands is to allow drops at in-
termediate vertices. For example, when the vehicle makes several passages through the
depot, it may make sense to empty part of its content in order to create extra space and
thus allow more flexibility in the remaining part of the route. In the example of Figure 4,
an optimal solution of cost 9 is (0,1,2,3,5,4,6,3,0) if no intermediate drop at the depot is
allowed. However, a better solution (0,1,0,2,3,5,4,6,0) of cost 8.91 is obtained if the pickup
demand of customer 1 (p1 = 6) is dropped at the depot while the vehicle is traveling from 1
to 2. Another possibility is to allow transshipment at customer locations along the vehicle
route. Consider the example of Figure 5 in which edge (0,1) is rotated clockwise so that
the cost of edge (1,2) becomes 1.97. Then an optimal solution without intermediate drop
is still (0,1,2,3,5,4,6,3,0) and has a cost of 8.97. Transshipping six demand units at vertex 2
yields a better solution (0,1,2,3,5,4,6,2,0) of cost 8.90. As far as the authors are aware,
intermediate drops have never been studied in the context of the SVPDP, but Mitrović-
Minić and Laporte (2006) have shown the benefits of transshipment in the context of 1-1
pickup and delivery problems.

4.4 SVPDPs with capacitated customers

Finally, another interesting extension of the general SVPDP is the case of capacitated
customers. In some contexts like the servicing of offshore platforms (Gribkovskaia, Laporte
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Figure 4: Euclidean instance for which an intermediate drop at the depot is beneficial.
The pickup and delivery demands are indicated by (pi, di).
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Figure 5: Euclidean instance for which transshipment at a customer location is beneficial.
The pickup and delivery demands are indicated by (pi, di).

and Shlopak, 2006), there is no spare capacity at the customer locations. When a vehicle
(a vessel) arrives at a platform, it may have to first unload a container from the platform
before performing a delivery, but this is only possible if there is sufficient capacity in
the vessel. This situation is handled by adding the following constraints to the model of
Section 3.2. Let Ci be the available free capacity of customer i at the start of operations
(it is assumed that Ci ≥ di − pi to ensure feasibility). Then

Ci ≥ di − piyi (i = 1, . . . , n) (17)

and

(Q− wi − zi) + Ci ≥ 1 (i = 1, . . . , n) (18)

Constraints (17) ensure that there is sufficient capacity at each customer location to
perform the pickup and delivery services, while constraints (18) prevent infeasible situations
in which the vehicle would arrive fully laden at a location with no free storage space, and
the amounts to be picked up and delivered would be the same. More specifically, these
constraints state that the amount of free space on the vehicle and at the customer location
cannot both be zero.

Figure 6 depicts a case where Q = 3. In Figure 6a there are no customer capacities
and the solution (0, 1, 2, 3, 0) of cost 4 is optimal. In Figure 6b customer capacities are
imposed and the Hamiltonian solution (0, 2, 1, 3, 1) of cost 2+2

√
2 is optimal. In Figure 6c

no Hamiltonian solution is feasible and the non-Hamiltonian solution (0, 2, 1, 2, 3, 0) of cost
4 +

√
2 is optimal.

In order to handle customer capacities, some modifications must be made to the tabu
search algorithm of Section 3.2. Vertices are first classified into three categories:

category 0: vertices for which Ci = 0 and di = pi;

category 1: vertices for which Ci < di;

category 2: vertices for which Ci ≥ di.
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c) Optimal non-Hamiltonian solution with customer capacities

Figure 6: Instance with capacitated customers. The vehicle capacity is Q = 3. The pickup
and delivery demands are indicated by (pi, di).

Vertices of category 0 and 1 can only be visited once for a simultaneous pickup and delivery,
and those of category 0 can only be visited when the vehicle is not fully laden. This is
obvious because these vertices do not have sufficient available capacity to accept their
delivery demand without their pickup demand being collected. Vertices of category 2 can
be visited once or twice on a route.

Moreover, a solution is said to be load-feasible if the vehicle capacity is never exceeded.
It is storage-feasible if none of the vertices of categories 0 or 1 is visited twice. It is
operational-feasible if a fully laden vehicle never serves a customer with no available ca-
pacity (category 0 vertex). Then the following changes are implemented in the search
procedure.

Neighborhood N(s) and definition of a move The neighborhood N(s) of solution
s is defined by all solutions that can be reached from s by changing the number of visits
at one category 2 vertex.
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Load feasibility violations Load feasibility is checked whenever a vertex is visited. The
total load infeasibility of a route is equal to the sum of load infeasibilities of all its vertices.

Operational feasibility violations Operational feasibility means that vertices with
zero capacity must not be visited by a fully laden vehicle. The operational feasibility
violation of a route is the number of such vertices.

Storage feasibility violations Vertex capacity violations are not allowed. Before solv-
ing an instance, vertices that can be visited only once (the number of visits is not dependent
on routing) are identified.

Penalized objective function For a solution s ∈ S, let c(s) denote the total routing
cost, let q(s) denote the total load violation of the route, and let g(s) denote the oper-
ational feasibility violation of the route. Solutions s ∈ S are evaluated with the help of
the penalized cost function f(s) = c(s) + αq(s) + πg(s), where α and π are positive self-
adjusting parameters.

Tests have shown that this modified tabu search algorithm can effectively solve realistic
instances and the best found solutions are not always Hamiltonian.

5 Conclusions

The one-to-many-to-one SVPDP arises in several practical contexts and has been exten-
sively studied by operations researchers. Several variants of the problem exist according
to whether pickup and delivery operations can or must be performed separately, and to
whether an order is imposed on the sequencing of these two types of operation. Allow-
ing general solutions in which no a priori shape is imposed and customers may be visited
once or twice is often beneficial. Because these problems are rather hard to solve, very
few exact algorithms are available. More often than not, heuristics are the only practical
solution methodology. For some variants of the problem, heuristics with a bounded worst
case performance ratio have been proposed. Several variants can be solved efficiently by
modifying the Unified Tabu Search Algorithm of Cordeau, Laporte and Mercier (2001).
Various extensions of the 1-M-1 SVPDP have been described. Some of these are relevant
to the planning of reverse logistics operations and to the servicing of offshore oil and gas
platforms.
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