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Abstract

This paper deals with the problem of guaranteed cost control for uncertain neutral
stochastic systems. The parameter uncertainties are assumed to be time-varying but
norm-bounded. Dynamic output feedback controllers are designed such that, for all ad-
missible uncertainties, the resulting closed-loop system is mean-square asymptotically
stable and an upper bound on the closed-loop value of the cost function is guaranteed.
By employing a linear matrix inequality (LMI) approach, a sufficient condition for the
solvability of the underlying problem is obtained. A numerical example is provided to
demonstrate the potential of the proposed techniques.

Key Words: Guaranteed cost control, linear matrix inequality, neutral stochastic
systems, output feedback, uncertain systems.

Résumé

Cet article traite de la commande des systèmes stochastiques avec incertitudes de
type borné en norme. Un correcteur de type retour de sortie dynamique est synthétisé
de manière à ce que la boucle-fermée soit stable et garantie que le coût choisi est borné
pour toutes les incertitudes admissibles. Les conditions suffisantes établies pour la
synthèse de ce contrôleur sont en forme de LMIs. Un exemple numérique est proposé
pour montrer la validité des résultats proposés.

Mots clés : Commande avec coût garanti, inégalités matricielles linéaires, systèmes
à retard, correcteur par retour de sortie dynamique, systèmes incertains.
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1 Introduction

Guaranteed cost control for uncertain systems has been a research topic of recurring interest

in recent years. The purpose is the design of a controller such that the resulting closed-

loop system is asymptotically stable while an upper bound on the closed-loop value of an

integral quadratic cost function is guaranteed. Various approaches have been developed

and a great number of results on this topic have been reported in the literature. For

example, by a Riccati equation approach, guaranteed cost controllers were designed for

uncertain continuous-time systems in Ref. 13. The corresponding results for uncertain

discrete-time systems can be found in Refs. 6 and 16, respectively. In the case when both

parameter uncertainties and time delays appear in a control system, the guaranteed cost

control problem was considered in Ref. 3, where a linear matrix inequality (LMI) approach

was developed and a sufficient condition for the solvability of this problem was presented.

It is noted that in Ref. 3 state feedback controllers were designed. When not all the states

are available directly for feedback, dynamic output feedback controllers were constructed

in Ref. 4 to solve the guaranteed cost control problem.

On the other hand, it has been shown that many dynamic systems not only depend

on the present and the past states but also involve the derivatives with delays. Such

systems can be modelled by functional differential equations of the neutral type. For

example, in the study of the loseless transmission problem, a partial differential equation

can be transformed to a delay equation of the neutral type (Ref. 2). Stability analysis

and stabilization for such systems have been investigated; see, e.g., Refs. 9,12,14,18,15,

and the references therein. When the environment disturbances are taken into account in

the study of neutral systems, neutral stochastic systems are introduced in the literature

(Ref. 8). Results on asymptotic stability and exponential stability in the mean-square

sense of neutral stochastic systems have been proposed by adopting different approaches

(Refs. 7,8,10,20). It should be pointed out that these results cannot provide an adequate

level of performance of a neutral stochastic system. One approach to this problem is

the guaranteed cost control approach. It is noted that in the deterministic case, some

guaranteed cost control results were obtained in Ref. 19 via the LMI approach. However,

for uncertain neutral stochastic systems, to the authors’ best knowledge, no results on the

guaranteed cost control problem are available in the literature.

In this paper, we consider the guaranteed cost control problem for uncertain neutral

stochastic systems. The parameter uncertainties are assumed to be time-varying but norm-

bounded. The time delay is assumed to appear in both the state and measurement equa-

tions. A linear quadratic cost function is defined as a performance measure for the closed-

loop system. Attention is focused on the design of a dynamic output feedback controller

which ensures not only the mean-square asymptotic stability of the closed-loop system but

also an upper bound on the closed-loop value of the cost function. A sufficient condition
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for the solvability of this problem is obtained. It has been shown that a desired dynamic

output feedback controller can be constructed by solving an LMI, which can be handled

easily by using the recently developed algorithms (Ref. 1). Finally, we provide a numerical

example to demonstrate the effectiveness and applicability of the proposed approach.

2 Problem Formulation

Consider a class of neutral stochastic systems with state delay and parameter uncertainties

described by

(Σ) : d [x(t) − Dx(t − τ)]

= [(A + ∆A(t)) x(t) + (Ad + ∆Ad(t)) x(t − τ) + (B1 + ∆B1(t)) u(t)] dt

+ [(E + ∆E(t)) x(t) + (Ed + ∆Ed(t)) x(t − τ)] dω(t), (1)

dy(t)

= [(C + ∆C(t))x(t) + (Cd + ∆Cd(t)) x(t − τ) + (B2 + ∆B2(t)) u(t)] dt

+ [(H + ∆H(t)) x(t) + (Hd + ∆Hd(t)) x(t − τ)] dω(t), (2)

x(t)

= ϕ(t), ∀t ∈ [−τ, 0], (3)

where x(t) ∈ R
n is the state; u(t) ∈ R

m is the control input; z(t) ∈ R
q is the controlled

output; ω(t) is a zero-mean real scalar Wiener process on a probability space (Ω, F , P)

relative to an increasing family (Ft)t>0 of σ-algebras Ft ⊂ F , where Ω is the sample space,

F is the σ-algebra of subsets of the sample space and P is the probability measure on F .

We assume

E {dω(t)} = 0, E
{

dω(t)2
}

= dt, (4)

where E {·} is the expectation operator.

In system (Σ), the scalar τ > 0 is the time delay of the system, which is unknown, ϕ(t)

is the initial condition, A, Ad, B1, B2, C, Cd, E, Ed, H and Hd are known real constant

matrices, and ∆A(t), ∆Ad(t), ∆B1(t), ∆B2(t), ∆C(t), ∆Cd(t), ∆E(t), ∆Ed(t), ∆H(t)

and ∆Hd(t) represent the parameter uncertainties of the system, which are assumed to be

of the form

[

∆A(t) ∆Ad(t) ∆B1(t) ∆E(t) ∆Ed(t)
∆C(t) ∆Cd(t) ∆B2(t) ∆H(t) ∆Hd(t)

]

=

[

M1

M2

]

F (t)
[

N1 N2 N3 N4 N5

]

, (5)
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where Mi, Nj, i = 1, 2, j = 1, . . . , 5, are known real constant matrices and F (·) : R → R
k×l

is an unknown time-varying matrix function satisfying

F (t)T F (t) ≤ I, ∀t (6)

The parameter uncertainties ∆A(t), ∆Ad(t), ∆B1(t), ∆B2(t), ∆C(t), ∆Cd(t), ∆E(t),

∆Ed(t), ∆H(t) and ∆Hd(t) are said to be admissible if both (5) and (6) hold.

Associated with system (Σ) is the cost function defined as

J = E

{
∫

∞

0

[

x(t)T Q1x(t) + u(t)T Q2u(t)
]

dt

}

, (7)

where Q1 and Q2 are positive matrices.

Throughout the paper, we make the following assumption on the matrix D in (1).

Assumption 2.1 The matrix D in (1) satisfies

ρ (D) < 1, (8)

where ρ (D) denotes the spectral radius of D.

Now, we consider a dynamic output feedback controller given as

(ΣK) : dξ(t) = AKξ(t)dt + BKdy(t), (9)

u(t) = CKξ(t), (10)

where ξ(t) ∈ R
n is the controller state, AK , BK and CK are matrices to be determined.

Then, applying the controller in (9) and (10) to the uncertain stochastic neutral system

(Σ), we obtain the closed-loop system as

d
[

η(t) − D̄Lη(t − τ)
]

= [AcK(t)η(t) + AcKd(t)Lη(t − τ)] dt

+ [EcK(t)Lη(t) + EcKd(t)Lη(t − τ)] dω(t), (11)

where

η(t) =
[

x(t)T ξ(t)T
]T

,

and

AcK(t) = AcK + ∆AcK(t), AcdK(t) = AcdK + ∆AcdK(t), (12)

EcK(t) = EcK + ∆EcK(t), EcKd(t) = EcKd + ∆EcKd(t), (13)

AcK =

[

A B1CK

BKC AK + BKB2CK

]

, AcKd =

[

Ad

BKCd

]

, (14)
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EcK =

[

E

BKH

]

, EcKd =

[

Ed

BKHd

]

, (15)

∆AcK(t) =

[

∆A(t) ∆B1(t)CK

BK∆C(t) BK∆B2(t)CK

]

, ∆AcKd(t) =

[

∆Ad(t)
BK∆Cd(t)

]

, (16)

∆EcK(t) =

[

∆E(t)
BK∆H(t)

]

, ∆EcKd(t) =

[

∆Ed(t)
BK∆Hd(t)

]

, (17)

D̄ =

[

D

0

]

L =
[

I 0
]

. (18)

The guaranteed cost control problem to be addressed in this paper can be formulated

as follows: design a dynamic output feedback controller in (9) and (10) such that, for

all admissible uncertainties, the closed-loop system in (11) is mean-square asymptotically

stable and the value of the cost function in (7) satisfies

J ≤ J∗ (19)

for some given scalar J∗ > 0.

3 Main Results

In this section, an LMI approach will be developed to solve the guaranteed cost control

problem formulated in the previous section. We first introduce the following results which

will be used in the proof of our main results.

Lemma 3.1 (Ref. 17) Let A, S and W be real matrices of appropriate dimensions with

W > 0. Then, we have

2xTASy ≤ xTAWAT x + yTSTW−1Sy.

Now, we present our first result in this paper.

Theorem 3.1 If there exists a matrix P > 0 such that the following matrix inequality

holds for some matrix Z > 0 and scalars ǫ1 > 0, ǫ2 > 0,
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





























ΥK PAcKd AT
cK LT ET

cK PM̃1K 0 ÑT
1K ÑT

4
C̃T

K

AT
cKdP D̄T PD̄ − Z AT

cKd ET
cKd 0 0 NT

2
NT

5
0

AcK AcKd −P−1 0 M̃1K 0 0 0 0

EcKL EcKd 0 −P−1 0 M̃1K 0 0 0

M̃T
1KP 0 M̃T

1K 0 −ǫ1I 0 0 0 0

0 0 0 M̃T
1K 0 −ǫ2I 0 0 0

Ñ1K N2 0 0 0 0 −ǫ−1

1
I 0 0

Ñ4 N5 0 0 0 0 0 −ǫ−1

2
I 0

C̃K 0 0 0 0 0 0 0 −Q̃−1































< 0,

(20)

where

ΥK = PAcK + AT
cKP + LT ZL,

C̃K =

[

I 0
0 CK

]

, Q̃ =

[

Q1 0
0 Q2

]

,

M̃1K =

[

M1

BKM2

]

, Ñ1K =
[

N1 N3CK

]

, Ñ4 =
[

N4 0
]

,

then, the closed-loop system in (11) is mean-square asymptotically stable for all admissible

uncertainties. In this case, the value of the cost function in (7) satisfies

J ≤ E
{

[

η(0) − D̄Lη(−τ)
]T

P
[

η(0) − D̄Lη(−τ)
]

+

∫

0

−τ

η(s)T LT ZLη(s)ds
}

. (21)

Proof. From (20), it is easy to see that there exists a scalar λ > 0 such that































ΥK + λI PAcKd AT
cK LT ET

cK PM̃1K 0 ÑT
1K ÑT

4
C̃T

K

AT
cKdP D̄T PD̄ − Z AT

cKd ET
cKd 0 0 NT

2
NT

5
0

AcK AcKd −P−1 0 M̃1K 0 0 0 0

EcKL EcKd 0 −P−1 0 M̃1K 0 0 0

M̃T
1KP 0 M̃T

1K 0 −ǫ1I 0 0 0 0

0 0 0 M̃T
1K 0 −ǫ2I 0 0 0

Ñ1K N2 0 0 0 0 −ǫ−1

1
I 0 0

Ñ4 N5 0 0 0 0 0 −ǫ−1

2
I 0

C̃K 0 0 0 0 0 0 0 −Q̃−1































< 0,
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which, by the Schur complement equivalence, gives









ΥK + λI + C̃T
KQ̃C̃K PAcKd AT

cK LT ET
cK

AT
cKdP D̄T PD̄ − Z AT

cKd ET
cKd

AcK AcKd −P−1 0
EcKL EcKd 0 −P−1









+ ǫ1









ÑT
1K

NT
2

0
0

















ÑT
1K

NT
2

0
0









T

+ ǫ−1

1









PM̃1K

0

M̃1K

0

















PM̃1K

0

M̃1K

0









T

+ ǫ2









ÑT
4

NT
5

0
0

















ÑT
4

NT
5

0
0









T

+ ǫ−1

2









0
0
0

M̃1K

















0
0
0

M̃1K









T

< 0. (22)

Noting the expressions in (16) and (17) and using Lemma 3.1, we have









P∆AcK (t) + ∆AcK (t)T P P∆AcKd (t) ∆AcK (t)T 0

∆AcKd (t)T P 0 ∆AcKd (t)T 0
∆AcK (t) ∆AcKd (t) 0 0

0 0 0 0









=









PM̃1K

0

M̃1K

0









F (t)
[

Ñ1K N2 0 0
]

+









ÑT
1K

NT
2

0
0









F (t)T
[

M̃T
1KP 0 M̃T

1K 0
]

≤ ǫ1









ÑT
1K

NT
2

0
0

















ÑT
1K

NT
2

0
0









T

+ ǫ−1

1









PM̃1K

0

M̃1K

0

















PM̃1K

0

M̃1K

0









T

, (23)

and









0 0 0 LT∆EcK (t)T

0 0 0 ∆EcKd (t)T

0 0 0 0
∆EcK (t)L ∆EcKd (t) 0 0









=









0
0
0

M̃1K









F (t)
[

Ñ4 N5 0 0
]

+









ÑT
4

NT
5

0
0









F (t)T
[

0 0 0 M̃T
1K

]
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≤ ǫ2









ÑT
4

NT
5

0
0

















ÑT
4

NT
5

0
0









T

+ ǫ−1

2









0
0
0

M̃1K

















0
0
0

M̃1K









T

. (24)

It follows from (22)–(24) that



















PAcK (t) + AcK (t)T

P + LT ZL+

C̃T
KQ̃C̃K + λI

PAcKd (t) AcK (t)T LT EcK (t)T

AcKd (t)T P D̄T PD̄ − Z AcKd (t)T EcKd (t)T

AcK (t) AcKd (t) −P−1 0
EcK (t)L EcKd (t) 0 −P−1



















< 0. (25)

Applying the Schur complement equivalence to (25) results in

Θ (t) +

[

C̃T
KQ̃C̃K + λI 0

0 0

]

< 0 (26)

Θ (t) =

[

PAcK (t) + AcK (t)T P + LT ZL PAcKd (t)

AcKd (t)T P D̄T PD̄ − Z

]

+

[

AcK (t)T

AcKd (t)T

]

P

[

AcK (t)T

AcKd (t)T

]T

+

[

LT EcK (t)T

EcKd (t)T

]

P

[

LT EcK (t)T

EcKd (t)T

]T

. (27)

Now, choose the Lyapunov function candidate for the closed-loop system in (11) as:

V (ηt, t) =
[

η(t) − D̄Lη(t − τ)
]T

P
[

η(t) − D̄Lη(t − τ)
]

+

∫ t

t−τ

η(s)T LT ZLη(s)ds, (28)

where

ηt = η(t + θ), −τ ≤ θ ≤ 0.

Then, by Itô’s formula, the stochastic differential dV (xt, t) can be obtained as (see

Refs. 8 and 11):
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dV (ηt, t) = LV (ηt, t)dt + 2
[

η(t) − D̄Lη(t − τ)
]T

P [EcK(t)Lη(t) + EcKd(t)Lη(t − τ)] dω(t),

where

LV (ηt, t)

= 2
[

η(t) − D̄Lη(t − τ)
]T

P [AcK(t)η(t) + AcKd(t)Lη(t − τ)]

+ [EcK(t)Lη(t) + EcKd(t)Lη(t − τ)]T P [EcK(t)Lη(t) + EcKd(t)Lη(t − τ)]

+ η(t)T LT ZLη(t) − η(t − τ)T LT ZLη(t − τ)

= 2η(t)T P [AcK(t)η(t) + AcKd(t)δ(t − τ)]

− 2δ (t − τ)T D̄T P [AcK(t)η(t) + AcKd(t)δ(t − τ)]

+ [EcK(t)Lη(t) + EcKd(t)δ(t − τ)]T P [EcK(t)Lη(t) + EcKd(t)δ(t − τ)]

+ η(t)T LT ZLη(t) − δ(t − τ)T Zδ(t − τ), (29)

where

δ (t − τ) = Lη(t − τ).

Using Lemma 3.1 again, we have

− 2δ (t − τ)T D̄T P [AcK(t)η(t) + AcKd(t)δ(t − τ)]

≤ δ (t − τ)T D̄T PD̄δ (t − τ) + [AcK(t)η(t) + AcKd(t)δ(t − τ)]T

P [AcK(t)η(t) + AcKd(t)δ(t − τ)] . (30)

By (29) and (30), it can be deduced that

LV (ηt, t) ≤
[

η(t)T δ(t − τ)T
]

Θ(t)

[

η(t)
δ(t − τ)

]

, (31)

where Θ(t) is given in (27). Then, by (26) and (31), we obtain

LV (ηt, t) < −λ |η(t)|2 . (32)

Considering this inequality and Assumption 2.1 and the stability results in Refs. 8,11,

we have that the closed-loop system in (11) is mean-square asymptotically stable for all

admissible uncertainties.

Next, we shall show that the inequality in (21) is satisfied. To this end, we note that

by (26) and (31), it can also be deduced that

LV (ηt, t) <
[

η(t)T δ(t − τ)T
]

[

−C̃T
KQ̃C̃K 0
0 0

] [

η(t)
δ(t − τ)

]

.
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Integrating both sides from 0 to ∞ and then taking expectation we have

− E

{

[

η(0) − D̄Lη(−τ)
]T

P
[

η(0) − D̄Lη(−τ)
]

+

∫

0

−τ

η(s)T LT ZLη(s)ds

}

≤ −E

{
∫

∞

0

[

η(t)T C̃T
KQ̃C̃Kη(t)

]

dt

}

.

Considering this and the relationship

J = E

{
∫

∞

0

[

η(t)T C̃T
KQ̃C̃Kη(t)

]

dt

}

,

it is easy to show that (21) follows. This completes the proof. �

Now, we are in a position to present the solvability condition for the guaranteed cost

control problem.

Theorem 3.2 Consider the uncertain neutral stochastic system (Σ) with the cost function

in (7). Then there exists a dynamic output feedback controller in (9) and (10) such that

the closed-loop system in (11) is mean-square asymptotically stable and (19) is satisfied

for some scalar J∗ > 0 if there exist matrices X > 0, Y > 0,Λ, Φ and Ψ such that the

following LMI holds for some matrix Z > 0 and scalars ǫ1 > 0, ǫ2 > 0,













Γ1 ΩT
1

0 ΩT
2

ΩT
3

Ω1 Γ2 ΩT
4

ΩT
5

0
0 Ω4 −X ΩT

6
ΩT

7

Ω2 Ω5 Ω6 Γ3 0
Ω3 0 Ω7 0 Γ4













< 0, (33)

where

Γ1 = AY + Y AT + B1Φ + ΦT BT
1 ,

Γ2 =













XA + AT X + ΨC + CT ΨT XAd + ΨCd AT AT X + CTΨT ET

AT
d X + CT

d ΨT DTXD − Z AT
d AT

d X + CT
d ΨT ET

d

A Ad −Y −I 0
XA + ΨC XAd + ΨCd −I −X 0

E Ed 0 0 −Y













,

Γ3 = diag
(

−ǫ1I,−ǫ2I,−ǫ−1

1
I,−ǫ−1

2
I,−Q−1

1
,−Q−1

2
,−Z−1

)

,

Γ4 = diag (−I,−I) ,
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Ω1 =













Λ + AT

AT
d

AY + B1Φ
Λ

EY













, Ω2 =





















MT
1

0
N1Y + N3Φ

N4Y

Y

Φ
Y





















, Ω3 =

[

Y

0

]

,

Ω4 =
[

XE + ΨH XEd + ΨHd 0 0 −I
]

,

Ω5 =





















MT
1

X + MT
2

ΨT 0 MT
1

MT
1

X + MT
2

ΨT 0
0 0 0 0 MT

1

N1 N2 0 0 0
N4 N5 0 0 0
I 0 0 0 0
0 0 0 0 0
I 0 0 0 0





















,

Ω6 =





















0
MT

1
X + MT

2
ΨT

0
0
0
0
0





















,

Ω7 =

[

0
ET X + HT ΨT

]

.

In this case, a desired dynamic output feedback controller in (9) and (10) can be obtained

with parameters as

AK = W−1

1
(Λ − XAY − ΨCY − XB1Φ − ΨB2Φ)W−T

2
, (34)

BK = W−1

1
Ψ, CK = ΦW−T

2
, (35)

where W1 and W2 are any nonsingular matrices satisfying

W1W
T
2 = I − XY. (36)

Furthermore, the corresponding value of the cost function in (7) satisfies

J ≤ E

{

[

η(0) − D̄Lη(−τ)
]T

[

X W1

W T
1

Ξ

]

[

η(0) − D̄Lη(−τ)
]

+

∫

0

−τ

η(s)T LT ZLη(s)ds

}

, (37)
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where

Ξ = W T
1

(

X − Y −1
)

−1
W1. (38)

Proof. It follows from (33) that

[

−Y −I

−I −X

]

< 0,

which implies

X − Y −1 > 0.

Therefore, I −XY is nonsingular. Then, under the condition of the theorem, there always

exist nonsingular matrices W1 and W2 such that (36) is satisfied. Now, set

Π1 =

[

Y I

W T
2

0

]

, Π2 =

[

I X

0 W T
1

]

. (39)

Then, it is easy to see that both Π1 and Π2 are nonsingular. Define

P = Π2Π
−1

1
. (40)

Following a similar argument as in Ref. 5, we can deduce that

P =

[

X W1

W T
1

Ξ

]

> 0.

On the other hand, by applying Schur complement equivalence to (33), we have









Γ1 + Y Y ΩT
1

0 ΩT
2

Ω1 Γ2 ΩT
4

ΩT
5

0 Ω4 (XE + ΨH) (XE + ΨH)T − X ΩT
6

Ω2 Ω5 Ω6 Γ3









< 0. (41)

By Lemma 3.1, it can be shown that









0
0

XE + ΨH

0









[

Y 0 0 0
]

+









Y

0
0
0









[

0 0 (XE + ΨH)T 0
]

≤









0
0

XE + ΨH

0

















0
0

XE + ΨH

0









T

+









Y

0
0
0

















Y

0
0
0









T

.
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This, together with (41), gives









Γ1 ΩT
1

Y (XE + ΨH)T ΩT
2

Ω1 Γ2 ΩT
4

ΩT
5

(XE + ΨH)Y Ω4 −X ΩT
6

Ω2 Ω5 Ω6 Γ3









< 0. (42)

Considering (34), (35) and (40), the matrix inequality in (42) can be re-written as



































ΠT
1

(

PAcK + AT
cKP

)

Π1 ΠT
1
PAcKd ΠT

1
AT

cKΠ2 ΠT
1
LT ET

cKΠ2

AT
cKdPΠ1 D̄T PD̄ − Z AT

cKdΠ2 ET
cKdΠ2

ΠT
2
AcKΠ1 ΠT

2
AcKd −ΠT

2
P−1Π2 0

ΠT
2
EcKLΠ1 ΠT

2
EcKd 0 −ΠT

2
P−1Π2

M̃T
1KPΠ1 0 M̃T

1KΠ2 0

0 0 0 M̃T
1KΠ2

Ñ1KΠ1 N2 0 0

Ñ4Π1 N5 0 0

C̃KΠ1 0 0 0
LΠ1 0 0 0

ΠT
1
PM̃1K 0 ΠT

1
ÑT

1K ΠT
1
ÑT

4
ΠT

1
C̃T

K ΠT
1
LT

0 0 NT
2

NT
5

0 0

ΠT
2
M̃1K 0 0 0 0 0

0 ΠT
2
M̃1K 0 0 0 0

−ǫ1I 0 0 0 0 0
0 −ǫ2I 0 0 0 0

0 0 −ǫ−1

1
I 0 0 0

0 0 0 −ǫ−1

2
I 0 0

0 0 0 0 −Q̃−1 0
0 0 0 0 0 −Z−1



































< 0, (43)

Pre- and post multiplying (43) by diag
(

Π−T
1

, I,Π−T
2

,Π−T
2

, I, I, I, I, I, I
)

and its transpose,

and then using the Schur complement formula, we obtain



Les Cahiers du GERAD G–2006–85 13







































PAcK

+AT
cKP

+LTZL

PAcKd AT
cK LT ET

cK PM̃1K 0 ÑT
1K ÑT

4
C̃T

K

AT
cKdP D̄T PD̄ − Z AT

cKd ET
cKd 0 0 NT

2
NT

5
0

AcK AcKd −P−1 0 M̃1K 0 0 0 0

EcKL EcKd 0 −P−1 0 M̃1K 0 0 0

M̃T
1KP 0 M̃T

1K 0 −ǫ1I 0 0 0 0

0 0 0 M̃T
1K 0 −ǫ2I 0 0 0

Ñ1K N2 0 0 0 0 −ǫ−1

1
I 0 0

Ñ4 N5 0 0 0 0 0 −ǫ−1

2
I 0

C̃K 0 0 0 0 0 0 0 −Q̃−1







































< 0,

By this inequality and Theorem 3.1, the desired result follows immediately. �

Remark 3.1 Note that under Assumption 2.1, Theorem 3.2 provides a sufficient condition

for the solvability of the guaranteed cost control problem for uncertain neutral stochastic

system. A desired guaranteed cost controller can be constructed by (34) and (35) when

(33) is feasible. In this case, a corresponding upper bound on the closed-loop cost function

can be obtained by (37). It is noted that (33) is an LMI for some fixed matrix Z > 0

and scalars ǫ1 > 0, ǫ2 > 0, which can be easily handled by resorting to recently developed

algorithms solving LMIs (Ref. 1).

Now, we consider the nominal neutral stochastic system of (Σ); that is,

(Σ1) : d [x(t) − Dx(t − τ)]

= [Ax(t) + Adx(t − τ) + B1u(t)] dt + [Ex(t) + Edx(t − τ)] dω(t),

dy(t)

= [Cx(t) + Cdx(t − τ) + B2u(t)] dt + [Hx(t) + Hdx(t − τ)] dω(t),

x(t)

= ϕ(t), ∀t ∈ [−τ, 0],

Then, by Theorem 3.2, it is easy to have the following corollary.

Corollary 3.1 Consider the neutral stochastic system (Σ1) with the cost function in (7).

Then there exists a dynamic output feedback controller in (9) and (10) such that the closed-

loop system

d
[

η(t) − D̄Lη(t − τ)
]

= [AcKη(t) + AcKdLη(t − τ)] dt

+ [EcKLη(t) + EcKdLη(t − τ)] dω(t),
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is mean-square asymptotically stable and (19) is satisfied for some scalar J∗ > 0 if there

exist matrices X > 0, Y > 0,Λ, Φ and Ψ such that the following LMI holds for some

matrix Z > 0,












Γ1 ΩT
1

0 Ω̃T
2

ΩT
3

Ω1 Γ2 ΩT
4

Ω̃T
5

0
0 Ω4 −X 0 ΩT

7

Ω̃2 Ω̃5 0 Γ̃3 0
Ω3 0 Ω7 0 Γ4













< 0,

where

Γ̃3 = diag
(

−Q−1

1
,−Q−1

2
,−Z−1

)

,

Ω̃2 =





Y

Φ
Y



 , Ω̃5 =





I 0 0 0 0
0 0 0 0 0
I 0 0 0 0



 ,

and Γ1, Γ2, Γ4, Ω1, Ω3, Ω4 and Ω7 are given in Theorem 3.2. In this case, a desired

dynamic output feedback controller in (9) and (10) can be obtained with parameters as

AK = W−1

1
(Λ − XAY − ΨCY − XB1Φ − ΨB2Φ)W−T

2
,

BK = W−1

1
Ψ, CK = ΦW−T

2
,

where W1 and W2 are any nonsingular matrices satisfying

W1W
T
2 = I − XY.

Furthermore, the corresponding value of the cost function in (7) satisfies

J ≤ E

{

[

η(0) − D̄Lη(−τ)
]T

[

X W1

W T
1

Ξ

]

[

η(0) − D̄Lη(−τ)
]

+

∫

0

−τ

η(s)T LT ZLη(s)ds

}

,

where

Ξ = W T
1

(

X − Y −1
)

−1
W1.

4 Numerical Example

In this section, we provide an example to demonstrate the effectiveness of the proposed

method.
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Consider an uncertain neutral stochastic system in (Σ) with parameters as follows:

A =





−0.7 0.1 0.3
−0.1 −0.8 0.2

0 0.1 0.1



 , Ad =





−0.2 −0.1 0.2
0.1 0.1 0
0 0.1 0



 , B1 =





1.8 −1.3 0
1.7 0.2 1
2 1 1.5



 ,

E =





−0.1 0 0.1
0.1 −0.1 0
0 0 0.2



 , Ed =





0.1 0.2 0
−0.1 0.1 −0.2
0.1 0 0.1



 , C =

[

−1.2 0.5 0.4
0.5 −1.2 2.5

]

,

Cd =

[

0.1 −0.1 0.3
0 0.1 0.1

]

, B2 =

[

0.1 0 −0.5
−0.5 1 0.6

]

, H =

[

−0.3 0 0.1
0 −0.1 0.2

]

,

Hd =

[

0.1 −0.1 0
0.3 0.1 0.3

]

, D =





0.1 0 0.1
0 −0.1 0.1
0 0 −0.2



 ,

M1 =





0
0.1
0.1



 , M2 =

[

0.1
0.1

]

,

N1 =
[

0.1 0 0.1
]

, N2 =
[

0 0.1 −0.1
]

, N3 =
[

0 0.2 0.1
]

,

N4 =
[

−0.1 0.2 0
]

, N5 =
[

0.3 −0.2 0.1
]

Associated with this system (Σ), the cost function is given in (7) with

Q1 =





0.3 0.1 0
0.1 0.2 0.1
0 0.1 0.1



 , Q2 =





0.3 0.1 −0.1
0.1 0.2 0.1
−0.1 0.1 0.2



 .

In order to design a guaranteed cost controller, we choose

Z =





2.5 0 0
0 2.5 0
0 0 2.5



 , ǫ1 = 1.8, ǫ2 = 2.5.

Then, by using the Matlab LMI Control Toolbox to solve the LMI in (33), we obtain the

solution as follows:

X =





10.8337 −0.9139 1.9247
−0.9139 10.4069 −0.5412

1.9247 −0.5412 18.1286



 , Y =





0.1946 0.0054 0.0001
0.0054 0.2182 0.0011
0.0001 0.0011 0.1624



 ,

Λ =





−0.7675 0.1389 −0.0101
−0.2645 −0.8251 −0.1562

0.1131 0.3643 −0.5178



 , Φ =





−0.0243 0.0027 −0.0616
−0.0007 0.0160 −0.0525

0.0293 −0.0267 0.0415



 ,
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Ψ =





−1.3029 −1.2653
0.7482 −0.0227

−2.8424 −5.5320



 .

Now, we set a nonsingular matrix W1 as

W1 =





2 1.6 −3
1.2 −3.2 1.5
2.5 2 1.8



 ,

From (36), we can find W2 as

W2 =





−0.2440 −0.0447 0.1812
−0.2032 0.3121 −0.0154
−0.3476 −0.2856 −0.2799



 .

Therefore, by Theorem 3.2, a desired guaranteed cost controller can be chosen as

dξ(t) =





−1.2390 −0.7406 −0.2785
−0.0010 −1.2490 −0.2864
−0.1645 −0.5015 −1.0719



 ξ(t)dt

+





−0.5465 −1.1070
−0.5413 −0.7417
−0.2187 −0.7118



 dy(t), (44)

u(t) =





0.1002 0.0750 0.0193
0.0360 0.0777 0.0637

−0.0600 −0.1223 0.0509



 ξ(t). (45)

In this case, if we assume τ = 0.5, and η(t) =
[

1 1 −1 0 1 0.5
]T

for t ∈ [−0.5, 0] ,

then, by Theorem 3.2, the closed-loop cost function in (7) satisfies

J ≤ 39.4961.

5 Conclusions

The problem of guaranteed cost control for uncertain neutral stochastic systems with

time-varying and norm-bounded parameter uncertainties has been studied in this paper.

Dynamic output feedback controllers have been designed, which guarantee not only the

mean-square asymptotic stability of the closed-loop system but also an upper bound on

the closed-loop value of the cost function for all admissible uncertainties. An LMI ap-

proach has been developed and a numerical example has been provided to demonstrate the

effectiveness and applicability of the proposed approach.
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