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Abstract

We present a review of several column generation formulations for the Routing and
Wavelength Assignment (rwa) problem with the objective of minimizing the blocking
rate. Several improvements are proposed together with a comparison of the different
formulations with respect to the quality of their continuous relaxation bounds and
their computing solution ease. Experimental results are presented on several classical
network and traffic instances.

Key Words: wdm network; network dimensioning; rwa problem; column genera-
tion; optimal solution.

Résumé

Nous présentons une synthèse de plusieurs formulations de type génération de
colonnes pour le problème de routage et d’affectation de longueurs d’onde (rwa–
Routing and Wavelength Assignment) avec l’objectif de minimiser le taux de blocage.
Plusieurs améliorations sont proposées ainsi qu’une comparaison des formulations par
rapport à la qualité de leurs bornes de relaxation continue et de leur facilité de
résolution. Des résultats de calcul sont présentés pour plusieurs jeux de données.
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1 Introduction

Many papers have already appeared on the rwa problem, i.e., the routing and wavelength
assignment problem, one of the central problem in the dimensioning of optical wdm net-
works. As it is a highly combinatorial problem, various heuristic scheme solutions have
been proposed under different traffic assumptions with static or dynamic patterns, with sin-
gle or multi hops, and for various objectives, cf. the surveys of Dutta and Rouskas [1] and
Zang, Jue and Mukherjee [2] for a summary of the works until 2000, and Jaumard, Meyer
and Thiongane [3] for a recent survey on symmetrical systems under various objectives.

Several compact ilp formulations have been proposed for the rwa problem: see [4]
and [3] for recent surveys in the asymmetrical and symmetrical cases respectively. They
all share the drawback to be highly symmetrical with respect to wavelength permutations.
As a consequence, even problems of moderate size can hardly be solved to optimality. In
an attempt to overcome this drawback, column generation like formulations have been
proposed (Ramaswami and Sivarajan [5], Lee et al. [6]). We review these formulations,
improve and compare them and propose a new one.

The paper is organized as follows. In the next section, we present a more formal
statement of the rwa problem and define the notations that will be used throughout the
paper. The following sections are each devoted to a specific column generation formulation
of the rwa problem: Section 4 to the maximal independent set formulation of Ramaswami
and Sivarajan [5], Section 5 to the independent routing configuration formulation of Lee
et al. [6], Section 6 to a new maximal independent routing configuration formulation. We
then present in Section 7 a relaxation of the formulations presented in Sections 5 and 6 and
compare the linear programming relaxation upper bound provided by the various column
generation formulations. In Section 8 we propose a branch-and-bound algorithm to solve
the new maximal independent routing configuration formulation presented in Section 6.
Computational results are given in Section 9. Conclusions are drawn in the last section.

2 Statement of the max-RWA problem

Let us consider a wdm optical network represented by a multigraph G = (V,E) with
node set V = {v1, v2, . . . , vn} where each node is associated with a node of the physical
network, and with arc set E = {e1, e2, . . . , em} where each arc is associated with a fiber
link of the physical network: the number of arcs from vi to vj is equal to the number
of fibers supporting traffic from vi to vj. Connections and fiber links are assumed to be
directional, and the traffic to be asymmetrical. The set of available wavelengths is denoted
by Λ = {λ1, λ2, . . . , λW } with W = |Λ|. The traffic is defined by a n×n matrix T where Tsd

defines the number of requested connections from vs to vd. All wavelengths are assumed
to have the same capacity. Let SD = {(vs, vd) ∈ V × V : Tsd > 0}. Denote by Psd the
set of elementary paths from vs to vd for (vs, vd) ∈ SD and by P the overall collection of



2 G–2006–75 Les Cahiers du GERAD

elementary paths, i.e., P =
⋃

(vs,vd)∈SD

Psd. Let ω+(vi) (resp. ω−(vi)) be the set of outgoing

(resp. incoming) fiber links at node vi.

We consider only single-hop connections, i.e., the same wavelength is used from the
source to the destination for all connection requests. Note that it has been shown (see [7])
that wavelength conversion (i.e., multiple-hop connections) does not help very much in
order to reduce the blocking rate.

The rwa problem can then be formally stated as follows: given a multigraph G cor-
responding to a wdm optical network, and a set of requested connections, find a suitable
lightpath (p, λ) for each (accepted) connection where p is a routing path and λ a wave-
length, so that no two paths sharing an arc of G are assigned the same wavelength. We
study the objective of minimizing the blocking rate, that is equivalent to maximizing the
number of accepted connections, leading to the so-called max-rwa problem.

3 Path modeling

A rather straightforward formulation for the rwa problem, often mentioned in the liter-
ature, corresponds to the so-called path formulation: see, e.g., [5, 4]. This formulation
suffers from the drawback of exhibiting a wavelength symmetry: one can deduce W ! alter-
nate solutions for any given solution through wavelength permutations. It is therefore not
suited for practical computation taking in account that, in addition, the number of paths
in a general network is exponential in the number of nodes. Nevertheless we mention it
for several reasons. Firstly, due to its exponential number of variables, it fits naturally
in the column generation framework. Secondly, it provides a bridge between the other
column generation procedures studied later in this paper and the compact formulations
reviewed in [4] with respect to their linear programming lp relaxation. Although we do
not consider particular constraints (e.g., limit on the number of hops) on the lighpaths
in this paper, it is worth noting that such constraints are usually much easier to handle
with path formulations than with arc or link formulations. At last, let us recall that it
has been shown in [4] that the lp relaxation of the path formulation and of the compact
formulations have the same optimal value.

3.1 The master problem

Let us define the parameters

δp
e =

{

1 if arc e belongs to path p

0 otherwise

for all p ∈ P and e ∈ E. The path formulation can be written as follows:

max zpath(x) =
∑

λ∈Λ

∑

p∈P

xλ
p
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subject to:

∑

p∈P

δp
exλ

p ≤ 1 e ∈ E,λ ∈ Λ (1)

∑

λ∈Λ

∑

p∈Psd

xλ
p ≤ Tsd (vs, vd) ∈ SD (2)

xλ
p ∈ {0, 1} p ∈ P, λ ∈ Λ. (3)

Constraints (1) correspond to the clash constraints, i.e., they express that there is
at most one lightpath going through each pair (e, λ). Constraints (2) are the demand
constraints: one must ensure that the number of accepted connections for a given pair
source-destination does not exceed the demand, while we attempt to maximize the number
of accepted connections in the objective function.

3.2 The auxiliary problems

The lp relaxation, denoted by lp path, is obtained by replacing the binary constraints
(3) by 0 ≤ xλ

p ≤ 1 for all p ∈ P and λ ∈ Λ. As the number of paths can be exponential,

let us consider the lp path formulation with a variable subset of {xλ
p : p ∈ P, λ ∈ Λ},

leading to the so-called restricted master problem. To check whether the optimal solution
of the restricted master problem is also optimal for the original lp path, we need to verify
whether there exists a variable xλ

p with a positive reduced cost that could be added to
the restricted master problem, see, e.g., Nemhauser and Wolsey [8] for an introduction
to column generation. If such a variable exists, it is added to the variable subset of the
restricted master problem that is solved again. Otherwise the lp path has been solved
optimally.

Let u0
eλ be the dual value associated with constraint (1) for a given (e, λ) ∈ E ×Λ, and

u1
sd the dual value associated with constraints (2) for a given (vs, vd) ∈ SD. Note that the

constraints xλ
p ≤ 1 are implied by (1), so we do not need to consider them explicitly. The

reduced cost of variable xλ
p is

c(xλ
p) = 1 −

∑

e∈p

u0
eλ − u1

s(p)d(p)

where s(p) and d(p) denote respectively the source and the destination node of path p.

For a given λ ∈ Λ, a variable with positive reduced cost can be found by solving the
following ilp problem:

max caux-path,λ(α) = 1 −
∑

e∈E

u0
eλαe −

∑

(vs,vd)∈SD

u1
sdαsd
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subject to:

∑

(vs,vd)∈SD

αsd = 1 (4)

∑

vs:(vs,vi)∈SD

αsi +
∑

e∈ω+(vi)

αe

=
∑

e∈ω−(vi)

αe +
∑

vd:(vi,vd)∈SD

αid vi ∈ V (5)

αsd ∈ {0, 1} (vs, vd) ∈ SD (6)

αe ∈ {0, 1} e ∈ E (7)

with αsd = 1 if a path from vs to vd is selected, and αsd = 0 otherwise; and αe = 1 if
arc e is used for the path, and αe = 0. Note that constraint (4) ensures that exactly
one source and one destination are selected. Once these source and destination nodes are
selected, constraints (5) are ordinary flow conservation equations. The flow-conservation
formulation is valid for finding a shortest path since there can be no cycle with strictly
positive cost as u0

eλ ≥ 0 for all e. Note that since this shortest-path formulation has the
integrality property, the integrality constraints on the variables αe can be dropped (recall
that a problem has the integrality property if its solution is unchanged when the integrality
restriction is removed).

Following the observation that the weights on the arcs do not depend on the pair
(vs, vd), a simple solution scheme can be based on solving an all-pair shortest path problem
in O(n3) using the Floyd-Warshall algorithm (see, e.g., [9]) and adding to each path the
corresponding cost u1

sd in O(|SD|). Hence, an overall complexity is O(n3).

3.3 Discussion

Several compact formulations, i.e., with a polynomial number of variables and constraints,
have been proposed for the max-rwa problem, with lp relaxations that yield the same
optimal value than that given by lp path: see [4]. Therefore, the drawback of having
an exponential number of variables is not compensated by a gain in the quality of the
upper bound for the path formulation. Even worse, this column generation formulation
also exhibits the same symmetry with respect to the permutations of the wavelengths than
that showed by the compact formulations. We will show in the following sections that
there are alternative column generation formulations with more attractive properties.

4 Maximal independent set modeling

A first alternative column generation formulation was proposed by Ramaswami and Sivara-
jan [5], overcoming the wavelength symmetry problem. In order to express it, let us first
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define the wavelength clash (or conflict) graph GW = (VW , EW ). The set of nodes is a
union of node sets

VW =
⋃

(vs,vd)∈SD

V sd
W ,

where V sd
W = {rp : p ∈ Psd} is a set of route nodes, i.e., of nodes associated with potential

routes for connections from vs to vd for all (vs, vd) ∈ SD, and EW = {{rp, rp′} ∈ VW ×VW :
paths p and p′ have at least one common fiber link}. Let Imax be the overall set of maximal
independent sets of GW , and let wI be the number of wavelengths associated with I for
each I ∈ Imax.

4.1 MAX IS mathematical formulation

Let us define the following set of coefficients:

δpI = |{rp} ∩ I| =

{

1 if path p is such that rp belongs to independent set I

0 otherwise

and observe that
∑

p∈Psd

δpI = |I ∩ V sd
W | I ∈ Imax, (vs, vd) ∈ SD. (8)

The Ramaswami and Sivarajan [5] formulation amounts to find a set of q ≤ W maximal
independent sets subject to some constraints. It is formally expressed as follows :

max
∑

(vs,vd)∈SD

ysd

subject to:

∑

I∈Imax

wI ≤ W (9)

xp ≤
∑

I∈Imax

wIδpI p ∈ P (10)

ysd ≤
∑

p∈Psd

xp (vs, vd) ∈ SD (11)

0 ≤ ysd ≤ Tsd (vs, vd) ∈ SD (12)

xp ≥ 0 p ∈ P (13)

wI ∈ N I ∈ Imax. (14)

The variable ysd counts the number of accepted connections from vs to vd for all (vs, vd) in
SD, while the variable xp counts the number of times a given path is selected for a lightpath
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for all p ∈ P. Note that we may a priori allow more lightpaths between a pair of source-
destination than required, but constraints (11)–(12) ensure that we grant no more than
the number of requested connections. The variables xp can be eliminated by combining
constraints (10) and (11). Moreover the nonnegativity constraints on the variables ysd can
be eliminated because of the objective function. Using (8), we obtain the following max is

formulation:
max zmax is(w, y) =

∑

(vs,vd)∈SD

ysd

subject to:

∑

I∈Imax

wI ≤ W (15)

ysd −
∑

I∈Imax

wI |I ∩ V sd
W | ≤ 0 (vs, vd) ∈ SD (16)

ysd ≤ Tsd (vs, vd) ∈ SD (17)

wI ∈ N I ∈ Imax. (18)

The most important feature of the max is formulation lies in the fact that wavelengths are
assigned only once an optimal solution has been found, therefore eliminating the symmetry
problem arising from equivalent solutions up to a wavelength permutation in the classical
ilp formulations and in the path formulation, see, e.g., Jaumard, Meyer and Thiongane [3].
Let w∗ be an optimal solution of the max is formulation and let I1, I2, . . . , Iq, q ≤ W be
the independent sets such that w∗

I ≥ 1. One can then distribute the wavelengths over the

independent sets as follows: assign λt, t = 1 +
τ−1
∑

i=1
w∗

Ii
, ...,

τ
∑

i=1
w∗

Ii
to the independent set Iτ

for τ = 1, 2, . . . , q with the convention that
0
∑

i=1
w∗

Ii
= 0.

4.2 Solution of the LP relaxation of MAX IS

Although Ramaswami and Sivarajan [5] proposed the above max is formulation, i.e., a so-
called column generation formulation, they did not solve it using column generation tech-
niques even if those techniques usually lead to a much more efficient solution scheme than
the Simplex algorithm as it avoids considering explicitly all potential variables/columns.
Let us study how to solve the lp relaxation, denoted by lp max is, using column genera-
tion techniques.

The lp max is relaxation is obtained by replacing the integer constraints (18) by wI ≥ 0
for all I ∈ Imax. As the number of maximal independent sets can be exponential, let us
consider the lp max is formulation with all variables ysd such that (vs, vd) ∈ SD and a
variable subset of {wI : I ∈ Imax}, leading to the so-called restricted master problem. To
check whether the optimal solution of the restricted master problem is also optimal for the
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original lp max is, we need to verify whether there exists a variable wI with a positive
reduced cost. If such a variable exists, it is added to the variable subset of the restricted
master problem that is solved again. We iterate until no variable wI with a positive reduced
cost can be found: the lp max is has then been solved optimally.

Let u0 be the dual value associated with constraint (15) and u1
sd the dual value associated

with constraint (16) in an optimal solution of the current restricted master problem. Then
the reduced cost for variable wI is

c(wI) = −u0 +
∑

(vs,vd)∈SD

|I ∩ V sd
W |u1

sd.

Checking the existence of a variable with positive reduced cost corresponds to a weighted
independent set problem that can be written:

max caux max is(α) = −u0 +
∑

(vs,vd)∈SD

∑

p:rp∈V sd
W

u1
sd αp

subject to:

αp + αp′ ≤ 1 (rp, rp′) ∈ EW

αp ∈ {0, 1} rp ∈ VW

where αp = 1 if node rp belongs to the independent set and 0 otherwise. Many exact
methods have been proposed for the weighted independent set problem, see, e.g., Mehrotra
and Trick [10], Balas and Xue [11]. It is usual in column generation methods not to solve
exactly the auxiliary problem but rather to stop when one or more columns with the
appropriate sign for their reduced cost, are found. Note that here, there is no guarantee
that such columns would correspond to a maximal independent set. Even if we solve the
subproblem at optimality, there is no guarantee that the optimal solution found would
correspond to a maximal independent set when some u1

sd are equal to 0. This minor
difficulty can be solved in two ways. Firstly, the independent set can be completed to
a maximal independent set. Clearly this operation cannot decrease the objective value.
Secondly, by looking more carefully at the formulation, we see that it remains valid even
if non-maximal independent sets are considered. Indeed the formulation is valid whether
the independent sets are maximal independent sets or not.

4.3 Quality of the LP bound of the MAX IS formulation

The lp relaxation upper bound obtained with this formulation can be strictly better than
the LP relaxation bound of the path formulation:

Example 1 Consider the KK Network of Kleiberg and Kumar’s [12] shown in Figure 1(a).
Let W = 1. Assume that the traffic matrix is given by T13 = T14 = T25 = T63 = T65 = 1,
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all other entries of T being 0. The paths of interest are p1 = (v1, v2, v3), p2 = (v1, v2, v4),
p3 = (v2, v4, v5), p4 = (v6, v4, v2, v3) and p5 = (v6, v4, v5), see Figure 1(b). The maximal
independent sets in the conflict graph are I1 = {r1, r3}, I2 = {r1, r5}, I3 = {r2, r4}, I4 =
{r2, r5} and I5 = {r3, r4}, see Figure 1(c). Solving the linear programs yields zlp

max is
= 2

(obtained by selecting any one of the independent sets) and zlp
path

= 5
2 (obtained for x1

p = 1
2

for all p).

r1

r4

r5

r3

r2

p3

p5

p4

p1p2

v1 v1

v2

v4

v6
v5

v3

v2

v3

v5
v6

v4

Figure 1: (a) KK Network (b) Lightpaths (c) Conflict Graph

We will show in Section 7 (see Corollary 6) that zlp
max is ≤ zlp

path.

A major drawback of the max is formulation is however that the aux max is auxiliary
problem needs to be solved on the wavelength clash graph that may involve an exponential
number of vertices as each vertex is associated with an elementary path for a given pair
of source and destination nodes. The formulations proposed in the next sections do not
suffer from this drawback as the solution algorithm of their auxiliary problems requires to
consider only implicitly the wavelength clash graph, see Section 7 for more details.

5 Independent routing configuration modeling

Lee et al. [6] (see also [13, 14]) have introduced the concept of independent routing config-
uration where an independent routing configuration is implicitly associated with a set of
paths, not necessarily unique, that can be used for satisfying a given fraction of the connec-
tions with the same wavelength. An independent routing configuration C is represented
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by a non-negative vector aC such that

aC
sd = number of connection requests from vs to vd that are supported

by configuration C

aC
sd ≤ Tsd (vs, vd) ∈ SD.

We denote by C the set of all possible independent routing configurations.

5.1 IRC mathematical formulation

We define the variables wC that indicate how many occurrences of a given independent
routing configuration are used simultaneously, each occurrence with a different wavelength.
The independent routing configuration formulation, denoted by irc, can be expressed as
follows for the max-rwa problem:

max zirc(w) =
∑

C∈C

∑

(vs,vd)∈SD

aC
sdwC

subject to:

∑

C∈C

wC ≤ W (19)

∑

C∈C

aC
sdwC ≤ Tsd (vs, vd) ∈ SD (20)

wC ∈ N C ∈ C. (21)

5.2 Solution of the LP relaxation of the IRC formulation

The lp relaxation, denoted by lp irc, is obtained by replacing the integrality constraints
(21) in irc by wC ≥ 0 for all C ∈ C. As the number of independent routing configurations
can be exponential, we consider again a so-called restricted master problem on a subset of
the variables and examine the reduced cost to determine whether or not we have reached
the optimal solution of lp-irc. Let (u0, u1

sd) be an optimal solution of the dual of the
current restricted master problem. Then the reduced cost c̄(wC) of column wC can be
written

c̄(wC) = −u0 +
∑

(vs,vd)∈SD

(1 − u1
sd)a

C
sd.

To find whether there exists a configuration with a positive reduced cost, Lee et al. [14]
consider the following auxiliary problem:

max c̄aux1−irc(α) = −u0 +
∑

(vs,vd)∈SD

∑

p∈Psd

(1 − u1
sd)αp
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subject to:

∑

p∈P

δp
eαp ≤ 1 e ∈ E (22)

∑

p∈Psd

αp ≤ Tsd (vs, vd) ∈ SD (23)

αp ∈ {0, 1} p ∈ P (24)

where αp = 1 if path p is selected and 0 otherwise, and δ
p
e is defined in Section 3.1. The

auxiliary problem corresponds here again to a weighted independent set problem (using the
clique formulation, see e.g., Grötschel et al. [15]), but with some cardinality constraints.

Lee et al. [14] solve it using column generation and a branch-and-price algorithm, or in
other words they have a column generation algorithm for solving the auxiliary problems
embedded in the column generation (heuristic) algorithm for solving the master problem.

In order to overcome the need of an embedded column generation solution, an interesting
alternative is to reformulate the auxiliary problem as a multi-flow problem:

max c̄aux2−irc(α) = −u0 +
∑

(vs,vd)∈SD

∑

e∈ω+(vs)

αsd
e (1 − u1

sd)

subject to:

∑

(vs,vd)∈SD

αsd
e ≤ 1 e ∈ E (25)

∑

e∈ω+(vi)

αsd
e =

∑

e∈ω−(vi)

αsd
e (vs, vd) ∈ SD, vi ∈ V \ {vs, vd} (26)

∑

e∈ω+(vs)

αsd
e ≤ Tsd (vs, vd) ∈ SD (27)

∑

e∈ω−(vs)

αsd
e = 0 (vs, vd) ∈ SD (28)

αsd
e ∈ {0, 1} (vs, vd) ∈ SD, e ∈ E (29)

where αsd
e = 1 if a path from vs to vd goes through fiber link e, and 0 otherwise. Constraints

(25) and (26) define a set of disjoint paths, i.e., a configuration. If c̄aux2−irc(α) ≤ 0 then
lp irc has been solved to optimality. Otherwise the routing configuration C defined by
the vector (aC

sd) with aC
sd =

∑

e∈ω+(vs)

αsd
e for (vs, vd) ∈ SD is added to the restricted master

problem, which is solved again.
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6 Maximal independent routing configuration modeling

By combining the ideas of the formulations of the two previous sections, we obtain a
new formulation that requires only maximal independent routing configurations where an
independent routing configuration C is maximal if there does not exist another independent
routing configuration C ′ such that aC′

≥ aC .

6.1 MAX IRC mathematical formulation

Let Cmax be the set of all maximal independent routing configurations and let again wC

the number of occurrences of the independent routing configuration C that are used, each
with a different wavelength. Then max irc can be formulated as follows:

max zmax irc(w, y) =
∑

(vs,vd)∈SD

ysd (30)

subject to:
∑

C∈Cmax

wC ≤ W (31)

ysd ≤
∑

C∈Cmax

aC
sdwC (vs, vd) ∈ SD (32)

ysd ≤ Tsd (vs, vd) ∈ SD (33)

wC ∈ N C ∈ Cmax. (34)

6.2 Solution of the LP relaxation of MAX IRC

Let u0 be the dual value associated with constraint (31) and u1
sd the dual value associated

with constraint (32) in the optimal solution of the restricted master problem. The reduced
cost for variable wC is −u0 +

∑

(vs,vd)∈SD

aC
sdu

1
sd. The auxiliary problem is then defined by:

max c̄aux max irc(α) = −u0 +
∑

(vs,vd)∈SD

∑

e∈ω+(vs)

αsd
e u1

sd

subject to:
∑

(vs,vd)∈SD

αsd
e ≤ 1 e ∈ E (25)

∑

e∈ω+(vi)

αsd
e =

∑

e∈ω−(vi)

αsd
e (vs, vd) ∈ SD, vi ∈ V \ {vs, vd} (26)

∑

e∈ω+(vs)

αsd
e ≤ Tsd (vs, vd) ∈ SD (27)
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∑

e∈ω−(vs)

αsd
e = 0 (vs, vd) ∈ SD (28)

αsd
e ∈ {0, 1} (vs, vd) ∈ SD, e ∈ E. (29)

Note that the constraints are the same than for the auxiliary problem of the irc formula-
tion, but the objective function differs.

6.3 Comparison of formulations IRC and MAX IRC

Let zlp
irc and zlp

max irc be the optimal values of the lp relaxation of formulation irc and
max irc respectively. We have the following result:

Proposition 1 zlp
irc

= zlp
max irc

.

Proof. Let w∗ be an optimal solution of the LP relaxation of formulation (irc). With each
independent routing configuration C ∈ C, we associate a maximal independent routing
configuration m(C) ∈ Cmax such that aC ≤ am(C). Define ŵ as ŵg =

∑

C∈C:m(C)=g

w∗
C

for each g ∈ Cmax and let ŷsd = min{
∑

C∈Cmax

aC
sdŵC , Tsd} for (vs, vd) ∈ SD. Note that

ŷsd ≥
∑

C∈C

aC
sdw

∗
C for (vs, vd) ∈ SD. Therefore (ŵ, ŷ) is a feasible solution to the LP

relaxation of (max irc) with value ≥ zlp
irc, hence zlp

max irc ≥ zlp
irc.

Conversely let (w∗, y∗) be an optimal solution of the LP relaxation of formulation
(max irc). Clearly at the optimum it holds

y∗sd = min{
∑

C∈Cmax

aC
sdw

∗
C , Tsd}, (vs, vd) ∈ SD.

If for all (vs, vd) ∈ Cmax, y∗sd =
∑

C∈Cmax

aC
sdw

∗
C , then ŵ defined by

ŵC =

{

w∗
C if C ∈ Cmax

0 if C ∈ C \ Cmax

is a feasible solution to the LP relaxation of (irc) with value zlp
max irc, hence the inequality

zlp
irc

≥ zlp
max irc

.

Otherwise there exists (vs̃, vd̃) ∈ SD such that
∑

C∈Cmax

aC

s̃d̃
w∗

C > Ts̃d̃. For each C ∈ Cmax,

we define the configuration m(C) such that a
m(C)
sd = aC

sd for (vs, vd) ∈ SD \ {(vs̃, vd̃
)} and

a
m(C)

s̃d̃
= 0. Clearly the configuration m(C) is still an independent routing configuration,



Les Cahiers du GERAD G–2006–75 13

although not necessarily maximal. Let λ =
T

s̃d̃
P

C∈Cmax

aC

s̃d̃
w∗

C

. We define ŵ as follows:

ŵC =















w∗
C if C ∈ Cmax and C = m(C)

λw∗
C if C ∈ Cmax and C 6= m(C)

(1 − λ)w∗
C′ if C ∈ C \ Cmax and ∃C ′ ∈ Cmax : C = m(C ′)

0 if C ∈ C \ Cmax and 6 ∃C ′ ∈ Cmax : C = m(C ′)

By construction

∑

C∈C

ŵCaC

s̃d̃
=

∑

C∈Cmax

(λw∗
C)aC

s̃d̃
= Ts̃d̃

∑

C∈C

ŵCaC
sd =

∑

C∈Cmax

(

λw∗
CaC

sd + (1 − λ)w∗
Ca

m(C)
sd

)

=
∑

C∈Cmax

w∗
CaC

sd (vs, vd) ∈ SD \ {(vs̃, vd̃
)}

∑

C∈C

ŵC =
∑

C∈Cmax

(λw∗
C + (1 − λ)w∗

C) =
∑

C∈Cmax

w∗
C .

Hence (ŵ, y∗) is a feasible solution of the formulation derived from (max irc) by replacing
Cmax by C, with value zlp

max irc. Note that the number of pairs (vs, vd) such that y∗sd 6=
∑

C∈C

aC
sdŵC has been decreased by 1. Repeating this procedure, we eventually reach the

case where y∗sd =
∑

C∈C

aC
sdŵC for all (vs, vd) ∈ SD, which concludes the proof. �

One of the advantages of the max irc formulation over irc is that the former generally
requires less columns. Indeed, consider a network with 4 nodes v1, v2, v3, v4 such that there
exists a pair of fiber links between the following pair of nodes: (v1, v2), (v1, v3) and (v1, v4).
Assume that the traffic matrix is T12 = 3, T13 = 2 and T14 = 1, and that 3 wavelengths are
available. There is an unique maximal independent routing configuration: this maximal
configuration satisfies aC

v1v2
= aC

v1v3
= aC

v1v4
= 1. An optimal solution of the max irc

formulation is therefore defined by this configuration with weight w∗
C = 3. In contrast, an

optimal solution of the irc configuration will require at least 2 columns: a first column
C defined by aC

v1v2
= aC

v1v3
= 1 with weight w∗

C = 2 and a second column C ′ defined

by aC′

v1v2
= aC′

v1v4
= 1 with weight w∗

C′ = 1. Note however that the max irc formulation
requires the additional variables ysd, that are however in polynomial number.

7 Relaxation of the cardinality constraints in the auxiliary

problems of formulations IRC and MAX IRC

In the formulations irc and max irc presented in Sections 5 and 6 respectively, we re-
quired the columns corresponding to the routing configurations to satisfy the cardinality
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constraints
aC

sd ≤ Tsd, (vs, vd) ∈ SD.

In this section, we eliminate this requirement. This amounts to the elimination of con-
straints (27) in the corresponding auxiliary problems. The relaxed irc and max irc formu-
lations are called respectively irc rl and max irc rl, and we denote by Crl (respectively
Cmax rl) the modified set of independent routing configurations (respectively maximal in-
dependent routing configurations). Note that the formulations irc rl and max irc rl

remain valid ilp formulations, as the cardinality constraints are still present in the master
problems.

7.1 Comparison of the upper bounds provided by the formulations IRC,

MAX IRC, IRC RL and MAX IRC RL

By looking carefully at the proof of Proposition 1, we see that the cardinality constraints
in the auxiliary problem do not play any role in the proof. Hence we have

Proposition 2 zlp
irc rl = zlp

max irc rl.

Proof. Same as the proof of Proposition 1. �

Proposition 3 The following inequality holds:

zlp

max irc
≤ zlp

max irc rl
.

Moreover this inequality is strict for some instances.

Proof. Let (w∗, y∗) be an optimal solution of the lp relaxation of max irc. With any
C ∈ Cmax we associate a m(C) ∈ Cmax rl such that am(C) ≥ aC . We define

w̃g =
∑

C∈Cmax:m(C)=g

w∗
C , g ∈ Cmax rl.

We have

y∗sd ≤
∑

C∈Cmax

aC
sdw

∗
C ≤

∑

g∈Cmax rl

a
g
sdw̃g, (vs, vd) ∈ SD

∑

g∈Cmax rl

w̃g =
∑

C∈Cmax

w∗
C ≤ W.

This shows that (w̃, y∗) is a feasible solution to the lp relaxation of max irc rl with value
zlp
max irc. Hence the inequality zlp

max irc rl ≥ zlp
max irc.

To see that the inequality can be strict for some instances, consider the instance defined
by the network of Figure 2, the traffic matrix T such that T14 = 4, T23 = 1 and Tij = 0
for the other entries, and W = 2. Observe that there is exactly 1 path from v1 to v4:
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v1 → v3 → v2 → v4, whereas from v2 to v3 there are 2 paths, which in addition turn out
to be disjoint: v2 → v1 → v3 and v2 → v4 → v3. Hence there are 2 maximal independent
routing configurations

C1 =

(

0
a

)

, C2 =

(

1
0

)

where a is equal to 1 if the cardinality constraints asd ≤ Tsd are present in the auxiliary
problem, and to 2 if they are not present. The lp relaxations of formulations max irc and
max irc rl are therefore

max y14 + y23

s.t.































w1 + w2 ≤ 2
y14 ≤ w2

y23 ≤ aw1

y14 ≤ 4
y23 ≤ 1
w1, w2 ≥ 0

Clearly zlp
max irc = 2 while zlp

max irc rl = 2.5, obtained for (w∗
1, w

∗
2) = (0.5, 1.5). Note that

in this case, the extreme points of the lp relaxation are integral, hence zlp
max irc

coincides
with the optimal value of the integer problem. �

v3

v1

v2

v4

Figure 2: Network showing that zlp
max irc

6= zlp
max irc rl

7.2 Comparison of the formulations MAX IS and MAX IRC RL

We now compare the formulations max is and max irc rl. Recall that the max is aux-
iliary problem can be written

max −u0 +
∑

(vs,vd)∈SD

∑

p:rp∈V sd
W

αpu
1
sd

s.t.

{

αp + αp′ ≤ 1 (rp, rp′) ∈ EW (35)
αp ∈ {0, 1} rp ∈ VW .
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By definition of the wavelength clash graph GW defined in Section 4, (rp, rp′) ∈ EW if and
only if the paths p and p′ share at least one arc e ∈ E. Hence inequalities (35) can be
written

αp + αp′ ≤ 1 rp, rp′ ∈ VW : e ∈ p ∩ p′, e ∈ E

which in turn can be written
∑

rp∈VW :e∈p

αp ≤ 1 e ∈ E. (36)

Using path notation, the auxiliary problem can then be rewritten:

max −u0 +
∑

(vs,vd)∈SD

∑

p∈Psd

αpu
1
sd

s.t.

{
∑

p∈P:e∈p

αp ≤ 1 e ∈ E (37)

αp ∈ {0, 1} p ∈ P. (38)

Since Psd is the set of all elementary paths from vs to vd, the constraints (37)–(38) can
be replaced by flow constraints: we then obtain the aux max irc rl auxiliary problem of
formulation max irc rl.

Note that although the auxiliary problems are identical for the two formulations, it does
not imply that the set of columns in the master problem are identical. Indeed, a column
corresponding to a maximal independent routing configuration in the max irc rl formu-
lation identifies the number of disjoint paths for each pair of source-destination nodes. It
does not explicitly provide the paths; the only information we have is that there exist paths
that can support the maximal independent routing configuration. In contrast, a column
corresponding to an independent set in formulation max is identifies a set of disjoint paths.
Since a given maximal independent routing configuration may be associated with several
different sets of disjoint paths, it follows that for one column of max irc rl, we may have
many corresponding columns of max is. In other words, max irc rl eliminates a second
type of symmetry.

The following result is a direct consequence of the relation between the 2 formulations:

Proposition 4 zlp
max is

= zlp
max irc rl

.

7.3 Comparison of the upper bounds provided by formulations PATH

and IRC RL

We now compare the upper bounds provided by the linear relaxations of formulations
irc rl and path.

Proposition 5 zlp
irc rl

≤ zlp
path

.



Les Cahiers du GERAD G–2006–75 17

Proof. Let us recall first the linear relaxation of the path aggregated formulation according
to the wavelength λ:

max zpath-aggr(x) =
∑

p∈P

xp

subject to:
∑

p∈P

δepxp ≤ W e ∈ E (39)

∑

p∈Psd

xp ≤ Tsd (vs, vd) ∈ SD (40)

xp ≥ 0 p ∈ P. (41)

Note that the result zlp
path-aggr = zlp

path has been shown in [5].

Let w∗
C be an optimal solution of the lp relaxation of formulation irc rl. With each

independent routing configuration C ∈ C, we associate a set PC of paths realizing C.
Denote by F (PC) the forest induced by PC . Let us define

x̂p =
∑

C∈C:p∈PC

w∗
C , p ∈ P

and let us show that x̂ is a feasible solution to (39)–(41). Consider first constraints (39).
By definition of an independent routing configuration, an arc can be used at most once.
Hence

∑

p∈P

δepx̂p =
∑

C∈C:e∈F (PC)

w∗
C ≤

∑

C∈C

w∗
C ≤ W

by (19). This shows that (39) are satisfied.
Now

∑

p∈Psd

x̂p =
∑

p∈Psd

∑

C∈C:p∈PC

w∗
C =

∑

C∈C

|Psd ∩ PC |w∗
C =

∑

C∈C

aC
sdw

∗
C ≤ Tsd

by (21). Hence constraints (40) are satisfied. Since (41) are clearly satisfied, we conclude
that x̂ is a feasible solution of the linear programming relaxation of the formulation path-

aggr. Now
∑

p∈P

x̂p =
∑

C∈C

w∗
C = zlp

irc rl, hence zlp
path ≥ zlp

irc rl. �

7.4 Summary of the comparison of the upper bounds

Let us now summarize the upper bound comparisons.

Proposition 6

zlp

irc
= zlp

max irc
≤ zlp

max irc rl
= zlp

irc rl
= zlp

max is
≤ zlp

path
.

Moreover each inequality can be strict for some instances.
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Proof. In Section 6 and in Sections 7.1 through 7.3, we established the following relations:

zlp

irc
= zlp

max irc
(Proposition 1)

zlp

max irc
≤ zlp

max irc rl
(Proposition 3)

zlp

max irc rl = zlp

irc rl (Proposition 2)

zlp

max irc rl = zlp

max is (Proposition 4)

zlp

irc rl ≤ zlp

path (Proposition 5),

which imply the first part of Proposition 6. The existence of an instance for which the first
inequality is strict follows from Proposition 3, while an instance for which zlp

max is < zlp
path

was given in Example 1. �

Even if the upper bound provided by the column generation formulations irc and
max irc is stronger than the one provided by the compact formulations and by the path

formulations, there exist instances of the max-RWA problem for which the upper bound is
not equal to the optimal value.

Example 2 Consider again the network of Figure 2 and assume that the traffic matrix is
now given by T14 = 4 and T23 = 7, the other entries being equal to 0. Let the number of
wavelengths W be equal to 7. The maximal IRCs are again

C1 =

(

0
2

)

, C2 =

(

1
0

)

.

An optimal solution of the lp relaxation of max irc is (w̃, ỹ), with w̃1 = w̃2 = 3.5,
ỹ14 = 3.5 and ỹ23 = 7. Its value is zlp

max irc = 10.5, while the optimal value of problem
max irc is 10.

8 Branch-and-bound algorithm

In the previous sections, we have shown that among the column generation formulations
reviewed, the formulations irc and max irc present the strongest lp relaxation. Both
formulations are based on independent routing configurations. However by working on the
restricted set of maximal IRCs, the formulation max irc presents a theoretical advantage
over the irc one in terms of the maximum number of columns (variables) that could be
needed to solve the formulation. Based on these considerations, we present in this section
a branch-and-bound algorithm for solving the formulation (max irc). Recall that this
formulation is as below:

max zmax irc(w, y) =
∑

(vs,vd)∈SD

ysd (30)

subject to:
∑

C∈Cmax

wC ≤ W (31)
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ysd ≤
∑

C∈Cmax

aC
sdwC (vs, vd) ∈ SD (32)

ysd ≤ Tsd (vs, vd) ∈ SD (33)

wC ∈ N C ∈ Cmax. (34)

Observe that instead of (31), we could take the corresponding equality constraints:

∑

C∈Cmax

wC = W. (31b)

We recall some notions. At a given node of the branching tree, only a subset of columns
is explicitly available. The problem (30)–(34) is referred to as the master problem, the
problem (30)–(34) with only the subset of (explicit) columns as the restricted master prob-
lem. The lp relaxation of formulation (max irc) is obtained by replacing constraints (34)
by wC ≥ 0 for all C ∈ Cmax.

The choice of an initial set of columns is discussed in Section 8.1; the branching is
presented in Section 8.2; the bounding, which consists in solving the lp relaxation, is
presented in Section 8.3 and an heuristic is proposed in Section 8.4.

8.1 Initial set of columns

When constraints (31) are used, it is possible to start the algorithm without any columns
C ∈ Cmax. Indeed the solution (w, y) = (0, 0) is feasible for the problem.

When constraints (31b) are used, there must be at least one column C ∈ Cmax to start
the algorithm. Such an initial column is generated by solving the auxiliary problem (see
Section 8.3 or Section 6.2) with all u1

sd equal to 1: this amounts to generate an IRC that
satisfies the largest number of connections.

8.2 Branching

The branching is an adaptation of the branching scheme proposed by Vanderbeck [16] (see
also [17]).

Let (ŵ, ŷ) be an optimal solution of the lp relaxation of the current master problem and

let Ĉ ⊂ Cmax be the subset of explicitly available columns. If ŵ is fractional, there must
exist a subset C̃ ⊆ Cmax such that α =

∑

C∈C̃∩Ĉ

ŵC is fractional (take for example C̃ = {Cf}

where Cf is a column of Ĉ such that ŵCf is fractional). We create two branches, one in
which we add the inequality

∑

C∈C̃

wC ≤ ⌊α⌋ (42)
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in the master problem and one in which we add the inequality:

∑

C∈C̃

wC ≥ ⌈α⌉. (43)

The question is now how to define the set C̃ in order that the solution of auxiliary
problem remains tractable in order to find new promising columns. Observe first that if
∑

C∈Ĉ

ŵC is fractional, we can choose C̃ = Cmax. The modification in the auxiliary problem

is simple: it amounts to add a constant to the objective function, which corresponds to
the dual value associated with this constraint. Note that this case can only happen if
constraints (31) are used.

In the sequel we consider the case where
∑

C∈Ĉ

ŵC is integral. Vanderbeck [16] has pro-

posed different ways to define the column subset to be used for the branching. We choose
the option based on a set of bounds on the components of the columns.

Recall that the components of column C ∈ Cmax are the aC
sd, (vs, vd) ∈ SD. A component

bound constraint aC
sd > af or aC

sd < af , where af is assumed to be fractional, is defined
by a triple β ≡ (s, d, af ) and the direction of the inequality. The notation β> refers to
the lower bound constraint aC

sd > af while the notation β< refers to the upper bound
constraint aC

sd < af . Let C(β>) = {C ∈ Cmax : aC
sd > af} = {C ∈ Cmax : aC

sd ≥ ⌈af ⌉} be
the set of columns C ∈ Cmax that satisfy the component bound constraint β>. We define
similarly C(β<) = {C ∈ Cmax : aC

sd ≤ ⌊af⌋}. With this notation,

Cmax = C(β>) ∪ C(β<) and C(β>) ∩ C(β<) = ∅.

Let B = (B>, B<) be a set of component lower and upper bound constraints. We define

C(B) =





⋂

β>∈B>

C(β>)





⋂





⋂

β<∈B<

C(β<)



 .

For a set of component bound constraints B, let us define

f(B) =
∑

C∈C(B)

(ŵC − ⌊ŵC⌋) .

The following result is proved in [16]:

Proposition 7 (Vanderbeck [16])
Given a non-integral feasible solution (ŵ, ŷ) of the lp relaxation of the current master prob-
lem such that

∑

C∈Cmax

ŵC is integral, there exists a set of component bounds B with |B>| +



Les Cahiers du GERAD G–2006–75 21

|B<| ≤ ⌊log f⌋ + 1 such that
∑

C∈C(B)

ŵC is fractional, where f(B) =
∑

C∈Cmax

(ŵC − ⌊ŵC⌋)

represents the fractional characteristic of the current solution.

The proof of Proposition 7 is based on the following lemma.

Lemma 1 (Vanderbeck [16])
If, for a given component bound set B, f(B) ≥ 1, there exists a component bound β 6∈ B

such that 0 < f(B ∪ {β}) ≤
f(B)

2
.

Proof. If f(B) ≥ 1, there exist C1 and C2 ∈ C(B) with wC1−⌊wC1⌋ > 0 and wC2−⌊wC2⌋ >

0. As C1 6= C2, ∃(vs, vd) ∈ SD such that aC1

sd 6= aC2

sd . Without loss of generality, assume

that aC1

sd < aC2

sd . Let v =
aC1

sd
+aC2

sd

2 + 1
3 and β ≡ (s, d, v). Then, as aC1

sd < v < aC2

sd ,
f(B ∪ {β>}) ≥ wC1 − ⌊wC1⌋ > 0 and f(B ∪ {β<}) ≥ wC2 − ⌊wC2⌋ > 0. Moreover

f(B) = f(B∪{β>})+f(B∪{β<}). Thus either f(B∪{β>}) ≤ f(B)
2 or f(B∪{β<}) ≤ f(B)

2 .
�

Proof of Proposition 7 : Let B0 = ∅. By assumption, we have f(B0) ≥ 1. If f(Bk) ≥
1, we apply Lemma 1, obtaining a set of component bounds Bk+1 that satisfies

f(Bk+1) ≤ f(Bk)
2 . Hence f(Bk) ≤

(

1
2

)k
f(B0). The greatest k such that f(Bk) < 1

is therefore k = ⌊log f⌋+ 1.

In practice, we first look if there exists a component bound set B of cardinality 1. If not,
we apply the procedure suggested in the proof of Proposition 7 to find a component bound
set B of cardinality ≥ 2.

8.3 Bounding

The upper bound at a given node of the branching tree is obtained by solving the lp

relaxation of the master problem, by using the column generation technique to generate
new columns when needed. The difficulty is that the master problem may contain branching
constraints. Assume that at node N , the master problem contains the following branching
constraints

εj

∑

C∈Cj

wC ≤ εjK
j, j ∈ GN (44)

where εj = 1 or εj = −1 depending whether the constraint (44 j) is of the form (42) or
(43) for j ∈ GN . Let µj , j ∈ GN be the dual value associated with inequalities (44). The
objective function of the modified auxiliary problem is

max c1
aux−max irc(α, g) = −u0 +

∑

vs,vd∈V

∑

e∈ω+(vs)

αsd
e u1

sd −
∑

j∈GN

µjεjgj (45)
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where gj , j ∈ GN are additional binary variables that indicate if the column defined by α

is in Cj (value 1) or not (value 0).

For each β ∈
⋃

j∈GN

Bj , we introduce the binary variable ηβ defined as follows. Assume

that β is defined by the triple (s, d, af ). Then

ηβ =

{

1 if column C satisfies aC
sd < af

0 otherwise

Let Bj = Bj> ∪ Bj<. The constraints to be added to the auxiliary problem for the
component bound Bj, j ∈ GN are the following:

gj ≥ 1 −
∑

β∈Bj<

(1 − ηβ) −
∑

β∈Bj>

ηβ (46)

gj ≤ ηβ β ∈ Bj< (47)

gj ≤ 1 − ηβ β ∈ Bj> (48)

(asd − ⌈af⌉ + 1)ηβ ≤ asd −
∑

e∈ω+(vs)

αsd
e β ≡ (s, d, af ) ∈ Bj> (49)

⌈af ⌉η
β ≥ ⌈af ⌉ −

∑

e∈ω+(vs)

αsd
e β ≡ (s, d, af ) ∈ Bj> (50)

(⌊af⌋ + 1) ηβ ≥ ⌊af⌋ + 1 −
∑

e∈ω+(vs)

αsd
e , β ≡ (s, d, af ) ∈ Bj< (51)

(asd − ⌊af⌋)η
β ≤ asd −

∑

e∈ω+(vs)

αsd
e β ≡ (s, d, af ) ∈ Bj< (52)

ηβ ∈ {0, 1} β ∈ Bj (53)

gj ≥ 0 (54)

where asd is an upper bound on the number of connections from vs to vd that can be
accepted with only one wavelength.

When εj = −1, constraints (46), (49) and (51) can be omitted (observe that µj ≥ 0),
while when εj = 1, constraints (47), (48), (50) and (52) can be omitted. Also when
|Bj| = 1, there is a simplification because constraints (46)–(48) are equivalent to gj = ηβ ,
hence the unique variable ηβ can be eliminated. In practice, we transform the inequalities
(46) or (47)–(48) to equalities.
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8.4 Heuristic

8.4.1 Rounding-off heuristic

Let (ŵ, ŷ) be the optimal solution of the lp relaxation of the current master problem found

when computing the upper bound (see Section 8.3) and denote by Ĉ the subset of explicitly
available columns.

An initial solution (w0, y0) is built by rounding the fractional solution, i.e., w0
C = ⌊ŵC⌋

for all C ∈ Ĉ, while yk (k = 0) is given by the formula

yk
sd = min







∑

C∈Ĉ

wk
CaC

sd, Tsd







, (vs, vd) ∈ SD. (55)

This solution is then iteratively improved using 2 operations:

Increase : this operation is executed when the following two conditions are met: a)
∑

C∈Ĉ

wk
C < W and b) at least one connection is rejected in the current solution. We

increase the value of a column C̃ ∈ Ĉ by 1 such that the increase of the objective
function is maximized. As secondary criterion for the choice of the column, we
minimize the absolute difference between its value in the greedy solution and its
value in the fractional solution. Note that as long Ĉ contains at least one column
with aC

sd ≥ 1 for every (vs, vd) ∈ SD, we are guaranteed that the objective value
increases by at least 1 at every execution of this operation. In particular the number
of successive executions of this operation is bounded by W .

Decrease : this operation is executed when
∑

C∈Ĉ

wk
C = W . We attempt to find a column

for which it is possible to decrease its value without reducing the objective value. If
such a column exists, we do the decrease; otherwise we stop the heuristic.

8.4.2 MIP heuristic

We solve the max irc formulation with the current set of columns using Cplex-MIP. The
branching constraints generated so far are not included. A limit on the number of nodes
in the branch-and-bound tree is used as stopping criteria.

9 Computational results

As already observed in [4, 3], for most of the classical traffic and network instances, the
optimal value of the linear relaxation of the compact formulations, rounded to the next
integer value, is equal to the optimal (integer) value. Therefore, even if theoretically,
the optimal values of the linear relaxation of the irc or the max irc column generation
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formulations can be better than the optimal values of the lp relaxation of the compact
relaxations, column generation formulations are of little help for solving those instances
more efficiently as the problem means finding a feasible (integer) solution that matches the
upper bound, a task that is well performed by heuristics for the rwa problem, see, e.g., [7].

Therefore we focus on instances that we could not be solved using the compact formu-
lations [3]. It is believed that it was due to the fact that there is a gap for those instances,
and that the gap was responsible for the difficulty to solve them exactly in a reasonable
amount of time. Using the column generation formulation, we were able to solve exactly
all these instances but one.

Most of these instances are with symmetrical traffic. This means that a request is
between 2 nodes rather than from one node to the other and that the links of the network
are assumed to be bidirectional (or that the links between two nodes are unidirectional but
come by pairs, one link for each direction). In order to use the model for asymmetrical
traffic that we developed in this paper for solving the instances with symmetrical traffic,
we proceed as follows. First the underlying graph must be bidirected, i.e., the number of
arcs from u to v is equal to the number of arcs from v to u for any pair (u, v) of nodes.
A request between nodes vi and vj is subdivided into 2 subrequests, one from vi to vj and
the other from vj to vi. The two requests must be accepted simultaneously, or rejected
simultaneously. Moreover, if the two subrequests are accepted, they must be so with the
same wavelength and the two paths differ from each other by reversing the directions of
their arcs. In practice, we consider explicitly only one of the two subrequests for each
request, the other one being considered implicitly. By doing so, the only constraints that
need to be changed are the clash constraints in the auxiliary problem:

∑

(vs,vd)∈SD

(

αsd
e + αsd

e(e)

)

≤ 1 e ∈ E

where it is assumed that with each arc e ∈ E we associate one opposite arc, that we denote
by e(e) ∈ E.

We considered two families of such difficult instances. The first family, NSF3, was
introduced in [3]. All instances of this family are with symmetrical traffic. NSF3 is a
variant of the NSF network [18], which was obtained by removing some links. The traffic
matrix was obtained by making the traffic matrix of Khrisnaswamy [19] symmetric, see
e.g. [20] for details. The number of available wavelengths varies between 10 and 32. Half
of the 12 instances could not be solved to optimality using the compact formulations.

The second family of difficult instances was introduced in [21], see also [7]. These
instances were constructed by generating traffic matrices in a special way, on two classical
optical networks, NSF and EON. The NSF network is a network with 14 nodes and 21
links, with a maximum of 4 links per node and is described in, e.g., Krishnaswamy and
Sivarajan [18]. The eon network has 20 nodes and 39 optical links. A description of it can
be found e.g., in Mahony et al [22]. The traffic matrices were constructed in such a way
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that a gap exists. In order to make the instances more realistic, we embedded the special
structure into additional traffic (leading to the so-called noisy instances), i.e., we added
some connection requests at random. The resulting traffic matrices have 652 connection
requests for nsf (respectively 1576 for eon) in the asymmetrical model, and 428 (resp.
1172) in the symmetrical model. The number of available wavelengths is W = 32.

We compare the solutions obtained using the compact formulation with the ones ob-
tained when using two column generation formulations, max irc and irc. For both
max irc and irc, we solved the reduced master problem to optimality (with the help
of the mip heuristic described in Section 8.4) at every nodes. The computational results
are given in Table 1 where the number at the end of the instance names corresponds to the
number of wavelengths. zlp and z∗ are respectively the optimal value of the lp relaxation
and the optimal value of the rwa problem for the compact and the column generation
formulations. For instances that could not be solved to optimality, we provide an interval
on z∗. zroot is the value of the best solution found at the root node, #nodes is the number
of nodes in the branching tree, depth is the maximum depth of the tree, #col is the total
number of variables wC generated and finally cpu is the computational time. The results
for MAX IRC are given in the first line, and those for IRC, when available, are given in
the second line.

We observe that for all instances the optimal value is equal to the optimal value of the
lp relaxation of the column generation formulation, hence the problem again means finding
a feasible solution whose value matches the lp bound. For these instances this turned out
to be easy as very few backtracks were needed. Notice that the optimal solution has always
been found by the cplex heuristic in the compact formulation, although cplex alone fails
to prove its optimality while the max irc column generation formulation always found it
with a proof of its optimality. We also observe that the max irc formulation outperforms
the irc one as expected. Last, the largest gap we observed between the optimal values
of the lp relaxations of the column generation vs. the compact formulations was 7.6 %
for the nsf Sym noise/32, while the optimal lp was again equal to the optimal integer
solution for the column generation formulations.

We also tested one instance for which there seems to be a gap for the column generation
formulation. This instance corresponds to the nsf optical network, with the symmetric
traffic matrix, adapted from the asymmetric traffic matrix of Krishnaswamy [19], using
the symmetric model and with W = 12 available wavelengths (the instance was incorrectly
announced to be solved using the compact formulation in [3]). We observed a similar
behavior than for the compact formulation, namely that the branching tree becomes very
deep (maximum depth on the order of 100), which prevents from solving the instance to
optimality in reasonable time. This shows the need of more work on the branching (an
interesting step in this direction could be the recent paper by Vanderbeck [23]) and/or on
the bounding.
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Table 1: Computational Results on the Comparison among Compact and Column Gener-
ation Formulations

compact form. column generation formulations
instance z

lp
z
∗

z
lp

z
∗

z
root #nodes depth #col. cpu

NSF3 sym/10 78 78 78 78 76 17 9 70 48s
76 55 28 137 2mn27s

NSF3 sym/12 87 87 87 87 85 37 19 75 68s
83 51 26 132 2mn05s

NSF3 sym/14 96 96 96 96 94 47 24 100 1mn42
91 63 29 157 3mn24

NSF3 sym/16 105 105 105 105 104 37 19 105 1mn34
103 25 13 149 2mn38

NSF3 sym/18 112 [111,112] 111 111 111 1 1 46 25s
109 55 24 151 3mn03

NSF3 sym/20 119 [117,119] 117 117 115 23 12 60 51s
112 69 34 150 4mn34

NSF3 sym/22 126 [123,126] 123 123 121 37 19 60 58s
119 83 41 160 5mn08

NSF3 sym/24 133 [129,133] 129 129 128 29 15 59 54s
123 73 36 168 4mn38

NSF3 sym/26 138 [135,138] 135 135 133 33 17 69 69s
129 91 44 168 15mn47s

NSF3 sym/28 142 [141,142] 141 141 139 37 19 90 1mn37
135 91 46 185 28mn46

NSF3 sym/30 146 146 146 146 145 13 7 74 58s
142 133 47 243 4h42mn

NSF3 sym/32 150 150 150 150 149 23 12 83 1mn14
145 137 52 222 1h16mn

NSF sym noise/32 317.5 [295, 313] 295 295 294 11 6 47 6mn11

NSF asym noise/32 551 [536, 550] 536 536 536 1 1 36 47s

EON sym noise/32 876.5 [844, 862] 844 844 843 87 44 127 5h28mn

EON asym noise/32 1325.6 [1303, 1320] 1303 1303 1300 141 71 228 9h51mn

10 Conclusions

We have described and compared four column generation formulations for the max-rwa

problem. Although the column generation formulations allowed to solve to optimality
for the first time several instances, much work needs to be done to make these methods
efficient, particularly on instances with a gap. Another direction of research is to adapt
these methods to different objectives such as the minimization of the congestion or of
the network load, or to adapt them to solve the grwa problem, i.e., the rwa problem
with traffic grooming that is not easily solved by compact formulations due to a too large
number of variables. Finally additional constraints should be added, such as for example
a limit of the number of hops on the lightpaths. Such constraints are often easier to deal
with in a column generation framework compared to a compact formulation.
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