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Abstract

In this paper, the problem of stability and stabilization of Markov jumping singular
systems with discontinuities and saturating inputs is addressed. The design procedure
via linear matrix inequality technique (LMI) and the sequential linear programming
matrix methods (SLPMM), are used to determine simultaneously a state feedback con-
trol and an associated domain of safe admissible states for which the regularity, the
absence of impulsive behavior and the stochastic stability in mean square sense of the
closed-loop systems are guaranteed. A numerical example is provided to demonstrate
the effectiveness of the proposed methods.

Key Words: Singular Markov jump systems, Stability, Stabilizability, Saturating
inputs, Impulsive jump.

Résumé

Dans cet article, nous étudions le problème de stabilité et de stabilisation stochas-
tique, de la classe des systèmes singuliers avec saturation sur la commande, perturbés
par un processus à sauts markoviens, qui introduit en plus de la discontinuité inhérente
à ce type de système, une discontinuité dans la partie continue de l’état de ce dernier.
Basée sur les techniques d’inégalités matricielles linéaires et de la complémentarité
sur le cône, l’algorithme proposé pour la conception d’un contrôleur par retour d’état
garantit non seulement que le système en boucle fermée soit régulier, non impulsif
par morceaux et stochastiquement stable en moyenne quadratique, mais aussi que la
contrainte sur la commande est toujours satisfaite. Un exemple numérique est donné
pour montrer la validité des résultats développés.

Mots clés : Système singulier, système à sauts, stabilité stochastique, stabilisation
stochastique, commande avec saturation.
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1 Introduction

During the past decades, singular systems has received considerable interest due to the
fact that this class of systems is appropriate to model practical systems in different areas
such as electrical power systems, mechanical systems, robotics, chemical systems, see for
instance, [9, 10, 18, 23] and the references therein.

Some systems cannot be represented by deterministic models, since their structures vary
in response to random changes, which includes for instance failures and repairs of machines
in manufacturing systems, modification of the operating point of a linearized model of a
nonlinear systems. Systems with these abrupt changes may be modelled by the Markov
jump systems which have becoming more and more popular in describing their dynamics
behavior. For practical systems modelled by this class of systems, one refers the reader to
[2] and the references therein.

The stability and control theory of conventional systems with impulsive effects have been
recently developed. Some interesting results for this class of systems have been proposed
see [1, 24, 25, 29, 30]. For singular systems, the case with impulses at initial time has been
studied in [11], [14], and very few results on singular systems with impulsive effects have
been reported such as the works of [12], [13], and [15].

For the class of Markovian singular systems, when a switch occurs from one mode to
another, the values of the continuous state variables that are inherited from the preceding
mode, are not concistent for the new mode, and in this case a state jump will occur. Indeed,
it is well known [3, 8, 20] that the following markovian singular system:

{

E(r(t))ẋ(t) = A(r(t))x(t),

x(0) = x0, r(0) = r0.
(1)

with u(t) = 0 and r(t) = i can be decoupled as follows:

ξ̇1(t) = A1(i)ξ1(t) + A2(i)ξ2(t), (2)

0 = A3(i)ξ1(t) + A4(i)ξ2(t). (3)

with ξ1(t) ∈ R
n1, ξ2(t) ∈ R

n2, and:

M(i)E(i)N(i) =

[

I 0

0 0

]

,M(i)A(i)N(i) =

[

A1(i) A2(i)
A3(i) A4(i)

]

, N(i)x(t) =

[

ξ1(t)
ξ2(t)

]

. (4)

Suppose that A4(i) is non singular, and at the instant tk, k = 1, 2, . . ., the system
switches from the mode i to the mode j, then from (2) and (3), it can be seen that:

ξ1(t
−
k ) = ξ1(t

+
k ), (5)

ξ2(t
−
k ) = −A−1

4 (i)A3(i)ξ1(t
−
k ), (6)
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On the other hand, we have:

ξ2(t
+
k ) = −A−1

4 (j)A3(j)ξ1(t
+
k ). (7)

Thus, based on (5) and (6), (7) becomes:

ξ2(t
+
k ) =

(

−A−1
4 (j)A3(j)

)(

−A−1
4 (i)A3(i)

)†
ξ2(t

−
k ). (8)

with (.)† is the pseudo inverse of (.). From (8), we can conclude that ξ2(t
+
k ) 6= ξ2(t

−
k ), which

implies that this state variable will have finite jumps at each switched mode tk. Most of
the research on singular systems driven by continuous-time Markovian process (SMS), has
been concentrated on this situation where the discontinuities are inherent to the system,
and there are no perturbations acting on this latter at the transitions between modes, see
for instance [3], [4], [5], [21]. However, for some SMS, when a switch occurs from one mode
to another, to these inherent discontinuities, will be added another discontinuity on the
continuous state at these switched moments. This phenomena often occur in many singular
systems such as economic systems (leontief model where the production state vector jumps
when some administration effects are included [13]). This motivated us to study the class
of Markovian singular systems with discontinuities and saturating inputs. To the best of
the author’s knowledge, the stochastic stability and stabilizability of this class of system
has never been tackled.

The aim of this paper is to address the stochastic stability and stabilization of Marko-
vian jump singular system with discontinuities and saturating inputs. A state feedback
controller design method is proposed to guarantee that the resulting closed-loop system is
piecewise regular, impulse-free and stochastically stable in mean square sense, even if the
saturation effectively occurs. All developed results are based on LMIs and SLPMM [17].
The rest of this paper is organized as follows. Section 2 states the problem to be studied.
In Section 3, sufficient conditions are established to check the stability and stabilizability
of the system under consideration. Finally, a numerical example is given in Section 4 to
show the applicability of the proposed results.

Throughout this paper, the following notations will be used. The superscript ”⊤” de-
notes matrix transposition and for symmetric matrices X and Y , the notation X > Y (re-
spectively X < Y ) means that (X−Y ) is positive-definite (respectively negative-definite). I

denotes the identity matrix with the appropriate dimension. E[.] stands for the mathemati-
cal expectation operator with respect to the given probabilities Υ. |.| refers to the Euclidian
norm for vectors. For a square matrix A = {al,s}, ‖A‖ = max

∑n
s=1 |al,s|,∀1 ≤ i ≤ n, de-

notes the infinity norm for matrix A. The trace of square matrix is trace (.). diag [.]
denotes a block diagonal matrix. λ(A) and Re λ(A) stand for the eigenvalues and the real
part of the eigenvalues of (A) respectively.
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2 Problem statement

Let {rt, t ≥ 0} be a right-continuous-time Markov process, defined on the probability
space (Ω,F ,Υ) and taking values in a finite state space S = {1, 2, . . . , N} with generator
Γ = (πij)N×N given by:

Γ [r(t + ∆) = j|r(t) = i] =

{

πij∆ + o(∆) if i 6= j

1 + πii∆ + o(∆) if i = j

where ∆ > 0, lim∆→0
o(∆)
∆ = 0. Here πij ≥ 0, ∀i, j, i 6= j, is the transition rate from the

mode i to the mode j, while

πii = −

N
∑

j=1,j 6=i

πij (9)

Let {τk, k = 1, 2, . . .} be a given number sequence satisfying τ1 < τ2 < . . . < τk < τk+1 <
. . ., and consider the singular Markovian system jumping parameters with the following
dynamics:











E(r(t))ẋ(t) = A(r(t))x(t) + B(r(t))sat(u(t)), t 6= τk,

x(τ+
k ) = R(r(τk), r(τ

+
k ))x(τk), R(ii) = I, t = τk,

x(0) = x0, r(0) = r0.

(10)

where x(t) ∈ R
n and u(t) ∈ R

m represent the state and control vectors; A(i), B(i),
are known real constant matrices of appropriate dimensions, and the matrix E(i), when
r(t) = i, may be singular, with rank E(i) = nE ≤ n , for i ∈ S; R(., .) is a known real
constant matrix that reflects the discontinuity of the state trajectory of system (10) [1],
we assume that there exist a set of scalars 0 < hk ≤ 1 such that:

max
1≤i,j≤N

‖R(i, j)‖ ≤ hk (11)

τk > 0 is the kth switched moment, i.e: the moment of the transition of the mode from
r(τk) = i to r(τ+

k ) = j 6= i, with τ+
k = lim∆→0(τk + ∆),∀k > 0.

In this work, we consider the saturated input when a state feedback controller is used,
i.e:

sat(u(t)) = sat(K(r(t)x(t)) (12)

where K(i) ∈ R
n×m is a design matrix for each fixed mode i ∈ S, and where each compo-

nent is defined for s = 1, . . . ,m by:
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sat(Ks(i)x(t)) =











us if Ks(i)x(t) > us,

Ks(i)x(t) if − us ≤ Ks(i)x(t) ≤ us,

−us if Ks(i)x(t) < −us,

(13)

where us ∈ R
+(s = 1, . . . ,m) are actuator limitations and Ks(i) denotes the sth row of

the matrix K(i).

Our goal is to design a controller that renders the closed-loop system under study
piecewise regular, impulse-free and stochastically stable in mean square sense, so that the
saturation condition above is not violated. In the next section, we present the main result
of the paper namely stabilization using a state feedback controller, by assuming that the
Markov jump parameter process r(t) and the system state process x(t) are available for
feedback for all t ≥ 0.

To study the closed-loop stochastic stability in mean square sense under the saturating
input, let us recall the following definitions and lemmas:

Definition 2.1 [8] For any mode i ∈ S, unforced system (10) (with u(t) ≡ 0) is said to
be:

• regular if det(sE(i) − A(i)), is not identically zero.

• impulse-free if deg(det(sE(i) − A(i)))= rank E(i).

Definition 2.2 For each i ∈ S,

• Unforced system (10) is said to be stochastically stable in mean square sense (SSMSS),
if there exists a finite positive constant T (x0, r0) such that the following holds for any
initial conditions x0 and r0:

E

[
∫ ∞

t0

|x(t)|2dt|x0, r0

]

≤ T (r0, x0); (14)

• A set H ⊂ R
n is called domain of attraction in mean square sense if for any initial

conditions r0 and x0 ∈ H , the solution of (10) satisfies (14).

The above definition can be regarded as an extension of the definition in [2, 6].

Definition 2.3 System (10) is said to be stabilizable, if there exists a linear state feedback

u(t) = K(r(t))x(t) (15)

such that the closed-loop system is regular, piecewise impulse free and stochastically stable
in mean square sense, for every x0 and r0.
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Lemma 2.1 [16] Let C2,1(Rn × S; R+), denote the family of all nonnegative functions
V (x, r(t) = i) on R

n × S. For each V (x, r(t) = i) ∈ C2,1(Rn × S; R+), the infinitesimal
generator LV of the Markov process {x(t), r(t), t ≥ 0}, from R

n × S to R is given by:

LV (x(t), r(t) = i) = lim
∆→0

1

∆

{

E

[

V (x(t + ∆), r(t + ∆))|x(t), r(t) = i
]

− V (x, r(t) = i)
}

Lemma 2.2 [22] If V (x(t), r(t) = i) ∈ C2,1(Rn × S; R+) for each i ∈ S, then for any
stopping times 0 ≤ t1 ≤ t2 < +∞

E [V (x(t2), r(t2))] = E [V (x(t1), r(t1))] + E

[
∫ t2

t1

LV (x(s), r(s))ds

]

as long as the integration involved exists and finite.

Lemma 2.3 [26] For any matrix Q ∈ R
n×n and a scalar ε, the matrix measure ρ(Q)

defined as ρ(Q) = limε→0
‖I+εQ‖−1

ε
, has the following properties:

• −‖Q‖ ≤ Re λ(Q) ≤ ρ(Q) ≤ ‖Q‖.

• ρ(Q) = 1
2λmax(Q + Q⊤),

where λmax = max Re λ(Q + Q⊤).

Lemma 2.4 [2] Let Ψ, F and Ξ be real matrices of appropriate dimensions with F T F ≤ I.
For any scalar ε > 0:

ΨFΞ + ΞT F T ΨT ≤ εΨΨT + ε−1ΞT Ξ (16)

3 Main result

Before presenting the main results, we introduce the following lemmas which will play a
key role in the derivation of the solution of our control problem.

Lemma 3.1 Select V (x(t), i) = x⊤(t)E⊤(i)P (i)x(t), i ∈ S, where P (i) is a non singular
matrix, as the Lyapunov function for the system (10), then, for each i ∈ S, and a positive
scalar 0 < hk < 1, we have the following:

• a) E [V (x(t), i)] − E
[

V (x(τ+
k ), ik)

]

= E

[

∫ t

τk

LV (x(s), i(s))ds|(x(τk), ik)
]

.

• b) E
[

V (x(τ+
k ), i(k))

]

≤ h2
kE

[

V (x(τk), i(k))
]

.

• c) E

[

∫ T

t0
x⊤(s)x(s)ds|(x0, i0)

]

= E
[

V (x(T ), i)
]

− E
[

V (x0, i0)
]

+
∑l

p=1(1 − h2
p)

E
[

V (x(τp), i(p))
]

, where l is the number of jumps on the interval [t0, T ].
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Proof: a) The first relation in lemma 3.1, can be obtained by a direct application of the
Dynkin formula, given in lemma 2.2, on the interval (τk, t] .
b) At the switched moment τk, the expectation of the Lyapunov function for the mode
i(k) is given by:

E
[

V (x(τ+
k ), i(k))

]

= E
[

x⊤(τ+
k )E⊤(ik)P (ik)x(τ+

k )
]

= E
[

x(τk)R
⊤(ikik+)E⊤(ik)P (ik)R(ik, i+k )x(τk)

]

≤ E
[

‖E⊤(ik)P (ik)R(ik, i
+
k )x(τk)‖

2
]

≤ E
[

‖E⊤(ik)P (ik)‖2‖R(ik, i
+
k )‖2‖x(τk)‖2

]

≤ E
[

‖E⊤(ik)P (ik)‖2max‖R(ik, ik+)‖2‖x(τk)‖
2
]

,

Then by using (11), we obtain:

E
[

V (x(τ+
k ), i(k))

]

≤ h2
kE

[

‖E⊤(ik)P (ik)x(τk)‖
2
]

= h2
kE

[

x⊤(τk)E
⊤(ik)P (ik)x(τk)

]

.

Notice that the last term under the expectation is the Lyapunov function expression of the
mode ik at the moment τk, thus we obtain b).

c) For t in the interval [t0, T ], we have:

E

[
∫ T

t0

LV (x(s), is)ds|(x0, i0)

]

= E

[
∫ τ1

t0

LV (x(s), is)ds|(x0, i0)

]

+

[
∫ τ2

τ1

LV (x(s), is)ds|(x1, i1)

]

+ . . . +

[
∫ τk

τk−1
LV (x(s), is)ds|(xτk−1

, ik−1)

]

+E

[
∫ T

τk

LV (x(s), is)ds|(xτk
, ik)

]

,

then by applying the first relation a) in lemma 3.1, we get:

E

[
∫ T

0
LV (x(s), is)ds|(x0, i0)

]

= E
[

V (x(τ1), i1)
]

− E
[

V (x0, i0)
]

+E
[

V (x(τ2), i2)
]

− E
[

V (x(τ+
1 ), i1)

]

+ . . . +

E
[

V (x(τk), ik)
]

− E
[

V (x(τ+
k−1), ik−1)

]

+ E
[

V (x(T ), i)
]

− E
[

V (x(τ+
k ), ik)

]

And using the second relation b) of lemma 3.1, yields:

E

[
∫ T

t0

LV (x(s), is)ds|(x0, i0)

]

= E
[

V (x(τ1), i1)
]

− E
[

V (x0, i0)
]

+E
[

V (x(τ2), i2)
]

− h2
1E

[

V (x(τ1), i1)
]

+ . . . +
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E
[

V (x(τk), ik)
]

− h2
k−1E

[

V (x(τk−1), ik−1)
]

+ E
[

V (x(T ), i)
]

− h2
k−1E

[

V (x(τk), ik)
]

=
l

∑

p=1

(1 − h2
p)E

[

V (x(τp), i(p))
]

+ E
[

V (x(T ), i)
]

− E
[

V (x0, i0)
]

.

Lemma 3.2 If there exists a set of nonsingular matrices P (i), i ∈ S, such that the follow-
ing LMI holds:

P⊤(i)A(i) + A⊤(i)P (i) +

N
∑

j=1

πijR
⊤(ij)E⊤(j)P (j)R(ij) < 0, (17)

with the constraint:

E⊤(i)P (i) = P⊤(i)E(i) ≥ 0, (18)

then, the system (10) is piecewise regular, impulse-free and stochastically stable in mean
square sense.

Proof: Suppose that there exists a set of nonsingular matrices P (i), i ∈ S, such that
(17) and (18) hold. Under this condition, we first show the regularity and the absence
of impulses of the singular Markovian jump system with discontinuities in (10) between
consecutive jumps, which ensure the existence and the uniqueness of its solution. To this
end, the same proof given in Theorem 1 in [28] holds here. Indeed, let M(i) and N(i) be
two nonsingular matrices such that [8]:

Ē(i) = M(i)E(i)N(i), Ā(i) = M(i)A(i)N(i), (19)

P̄ (i) = M−T (i)P (i)N(i) =

[

P1(i) P3(i)
P2(i) P4(i)

]

, (20)

R̄(i) = N−1(i)R(ij)N(i) =

[

R1(ij) R3(ij)
R2(ij) R4(ij)

]

. (21)

Ē(i) and Ā(i) are defined as in (4). Pre-and post-multiplying (17) and (18) by N⊤(i) and
N(i), respectively, then by using the expressions of P̄ (i) and R̄(i) given in (20-21), we
have:

Ē⊤(i)P̄ (i) = P̄⊤(i)Ē(i) ≥ 0, (22)

P̄⊤(i)Ā(i) + Ā⊤(i)P̄ (i) +

N
∑

j=1

πijR̄
⊤(ij)Ē⊤(j)P̄ (j)R̄(ij) < 0. (23)

¿From (22), it is easy to show that P3(i) = 0, therefore, for each mode i ∈ S the inequality
(23) is equivalent to:

[

A1(i) A2(i)
A3(i) A4(i)

]

< 0, (24)
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with:

A1(i) = A⊤
1 (i)P1(i) + P⊤

1 (i)A1(i) + A⊤
3 (i)P2(i) + P⊤

2 (i)A3(i) + R⊤
1 (i)P1(i)R1(i),

A2(i) = A⊤
3 (i)P4(i) + P⊤

1 (i)A2(i) + P⊤
2 (i)A4(i) + R⊤

1 (i)P1(i)R3(i),

A3(i) = A⊤
2 (i)P1(i) + A⊤

4 (i)P2(i) + P⊤
3 (i)A3(i) + R⊤

3 (i)P1(i)R1(i),

A4(i) = P⊤
4 (i)A4(i) + A⊤

4 (i)P4(i) + R⊤
3 (i)P1(i)R3(i).

Then by (24), we have

P⊤
4 (i)A4(i) + A⊤

4 (i)P4(i) + R⊤
3 (i)P1(i)R3(i) < 0. (25)

Since R⊤
3 (i)P1(i)R3(i) ≥ 0, we get:

P⊤
4 (i)A4(i) + A⊤

4 (i)P4(i) < 0, (26)

This, by Lemma 2.3 gives:

Re λ
(

P⊤
4 (i)A4(i)

)

≤ ρ
(

P⊤
4 (i)A4(i)

)

=
1

2
λmax

(

P⊤
4 (i)A4(i) + A⊤

4 (i)P4(i)
)

< 0,

then P⊤
4 (i)A4(i) is invertible, which implies that A4(i) is nonsingular. Therefore, from

Definition 2.1, it is easy to see that the singular Markovian system with discontinuities is
piecewise regular and impulse-free.

Next, we will show the stochastic stability. To this end, let us consider the unforced
system (10), then the infinitesimal operator L of the Markov process {x(t), r(t), t ≥ 0} can
be evaluated as:

LV (x(t), r(t) = i) = ẋ⊤(t)E⊤(i)P (i)x(t) + x⊤(t)E⊤(i)P (i)ẋ(t)

+

N
∑

j=1,j 6=i

πij

[

V (R(ij)x(t), j) − V (x(t), i)
]

= x⊤(t)Θ(i)x(t)

with: Θ(i) = A⊤(i)P (i) + P⊤(i)A(i) +
∑N

j=1 πijR
⊤(ij)E⊤(j)P (j)R(ij).

Note that from the lemma 3.2, Θ(i) < 0 for each mode i, therefore, we have:

LV (x(t), i) ≤ −mini∈Sλmin (−Θ(i)) x⊤(t)x(t), (27)

which, combined with lemma 3.1 (relation c), gives:

min
i∈S

{λmin(−Θ(i))}E

[
∫ T

t0

x⊤(s)x(s)ds|(x0, i0)

]

≤ E
[

V (x0, i0)
]

− E
[

V (x(T ), i)
]

−
l

∑

p=1

(1 − h2
p)E

[

V (x(τp), i(p))
]

.



Les Cahiers du GERAD G–2006–71 9

Let T goes to infinity, and since 0 < hk < 1, then the term E
[

V (x(T ), i)
]

+
∑∞

p=1(1 −

h2
p)E

[

V (x(τp), i(p))
]

is positif, this yields to the following:

E

[
∫ ∞

t0

x⊤(s)x(s)ds|(x0, i0)

]

≤ T (x0, i0), (28)

with T (x0, i0) = E[V (x0,i0)]
mini∈S{λmin(−Θ(i))} . This complete the proof of the Lemma 3.2.

Based on the mean square stochastic stability condition cited above, for Markovian
singular systems with discontinuities, first of all, we develop sufficient conditions via LMIs
and BMIs, that allows us to synthesize the unconstrained state feedback controller that
assures that the closed-loop system is piecewise regular, impulse-free and stochastically
stable. The following Theorem summarizes this result.

Theorem 3.1 If there exist a set of nonsingular matrices P = (P (1), . . . , P (N)) and
X = (X(1), . . . ,X(N)), a set of symmetric and positive-definite matrices VP = (VP (1), . . .,
VP (N)) and Z = (Z(1), . . . , Z(N)), a matrix Y = (Y (1), . . . , Y (N)) and a positive scalar
ε = (ε(1), . . . , ε(N)), such that the following inequalities hold for each i ∈ S:





Π(i) X⊤(i) S⊤(i)
X(i) −Z(i) 0

S(i) 0 −X (i)



 < 0 (29)

[

VP (i) W (i)
W⊤(i) J (i)

]

≥ 0 (30)

with equality constraints:

E⊤(i)P (i) = P⊤(i)E(i) ≥ 0, (31)

P (i)X(i) = I, (32)

VP (i)Z(i) = I, (33)

where:

Π(i) = X⊤(i)A⊤(i) + A(i)X(i) + Y ⊤(i)B⊤(i) + B(i)Y (i) + πiiX
⊤(i)E⊤(i), (34)

W (i) =
[

R⊤(i1)E⊤(1)P (1)R(i1), . . . , R⊤(ii − 1)E⊤(i − 1)P (i − 1)R(ii − 1), (35)

R⊤(ii + 1)E⊤(i + 1)P (i + 1)R(ii + 1), . . . , R⊤(iN)E⊤(N)P (N)R(iN)
]

, (36)

J (i) = diag
[

ε−1(1)I, . . . , ε−1(i − 1)I, ε−1(i + 1)I, . . . , ε−1(N)I
]

, (37)

S(i) =
1

2

[

πi1X
⊤(i), . . . , πii−1X

⊤(i), πii+1X
⊤(i), . . . , πiNX⊤(i)

]

, (38)

X (i) = diag
[

ε(1)I, . . . , ε(i − 1)I, ε(i + 1)I, . . . , ε(N)I
]

. (39)

then the closed-loop system is piecewise regular, impulse-free and SSMSS. In this case, the
stabilizing controller gain is given by:

K(i) = Y (i)X−1(i). (40)
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Proof: For this purpose, plugging controller (15) in the dynamics (10) gives:

E(r(t))ẋ(t) = Ac(r(t))x(t) (41)

with Ac(i) = A(i)+B(i)K(i), when r(t) = i. Then, by Lemma 3.2, this closed-loop system
is piecewise regular, impulse free and SSMSS if the following LMI holds:

A⊤
c (i)P (i) + P⊤(i)Ac(i) +

N
∑

j=1

πijR
⊤(ij)E⊤(j)P (j)R(ij) < 0 (42)

with the constraint (18).

Now, replace Ac(i) by its expression, then the second equation in (42) becomes:

A⊤(i)P (i) + P⊤(i)A(i) + P (i)B(i)K(i) + K⊤(i)B⊤(i)P⊤(i)

+

N
∑

j=1

πijR
⊤(ij)E⊤(j)P (j)R(ij) < 0

which is equivalent to:

A⊤(i)P (i) + P⊤(i)A(i) + P (i)B(i)K(i) + K⊤(i)B⊤(i)P⊤(i) + πiiE
⊤(i)P (i)

+

N
∑

j=1,j 6=i

1

2
πijR

⊤(ij)E⊤(j)P (j)R(ij) +
1

2
πijR

⊤(ij)E⊤(j)P (j)R(ij) < 0 (43)

Then by using Lemma 2.4 to (43), we have:

A⊤(i)P (i) + P⊤(i)A(i) + P (i)B(i)K(i)

+ K⊤(i)B⊤(i)P⊤(i) + πiiE
⊤(i)P (i) +

N
∑

j=1,j 6=i

1

4
π2

ijε
−1(j)I

+
N

∑

j=1,j 6=i

ε(j)
[

R⊤(ij)E⊤(j)P (j)R(ij)
]⊤[

R⊤(ij)E⊤(j)P (j)R(ij)
]

< 0 (44)

with ε(j), j ∈ S, is any positive scalar.

For all i ∈ S, suppose that there exists a symmetric and positive-definite matrix VP (i),
such that:

N
∑

j=1,j 6=i

ε(j)
[

R⊤(ij)E⊤(j)P (j)R(ij)
]T [

R⊤(ij)E⊤(j)P (j)R(ij)
]

≤ VP (i) (45)

Then, by applying the Schur complement to the last inequality, we obtain (30).
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Now, taking into account the inequality (45), and pre-and post-multiplying both sides
of (44) by P−⊤(i) and P−1(i), yields:

P−⊤(i)A⊤(i) + A(i)P−1(i) + B(i)K(i)P−1(i) + P−⊤(i)K⊤(i)B⊤(i)

+πiiP
−⊤(i)E⊤(i) +

N
∑

j=1,j 6=i

1

4
πijP

−⊤(i)ε−1
ij P−1(i)πij + P−⊤(i)VP (i)P−1(i) < 0

Then, applying the change of variables X(i) = P−1(i), Y (i) = K(i)X(i) and Z(i) =
V −1

p (i), where Z(i) is a symmetric and positive-definite matrix, we obtain:

X⊤(i)A⊤(i) + A(i)X(i) + Y ⊤(i)B⊤(i) + B(i)Y (i) + πiiX
⊤(i)E⊤(i)

+
N

∑

j=1,j 6=i

1

4
πijX

⊤(i)ε−1(j)X(i)πij + X⊤(i)VP (i)X(i) < 0

If we define S(i) and X (i) as in (38) and (39), then by applying Schur complement to
the above inequality, we obtain (29). This completes the proof of the Theorem.

Remark 3.1 It is evident that the conditions in Theorem 3.1 are no longer LMIs because
of the term ε−1(i) in (37), furthermore, (29) and (30) are two coupled LMIs and the
solution of one should be the inverse of the other to satisfy the coupling constraints (32)
and (33). Thus, the problem is not convex. As a result, we can not solve the conditions
in Theorem 3.1 by using convex optimization algorithms. For this purpose, firstly, let
β(i) = ε−1(i), this will convert the problem into a combination of a linear and bilinear
problem. Secondly, instead of solving the nonconvex problem directly, we use the SLPMM
proposed by Leibfreitz in [17] and used in [27]. This algorithm consist in:

• linearizing the bilinear part of the objective functional by weakening the equality con-
straints cited above to semi-definite programming conditions as follows:

[

β(i) I

I ε(i)

]

≥ 0,

[

P (i) I

I X(i)

]

≥ 0,

[

VP (i) I

I Z(i)

]

≥ 0, (46)

• minimizing successively the resulting LMI constrained semi-definite programming
problems.

Moreover, it should be noted that for computational purposes, we prefer to have closed
sets (form more details, see [17] and [27]). Thus we introduce a positive scalar υ =

(υ(1), . . . , υ(N)), i ∈ S to replace the nonconvex and open set Ξ ,

{

(X,Z, Y, ε), such

that (29-33) are satisfied
}

, by a closed and convex one as it will be summarized in the

following theorem:
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Theorem 3.2 If there exist a set of non-singular matrices P = (P (1), . . . , P (N)), and
X = (X(1), . . . ,X(N)), a set of symmetric and positive definite matrices VP = (VP (1), . . .,
VP (N)) and Z = (Z(1), . . . , Z(N)), a matrix Y = (Y (1), . . . , Y (N)), and a set of positive
scalars ε = (ε(1), . . . , ε(N)), β = (β(1), . . . , β(N)) and υ = (υ(1), . . . , υ(N)) satisfying the
following problem, for all i ∈ S:

min trace
(

P (i)X(i) + VP (i)Z(i) + β(i)ε(i)
)

subject to LMIs (46) and:




Π(i) X⊤(i) S⊤(i)
X(i) −Z(i) 0

S(i) 0 −X (i)



 ≤ 0 (47)

[

VP (i) W (i)
W⊤(i) G (i)

]

≥ 0, (48)

with the equality constraint (18) and the matrices W (i), S(i),X (i) are given by (35), (38),
(39), while Π(i) and G (i) are as follows:

Π(i) = X⊤(i)A⊤(i) + A(i)X(i) + Y ⊤(i)B⊤(i) + B(i)Y (i) + πiiX
⊤(i)E⊤(i) + υ(i)I, (49)

G (i) = diag
[

β(1)I, . . . , β(i − 1)I, β(i + 1)I, . . . , β(N)I
]

, (50)

then the resulting closed-loop system is regular, piecewise impulse free and stochastically
stable, with the controller gain given in (40).

Remark 3.2 Theorem 3.2 gives a sufficient condition on the existence of an unconstrained
state feedback controller for system (10), which can not guarantee that the saturation con-
dition (13) will be not violated. Hence additional conditions for which the regularity, the
absence of impulses and the stochastic stability of the closed-loop system are assured when
control saturations effectively occur, have to be determined. △

For this purpose, first we introduce some notations. For non singular matrix X(i) ∈
R

n×n, i ∈ S, we define an ellipsoid as:

F (X(i), E(i)) = {x ∈ R
n : x⊤(t)E⊤(i)X−1(i)x(t) ≤ 1}

Also let L (K(i), us) denote the subspace of the state space R
n in which the state

feedback controller (15) satisfies the constraints, i.e:

L (K(i), u) = {x ∈ R
n : ‖Ks(i)x(t)‖ ≤ us, s = 1, . . . ,m}

Now, to verify that the initial state xo is in domain of attraction F (X(i), E(i)) in mean
square, we should add the following condition to the result stated in Theorem 3.2:

x⊤
o E⊤(i)X−1(i)xo ≤ 1 (51)
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then by using Schur complement, this inequality is equivalent to:

[

1 x⊤
o

xo H(i)

]

≥ 0, (52)

where H(i) is a symmetric positive-definite matrix such that:

E⊤(i)X−1(i) ≤ H−1(i). (53)

Let L(i) = H−1(i) a symmetric positive-definite matrix, this implies that:

E⊤(i)P (i) ≤ L(i), (54)

furthermore, in order to assure that ‖Ks(i)x(t)‖ ≤ us,∀x(t) ∈
⋂N

i=1 F (X(i), E(i)), (i.e:
⋂N

i=1 F (X(i), E(i)) ⊂ L (K(i), us)), the following inequality should be satisfied for all
x(t) 6= 0, s = 1, . . . ,m [7, 19]:

1

u2 x⊤(t)K⊤
s (i)Ks(i)x(t) ≤ x⊤(t)E⊤(i)X−1(i)x(t),

this is equivalent to:

[

E⊤(i)X−1(i) K⊤
s (i)

Ks(i) u2
s

]

≥ 0. (55)

Then by using Schur complement, pre-and post-multiplying (55) with diag(X(i), I) and
denoting ys(i) = Ks(i)X(i) the sth row of the matrix Y (i), we have:

[

X⊤(i)E⊤(i) y⊤s (i)
ys(i) u2

s

]

≥ 0, (56)

This result is summarized in the following Theorem:

Theorem 3.3 If there exist a set of non-singular matrices P = (P (1), . . . , P (N)), and
X = (X(1), . . . ,X(N)), a set of symmetric and positive-definite matrices VP = (VP (1), . . .,
VP (N)), Z = (Z(1), . . . , Z(N)), H = (H(1), . . . ,H(N)), and L = (L(1), . . . , L(N)), a
matrix Y = (Y (1), . . . , Y (N)), and a set of positive scalars ε = (ε(1), . . . , ε(N)), β =
(β(1), . . . , β(N)) and υ = (υ(1), . . . , υ(N)), satisfying the following problem, for all i ∈ S:

P1 : min trace
(

P (i)X(i) + VP (i)Z(i) + H(i)L(i) + β(i)ε(i)
)

subject to LMIs (46), (47), (48), (52), (54), (56), under the constraint (18), with W (i),
S(i),X (i),Π(i), and G (i), are given by (35), (38), (39), (49) and (50) respectively, then
the initial states are in the domain of attraction F (X(i), E(i)) in mean square sense and
the controller gain is given in (40).



14 G–2006–71 Les Cahiers du GERAD

Remark 3.3 For any i ∈ S, when R(ij) = I, system (10) reduces to the state space
Markovian singular system with actuator saturation, then the Theorem 3.3 have the fol-
lowing corollary:

Corollary 3.1 If there exist a set of non singular matrices P = (P (1), . . . , P (N)), and
X = (X(1), . . . ,X(N)), a set of symmetric and positive-definite matrices VP = (VP (1), . . .,
VP (N)), Z = (Z(1), . . . , Z(N)), H = (H(1), . . . ,H(N)), and L = (L(1), . . . , L(N)), a
matrix Y = (Y (1), . . . , Y (N)) and a set of positive scalars ε = (ε(1), . . . , ε(N)), β =
(β(1), . . . , β(N)) and υ = (υ(1), . . . , υ(N)) satisfying the following problem, for all i ∈ S:

P2 : min trace
(

P (i)X(i) + VP (i)Z(i) + H(i)L(i) + β(i)ε(i)
)

subject to LMIs (46), (47), (48), (52), (54), (56), under the constraint (18), with S(i),
X (i),Π(i), and G (i), are given by (38), (39), (49) and (50) respectively, while W (i) is as
follows:

W (i) =
[

E⊤(1)P (1), . . . , E⊤(i − 1)P (i − 1), E⊤(i + 1)P (i + 1), . . . , E⊤(N)P (N)
]

then the initial states are in the domain of attraction F (X(i), E(i)) in mean square sense
and the controller gain is given in (40).

Remark 3.4 When N = 1, then R(ii) = I, and the system (10) reduces to the singular
system with actuator saturation, therefore the Theorem 3.3 have the following corollary:

Corollary 3.2 If there exist a set of non-singular matrices P and X, set of symmetric
and positive-definite matrices H, and L, a matrix Y and a positive scalar υ satisfying the
following problem:

P3 : min trace
(

PX + HL
)

subject to LMIs:

E⊤P = P⊤E ≥ 0

E⊤P ≤ L

X⊤A⊤ + AX + Y ⊤B⊤ + BY + υI ≤ 0
[

1 x⊤
o

xo H

]

≥ 0,

[

X⊤E⊤ y⊤s
ys(i) u2

s

]

≥ 0,

then the initial states are in the domain of attraction F (X,E) in mean square sense and
the controller gain is given by K = Y X−1. △

In the following section, one will demonstrate the validity of the results by considering
a numerical example.
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4 Numerical example

let us suppose that the generator matrix Γ, the matrix E(i), i = 1, 2, and the system data
are given by:

Γ =

[

−2 2
1 −1

]

, E(1) = E(2) =





1 0 0
0 1 0
0 0 0



 , A(1) =





1 0 2
0 −1.1 0
0 1 −4



 ,

A(2) =





1 0 1.5
0 −1 0
0 1 −2



 , B(1) =





1
1
1



 , B(2) =





1
1

0.5



 , us = 2, ro = 1,

R(1) =





0.2 0.4 0
0 0 0.1
0 0 0.2



 , R(2) =





0.2 0 0
0 0 0.1
0 0 0.2



 , x0 = [1; 1;−1/2].

Then to show the effectiveness of results, let us consider the following cases:

• 1. singular system with discontinuities at the switched instants and constrained
input,

• 2. singular system without discontinuities at the switched instants but subject to
constrained input,

• 3. deterministic system without discontinuities and constrained input.

Solving the problem P1 for the case 1, one gets the following gain matrices:

K(1) =
[

−2.2540 0.1918 0.0000
]

, K(2) =
[

−2.0929 0.1015 0.0000
]

.

The simulation results using these gains are illustrated by Figs 1-2. From these figures,
we can see that the states’system go to zero when time goes to infinity. The input control
saturates at the beginning and remain always between the imposed bounds. It is also
worthed to notice that the unconstrained system behaves better than the constrained one
(faster response for almost all states).

Solving the problem P2 for the case 2, we get the following gains:

K(1) =
[

−9.1291 1.6346 3.8248
]

, K(2) =
[

−5.6433 2.7324 −0.0527
]

.

The simulation results using these gains are illustrated by Figs 3-4. From these figures,
we can see that the states’system go to zero when time goes to infinity. The input control
saturates at the beginning and remain always between the imposed bounds. It is also
worthed to notice that the unconstrained system behaves better than the constrained one
(faster response for almost all states). Furthermore, we can see that even if R(1, 2) =
R(2, 1) = I, the third state variable of the system incorporates jumps at switched moments
as it was explained in the introduction.
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Finally, solving the problem P3 for case 3, we get the following gains:

K(1) =
[

−1.5071 0.1191 −0.0000
]

.

The simulation results using these gains are illustrated by Fig 5. From these figures, we
can see that the states’system go to zero when time goes to infinity. The input control
saturates at the beginning and remain always between the imposed bounds u = 1. It is
also worthed to notice that the unconstrained system behaves better than the constrained
one (faster response for almost all states).

Thus we can conclude that the proposed results can be used to stabilize a wide class of
systems subject to saturating controls.
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Figure 1: r(t), x1(t), x2(t) and x3(t) versus time for saturated and unsaturated control
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Figure 2: r(t) and u(t) versus time for saturated and unsaturated control
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Figure 3: r(t), x1(t), x2(t) and x3(t) versus time for saturated and unsaturated control
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Figure 4: r(t) and u(t) versus time for saturated and unsaturated control
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Figure 5: x1(t), x2(t), x3(t) and u(t) versus time for saturated and unsaturated control
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5 Conclusion

This paper dealt with the stochastic stabilization problem of Markovian singular systems
with both discontinuities and actuator saturation. Based on the Lyapunov theory and
the LMI technique, sufficient conditions for the stochastic stability and the stochastic
stabilizability have been presented. Also, a new approach based on the sequential linear
programming matrix methods, has been developed to design stabilizing state feedback
controller which guarantees that the closed-loop system was piecewise regular, impulse
free and stochastically stable in mean square sense even if the saturation effectively occurs.
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