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Montréal (Québec) Canada H3C 3J7
{lecuyer;simardr}@iro.umontreal.ca

∗ and GERAD

November 2006

Les Cahiers du GERAD

G–2006–69

Copyright c© 2006 GERAD





Abstract

We introduce TestU01, a software library implemented in the ANSI C language,
and offering a collection of utilities for the empirical statistical testing of uniform ran-
dom number generators (RNGs). It provides general implementations of the classical
statistical tests for RNGs, as well as several others tests proposed in the literature, and
some original ones. Predefined tests suites for sequences of uniform random numbers
over the interval (0, 1) and for bit sequences are available. Tools are also offered to
perform systematic studies of the interaction between a specific test and the structure
of the point sets produced by a given family of RNGs. That is, for a given kind of
test and a given class of RNGs, to determine how large should be the sample size of
the test, as a function of the generator’s period length, before the generator starts to
fail the test systematically. Finally, the library provides various types of generators
implemented in generic form, as well as many specific generators proposed in the lit-
erature or found in widely-used software. The tests can be applied to instances of the
generators predefined in the library, or to user-defined generators, or to streams of
random numbers produced by any kind of device or stored in files. Besides introducing
TestU01 , the paper provides a survey and a classification of statistical tests for RNGs.
It also applies batteries of tests to a long list of widely used RNGs.

Key Words: Statistical Software, Random number generators, Random number
tests.
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Résumé

Cet article introduit TestU01, un logiciel implanté en langage C (ANSI) offrant
une collection d’outils permettant d’appliquer des tests statistiques à des générateurs
de nombres aléatoires (GNAs). TestU01 contient tous les tests empiriques classiques
ainsi que plusieurs autres proposés dans la littérature scientifique. Il contient aussi
des batteries prédéfinies de tests pour des suites de nombres aléatoires uniformes
sur l’intervalle (0, 1), ou pour des suites de bits aléatoires. Des fonctions permet-
tent d’étudier systématiquement l’interaction entre un test spécifique et la structure
des ensembles de points générés par une famille donnée de générateurs; c’est-à-dire,
pour un type donné de test et une classe de générateurs, quelle doit être la taille de
l’échantillon du test en fonction de la longueur de la période du générateur, avant que
celui-ci n’échoue systématiquement ce test. De plus, TestU01 contient divers types de
générateurs pré-programmés sous forme générique, ainsi que beaucoup de générateurs
spécifiques proposés dans la littérature ou inclus dans des logiciels couramment utilisés.
Les tests peuvent être appliqués aux générateurs prédéfinis dans TestU01, ou à des
générateurs définis par l’utilisateur, ou à des flots de nombres aléatoires produits par
n’importe quel dispositif ou stockés dans des fichiers. Finalement, on présente un sur-
vol et une classification des tests statistiques pour les GNAs. On applique également
des batteries prédéfinies de tests à une longue liste de GNAs couramment utilisés.
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1 Introduction

Random numbers generators (RNGs) are needed for practically all kinds of computer ap-
plications, such as simulation of stochastic systems, numerical analysis, probabilistic algo-
rithms, secure communications, computer games, and gambling machines, to name a few.
The so-called random numbers may come from a physical device, like thermal noise from
electronic diodes, but are more often the output of a small computer program which, from
a given initial value called the seed, produces a deterministic sequence of numbers that
are supposed to imitate typical realizations of independent uniform random variables. The
latter are sometimes called pseudo-random number generators, or algorithmic RNGs. Since
they have a deterministic and periodic output, it is clear a priori that they do not produce
independent random variables in the mathematical sense and that they cannot pass all
possible statistical tests of uniformity and independence. But some of them have huge
period lengths and turn out to behave quite well in statistical tests that can be applied in
reasonable time. On the other hand, several popular RNGs, some available in commercial
software, fail very simple tests (L’Ecuyer, 2001).

Good RNGs are not designed by trying some arbitrary algorithms and applying empir-
ical tests to the output until all the tests are passed. Instead, their design should involve a
rigorous mathematical analysis of their period lengths and of the uniformity of the vectors
of successive values that they produce over their entire period length; that’s how indepen-
dence is assessed theoretically (Knuth, 1998; L’Ecuyer, 2004). However, once they have
been selected and implemented, they must also be tested empirically. Statistical tests are
also required for RNGs based (totally or partially) on physical devices. These RNGs are
used to generate keys in cryptosystems and to generate numbers in lotteries and gambling
machines, for example.

For a long time, the “standard” tests applied to RNGs were those described in earlier
editions of the book of Knuth (1998). Other tests, often more powerful to detect regu-
larities in linear generators, were later proposed by Marsaglia (1985), Marsaglia (1996),
and Marsaglia and Tsang (2002). Some of these tests and new ones have been studied
more extensively by Erdmann (1992), Marsaglia and Zaman (1993b), Vattulainen et al.
(1995), L’Ecuyer and Simard (1999), L’Ecuyer et al. (2000), L’Ecuyer and Simard (2001),
L’Ecuyer et al. (2002), Rukhin (2001), for instance. Pretty much all of them are available
in TestU01.

Besides TestU01, the best-known public-domain statistical testing packages for RNGs
are DIEHARD (Marsaglia, 1996) and the test suite implemented by the National Institute
of Standards and Technology (NIST) of the USA (Rukhin et al., 2001). DIEHARD contains
several statistical tests but has drawbacks and limitations. The sequence of tests as well
as the parameters of these tests (sample size, etc.) are fixed in the package. The sample
sizes are not very large: the entire test suite runs in a few seconds of CPU time on a
standard desktop computer. As a result, they are not very stringent and the user has
little flexibility for changing that. The package also requires that the random numbers to
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be tested are in a binary file in the form of 32-bit (exactly) integers. This file is to be
passed to the testing procedures. This setup is quite restrictive. For instance, many RNGs
produce numbers with less than 32 bits of accuracy (e.g., 31 bits is frequent) and DIEHARD
does not admit that. The NIST package contains 15 tests, oriented primarily toward the
testing and certification of RNGs used in cryptographic applications (Rukhin et al., 2001).
Another testing package worth mentioning is SPRNG (Mascagni and Srinivasan, 2000),
which implements the classical tests of Knuth (1998) plus a few others.

To summarize, empirical testing of RNGs is very important and yet, no comprehensive,
flexible, state-of-the-art software is available for that, aside from the one we are now
introducing. The aim of the TestU01 library is to provide a general and extensive set of
software tools for statistical testing of RNGs. It implements a larger variety of tests than
any other available competing library we know. It is also more flexible, the implementations
are more efficient, and it can deal with larger sample sizes and a wider range of test
parameters than for the other libraries. Tests are available for bit strings as well as for
sequences of real numbers in the interval (0, 1). It is easy to apply any of the tests (only) to
specific bits from the output numbers, and to test decimated sequences (i.e., subsequences
of non-successive output values at specified lags). The numbers can come from a file
(binary or text) or can be produced by a program. Predefined test suites that contain sets
of selected tests with fixed parameters are also available for users who prefer not to select
the tests themselves. TestU01 was developed and refined during the past 15 years and beta
versions have been available over the Internet for a few years already. It will be maintained
and updated on a regular basis in the future. It is available freely from the web page of the
authors (currently at http://www.iro.umontreal.ca/~simardr/testu01/tu01.html).

The rest of this paper is organized as follows. In Sections 2 and 3, we review the
(theoretical) quality criteria for good RNGs and their (empirical) testing. We then discuss
the main empirical tests implemented in TestU01. The tests are classified in two categories:
those that apply to a sequence of real numbers in (0, 1) are examined in Section 4 and those
designed primarily for a sequence of bits are covered in Section 5. In each category, the
tests are further classified in subcategories. We discuss the links and similarities between
different tests and identify specific types of regularities or defects that they are likely to
detect. Section 6 gives an overview of the architecture of TestU01 and provides an example
of its use. In Section 7, we apply our main test batteries to a list of RNGs used in popular
software or proposed in the literature. This is followed by a short conclusion.

2 Quality Criteria for Random number generators

RNGs for all types of applications are designed so that their output sequence is a good
imitation of a sequence of independent uniform random variables, usually over the real
interval (0, 1) or over the binary set {0, 1}. In the first case, the relevant hypothesis HA

0 to be
tested is that the successive output values of the RNG, say u0, u1, u2, . . . , are independent
random variables from the uniform distribution over the interval (0, 1), i.e, i.i.d. U(0, 1).
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In the second case, HB
0 says that we have a sequence of independent random bits, each

taking the value 0 or 1 with equal probabilities independently of the others.

These two situations are strongly related, because under the i.i.d. U(0, 1) hypothesis,
any pre-specified sequence of bits (e.g., the bit sequence formed by taking all successive
bits of u0, or every second bit, or the first five bits of each ui, etc.) must be a sequence
of independent random bits. So statistical tests for bit sequences can be used as well
(indirectly) for testing the null hypothesis HA

0 .

In the U(0, 1) case, HA
0 is equivalent to saying that for each integer t > 0, the vector

(u0, . . . , ut−1) is uniformly distributed over the t-dimensional unit cube (0, 1)t. This cannot
be true for algorithmic RNGs, because these vectors always take their values only from the
finite set Ψt of all t-dimensional vectors of t successive values that can be produced by the
generator, from all its possible initial states (or seeds). The cardinality of this set cannot
exceed the number of admissible seeds for the RNG. Assuming that the seed is chosen
at random, vectors are actually generated in Ψt to approximate the uniform distribution
over (0, 1)t. This suggests that Ψt should be very evenly distributed over the unit cube.
Theoretical figures of merit for measuring this uniformity are discussed, e.g., in L’Ecuyer
(2006), Niederreiter (1992), Tezuka (1995) and the references given there. They are used for
the design of good RNGs. These criteria are much easier to compute for linear generators.
This is one of the main reasons for the popularity of generators based on linear recurrences;
e.g., linear congruential generators (LCGs), multiple recursive generators (MRGs), linear
feedback shift-register (LFSR) generators, and generalized feedback shift-register (GFSR)
generators (L’Ecuyer, 1994, 2006; Tezuka, 1995).

For a sequence of bits, the null hypothesis HB
0 cannot be formally true as soon as the

length t of the sequence exceeds the number b of bits in the generator’s state, because the
number of distinct sequences of bits that can be produced cannot exceed 2b. For t > b, the
fraction of all 2t sequences of t bits that can be visited is at most 2b−t. The goal, then, is
to make sure that those sequences that can be visited are “uniformly scattered” in the set
of all 2t possible sequences, and perhaps hard to distinguish.

Different quality criteria are used for RNGs in cryptology-related applications and for
gambling machines in casinos. In these settings, an additional concern is unpredictability
of the forthcoming numbers. The theoretical analysis of RNGs in cryptology is usually
asymptotic, in the framework of computational complexity theory (Knuth, 1998; Lagarias,
1993; Goldreich, 1999). Nonlinear recurrences and/or output functions are used, which
prevents one from measuring the uniformity of the set Ψt. As a result, empirical testing is
even more necessary.

3 Statistical Testing

A statistical test for RNGs is defined by a test statistic Y , which is a function of a finite
number of output real numbers un (or a finite number of bits, in the case of bit generators),
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whose distribution under H0 is known or can be closely approximated (here, H0 represents
either HA

0 or HB
0 ). The number of different tests that can be defined is infinite and these

different tests detect different problems with the RNGs. No universal test or battery of
tests can guarantee, when passed, that a given generator is fully reliable for all kinds of
simulations. But even if statistical tests can never prove that an RNG is foolproof, they
can certainly improve our confidence in it. One can rightly argue that no RNG can pass
every conceivable statistical test. The difference between the good and bad RNGs, in a
nutshell, is that the bad ones fail very simple tests whereas the good ones fail only very
complicated tests that are hard to figure out or impractical to run.

Ideally, when testing an RNG for simulation, Y should mimic the random variable of
practical interest so that a bad structural interference between the RNG and the simulation
problem will show up in the test. But this is rarely practical. This cannot be done, for
example, for testing RNGs that are going to be used in general-purpose software packages.
Experience with empirical testing tells us that RNGs with very long periods, good structure
of their set Ψt, and based on recurrences that are not too simplistic, pass most reasonable
tests, whereas RNGs with short periods or bad structures are usually easy to crack by
standard statistical tests. The simple structure that permits some classes of generators
to run very fast is often the source of major statistical weaknesses, which sometimes lead
to totally wrong simulation results (Couture and L’Ecuyer, 1994; Ferrenberg et al., 1992;
L’Ecuyer and Simard, 1999; L’Ecuyer et al., 2002; L’Ecuyer and Touzin, 2004; Panneton
and L’Ecuyer, 2005; Tezuka et al., 1994). Practical tools for detecting these deficiencies
are needed. Offering a rich variety of empirical tests for doing that is the purpose of the
TestU01 library.

Classical statistical textbooks usually say that when applying a test of hypothesis, one
must select beforehand a rejection area R whose probability under H0 equals the target
test level (e.g., 0.05 or 0.01), and reject H0 if and only if Y ∈ R. This procedure might be
appropriate when we have a fixed (often small) sample size, but we think it is not the best
approach in the context of RNG testing. Indeed, when testing RNGs, the sample sizes
are huge and can usually be increased at will. So instead of selecting a test level and a
rejection area, we simply compute and report the p-value of the test, defined as

p = P [Y ≥ y | H0]

where y is the value taken by the test statistic Y . If Y has a continuous distribution,
then p is a U(0, 1) random variable under H0. For certain tests, this p can be viewed as a
measure of uniformity, in the sense that it will be close to 1 if the generator produces its
values with excessive uniformity, and close to 0 in the opposite situation.

If the p-value is extremely small (e.g., less than 10−10), then it is clear that the RNG
fails the test, whereas if it is not very close to 0 or 1, no problem is detected by this test.
If the p-value is suspicious but does not clearly indicate rejection (p = 0.002, for example),
then the test can be replicated “independently” with disjoint output sequences from the
same generator until either failure becomes obvious or suspicion disappears. This approach
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is possible because there is usually no limit (other than CPU time) on the amount of data
that can be produced by an RNG to increase the sample size or the number of replications
of the test. When applying several tests to a given generator, p-values smaller than 0.01
or larger than 0.99 are often obtained by chance even if the RNG behaves correctly with
respect to these tests (such values should normally appear approximately 2% of the time).
In this case, suspicious values would not reappear systematically (unless we are extremely
unlucky). Failure of a test typically depends on the structure of the point set Ψt and rarely
on which part of the entire output sequence is tested (there are some exceptions; see, e.g.,
2006). Moreover, when a generator starts failing a test decisively, the p-value of the test
usually converges to 0 or 1 exponentially fast as a function of the sample size of the test,
when the sample size is increased further. Thus, suspicious p-values can easily be resolved
by increasing the sample size.

In the case where Y has a discrete distribution under H0, we need to be more careful with
the definition of p-value. In this case, we distinguish the right p-value pr = P [Y ≥ y | H0]
and the left p-value pl = P [Y ≤ y | H0]. We reject H0 when one of these two values is very
close to 0. Why this distinction? Consider for example a Poisson random variable Y with
mean 1 under H0. If Y takes the value y = 0, the right p-value is pr = P [Y ≥ 0 | H0] = 1.
If we would use the same rejection procedure as in the case of continuous distributions (for
which pl = 1−pr), here we would reject H0 on the basis that the p-value is much too close
to 1. However, P [Y = 0 | H0] = 1/e ≈ 0.368, so it does not really make sense to reject H0

in this case. In fact, the left p-value here is pl = 0.368, so neither pl nor pr is close to 0.
Note that we cannot define the left p-value as pl = 1− pr = P [Y < y | H0] in this case; in
the example, this would give pl = 0.

Several authors have advocated and/or applied a two-level (or second-order) procedure
for testing RNGs (Fishman, 1996; Knuth, 1998; L’Ecuyer, 1992; Marsaglia, 1985). The idea
is to generate N “independent” copies of Y , say Y1, . . . , YN , by replicating the first-order
test N times on disjoint subsequences of the generator’s output. Let F be the theoretical
distribution function of Y under H0. If F is continuous, the transformed observations
U1 = F (Y1), . . . , UN = F (YN ) are i.i.d. U(0, 1) random variables under H0. One way
of performing the two-level test is to compare the empirical distribution of these Uj ’s to
the uniform distribution, via a goodness-of-fit (GOF) test such as those of Kolmogorov-
Smirnov, Anderson-Darling, Crámer-von Mises, etc.

If U(1), . . . , U(N) are the N observations sorted by increasing order, the Kolmogorov-

Smirnov (KS) test statistics D+
N , D−

N , and DN are defined by

D+
N = max

1≤j≤N

(

j/N − U(j)

)

, (1)

D−
N = max

1≤j≤N

(

U(j) − (j − 1)/N
)

, (2)

DN = max (D+
N ,D−

N ), (3)
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the Anderson-Darling (AD) test statistic is

A2
N = −N − 1

N

N
∑

j=1

{

(2j − 1) ln(U(j)) + (2N + 1 − 2j) ln(1 − U(j))
}

, (4)

and the Crámer-von Mises (CVM) test statistic is

W 2
N =

1

12N
+

N
∑

j=1

(

U(j) −
(j − 0.5)

N

)2

. (5)

Their (approximate) distributions under H0 can be found in Anderson and Darling (1952),
Darling (1960), Durbin (1973), Stephens (1970), Stephens (1986a), and Sinclair and Spurr
(1988).

The p-value of the GOF test statistic is computed and H0 is rejected if this p-value
is deemed too extreme, as usual. In TestU01, several of these GOF tests can actually
be applied simultaneously for any given two-level test, if desired. This kind of flexibility
could be convenient to study the power of these GOF tests for detecting the weaknesses
of specific classes of generators.

Sometimes, the power of these tests can be increased by applying certain transfor-
mations to the sorted observations U(1), . . . , U(N) before applying the test. A prominent
example is the spacings transformation, defined as follows (Stephens, 1986b). We compute
the spacings Si = U(i+1) − U(i) for 0 ≤ i ≤ N , where U(0) = 0, U(N+1) = 1, sort them
by increasing order to obtain S(0) ≤ S(1) ≤ · · · ≤ S(N), let S0 = (N + 1)S(0), and then
compute Si = (N − i + 1)(S(i) − S(i−1)) and Vi = S0 + S1 + · · · + Si−1 for i = 1, . . . , N .
Under H0, V1, . . . , VN are distributed as N independent U(0, 1) random variables sorted
by increasing order. This transformation is useful to detect clustering : If U(i−1) and U(i)

are close to each other for several values of i, then several Vi’s will be close to 0 and the
AD test can detect it easily, whereas the standard GOF tests may not detect it on the
original observations. Another example is the power ratio transformation, that also detects
clustering (Stephens, 1986b, Section 8.4). It defines U ′

i = (U(i)/U(i+1))
i for i = 1, . . . , N ,

and the Vi’s are the U ′
i sorted by increasing order. In TestU01, these transformations can

be combined with any of the GOF tests mentioned above.

The arguments supporting the two-level tests are that (i) it sometimes permits one to
apply the test with a larger total sample size to increase its power (for example, if the
memory size of the computer limits the sample size of a single-level test), and (ii) it tests
the RNG sequence at the local level, not only at the global level (i.e., there could be
very bad behavior over short subsequences, which cancels out when averaging over larger
subsequences). As an example of this, consider the extreme case of a generator whose
output values are i/231, for i = 1, 2, . . . , 231 − 1, in this order. A simple test of uniformity
over the entire sequence would give a perfect fit, whereas the same test applied repeatedly
over (disjoint) shorter sub-sequences would easily detect the anomaly.
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In the case where the two-level test is motivated by (i) and not (ii), another way of
performing the test at the second level is to simply add the N observations of the first level
and reject H0 if the sum is too large or too small. For the great majority of the tests in
TestU01, the distribution of Y is either chi-square, normal, or Poisson. In these three cases,
the sum Ỹ = Y1 + · · · + YN has the same type of distribution. That is, if Y is chi-square
with k degrees of freedom [resp., normal with mean µ and variance σ2, Poisson with mean
λ], Ỹ is chi-square with Nk degrees of freedom [resp., normal with mean Nµ and variance
Nσ2, Poisson with mean Nλ]. In these situations, whenever a two-level test is performed,
TestU01 reports the results of the test based on Ỹ in addition to the second-order GOF
tests specified by the user.

Our empirical investigations indicate that for a fixed total sample size Nn, when testing
RNGs, a test with N = 1 is often more efficient than the corresponding test with N > 1.
This means that for typical RNGs, the type of structure found in one reasonably long
subsequence is often found in practically all subsequences of the same length. In other
words, when an RNG started from a given seed fails spectacularly a certain test, it often
fails that test for most admissible seeds. In the case where N > 1, the test based on
Ỹ is usually more powerful than the second-order GOF tests that compare the empirical
distribution of F (Y1), . . . , F (YN ) to the uniform. However, there are exceptions to these
rules.

There are many tests for which the possible outcomes are partitioned in a finite number
of categories; the test generates n such outcomes independently, counts how many fall
in each category, and applies a chi-square test to compare these counts with the expected
number in each category under H0. In this setting, we want to make sure that the expected
number in each category is large enough (≥ emin for some constant emin) for the chi-square
test to be (approximately) valid. In TestU01, whenever such a chi-square test occurs,
adjacent categories are merged automatically until the expectation in each category is at
least emin. The user does not have to care about this. The constant emin is 10 by default
but can be changed at any time.

In our implementation, this merging is done in a simple and naive way: before starting
the tests, adjacent categories are merged until all the expected counts satisfy the constraint.
Ryabko et al. (2004) and Ryabko et al. (2005) propose to do it with a two-phase adaptive
approach instead. In the first phase (the training phase), one uses a very large number of
categories and these categories are merged according to the empirical frequencies observed
during that phase, divided by the theoretical (expected) frequencies. Categories with
similar values of this ratio are merged to form the new categories for the testing phase (the
second phase), in which the test is applied to a disjoint subsequence produced by the same
generator. If the true expected frequencies for this generator differ from the theoretical
ones and if they are well estimated by the empirical frequencies from the first phase, then
this statistical-learning approach can boost significantly the power of the chi-square test.
It also allows a very large number of categories in the first phase, much larger than n emin.



8 G–2006–69 Les Cahiers du GERAD

However, this learning approach is not yet implemented in TestU01. We use other ways
of dealing with very large numbers of categories (e.g., counting collisions).

There is an infinite number of possible tests of uniformity and independence for RNGs.
Selection among them has to be somewhat subjective. However, there are natural choices
that quickly come to mind. Certain tests are also motivated by important classes of
applications.

What about comparing the power of these tests? This turns out to be a somewhat
elusive issue, because the power of a test depends on the specific form of the alternative
hypothesis, i.e., the specific type of structure that we want to detect. But when testing
RNGs, there is no specified alternative; we would like to test against anything that departs
from H0. We could select a specific class of RNGs and compare different tests in terms of
their ability (power, efficiency) to detect some structure (non-randomness) in this specific
class. The results will depend on the selected class of RNGs. It could be done for certain
classes deemed important. TestU01 is a good tool for those who want to study this
empirically (see Section 6.4).

In the next two sections, we give an overview of the main empirical tests used in
practice and implemented in TestU01. They are split in two categories: those that test
HA

0 for sequence of real numbers in (0, 1) and those that test HB
0 for a sequence of bits.

Each category is further partitioned into subcategories.

4 Tests for a Sequence of Real Numbers in (0, 1)

4.1 Tests on a single stream of n numbers

Measuring global uniformity. We want to test HA
0 for a sequence u1, . . . , un in (0, 1).

One of the first ideas that come to mind is to compute the empirical distribution of
u1, . . . , un and compare it to the U(0, 1) distribution, via the KS, AD, or other similar
GOF tests. Even simpler is to compute the sample mean and sample variance, and com-
pare them with the theoretical values 1/2 and 1/12. We can also look at the sample
autocorrelations of lags j = 1, 2, . . . and check if they are close enough to zero. Only very
bad RNGs fail single-level versions of these simple tests. They measure the uniformity only
at the global level, i.e., on average over the whole sequence of length n. Two-level versions
with a large N and a small n may detect tendencies for the generator to get trapped for
some time in areas of the state space where the mean or variance is smaller or larger than
average, for example.

Measuring clustering. Another class of tests measure the clustering of the numbers
u1, . . . , un. We sort these numbers by increasing order and compute the overlapping m-
spacings gm,i = u(i+m) − u(i) between the sorted observations u(1), . . . , u(n), where u(0) =

0 and u(n+i) = 1 + u(i−1) for i > 0. The test statistic has the general form H
(c)
m,n =

∑n
i=0 h(ngm,i) where h is a smooth function such as h(x) = x2 or h(x) = log(x) (L’Ecuyer,
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1997b). This tests the empirical distribution of the ui’s in a different way than KS and AD
tests, by testing if they tend to be more clustered than they should. For example, if the
numbers are clustered by groups of about three to five that are very close to one another,
the KS test is unlikely to detect it but a 3-spacings test will.

Run and gap tests. The run and gap tests (Knuth, 1998) look more closely at the local
anatomy of the sequence, trying to detect patterns. In the gap test, we select a set A ⊂ [0, 1],
with Lebesgue measure p (usually A = [α, β], an interval, in which case p = β − α). The
test counts the number of steps (or gap size) between any pair of successive visits to A.
Let Xj be the number of gaps of size j, for j ≥ 0. The test compares the frequencies
X0,X1, . . . to their expected values under HA

0 , via a chi-square test (after merging in a
single class all values of j for which the expectation is too small). A generator whose
visits to the set A tend to be clustered in time (the generator wanders in and out of A
for some time, then goes away from A for a long while, and so on) will fail this test.
The run test looks for another type of pattern; it collects the lengths of all increasing [or
all decreasing] subsequences, counts how many there are of each length, and computes a
modified chi-square statistic (Knuth, 1998, page 67) based on these counts.

4.2 Tests based on n subsequences of length t

4.2.1 Partitioning the unit hypercube and counting the hits per piece

Recall that for an RNG that produces real numbers in (0, 1), HA
0 is equivalent to saying

that for every integers n ≥ 0 and t > 0, the vector of output values (un, . . . , un+t−1) has the
uniform distribution over the t-dimensional unit hypercube (0, 1)t. A natural approach to
test this uniformity is the following. Partition the unit hypercube (0, 1)t into k pieces (cells)
of volumes p0, . . . , pk−1. Usually, p0 = · · · = pk−1 = 1/k, but not always. Then, generate
n points ui = (uti, . . . , uti+t−1) ∈ (0, 1)t, for i = 0, . . . , n − 1, and count the number Xj of
points falling in cell j, for j = 0, . . . , k − 1. Under HA

0 , the vector (X0, . . . ,Xk−1) has the
multinomial distribution with parameters (n, p0, . . . , pk−1). Any measure of distance (or
discrepancy) between the numbers Xj and their expectations λj = npj can define a test
statistic Y . We describe specific instances and variants of this type of test.

Serial tests. A simple way to partition the hypercube (0, 1)t into k = dt sub-cubes (cells)
of volume 1/k is by cutting the interval (0, 1) into d equal pieces for some integer d > 1.
Then, pj = 1/k for all j. The tests that measure the overall discrepancy between the
counts Xj and their expectation λ = n/k are generally called serial tests of uniformity
(Knuth, 1998; L’Ecuyer et al., 2002).

In the original serial test (Good, 1953; Knuth, 1998), the distance to the exact distri-
bution is measured by the chi-square test statistic

X2 =
k−1
∑

j=0

(Xj − λ)2

λ
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which has approximately a chi-square distribution with k−1 degrees of freedom when n/k
is large enough. More generally, we may consider test statistics of the form

Y =

k−1
∑

j=0

fn,k(Xj)

where fn,k is a real-valued function which may depend on n and k. This class contains the
power divergence statistics

Dδ =

k−1
∑

j=0

2

δ(1 + δ)
Xj

[

(Xj/λ)δ − 1
]

, (6)

studied in (Read and Cressie, 1988; Wegenkittl, 2001, 2002), where δ > −1 is a real-
valued parameter. We recover X2 by taking δ = 1. For δ = 0, which means the limit
as δ → 0, we obtain the log-likelihood statistic G2 (Read and Cressie, 1988). It is equiv-
alent to the entropy H, obtained by taking fn,k(x) = −(x/n) log2(x/n), via the relation
−H = G2/(2n ln 2) − log2(k). All these statistics have asymptotically the chi-square dis-
tribution with k − 1 degrees of freedom when n → ∞ for fixed k, under HA

0 . An even
more general class called the generalized φ-divergence statistics is introduced and studied
in (Wegenkittl, 1998, 2002), also in the asymptotic regime where k is fixed and n → ∞.
TestU01 implements the power divergence class, but not this more general framework.

The value of δ that maximizes the power of the test in (6) depends on the alternative
(Read and Cressie, 1988; L’Ecuyer et al., 2002). For example, suppose k1 cells have prob-
ability 1/k1 and the other k − k1 cells have probability 0. Then the power increases with
δ if k1 ≪ k (a peak in the distribution) and decreases with δ if k − k1 ≪ k (a hole). When
k1 ≈ k/2 (a split), the value of δ does not matter very much as this type of defect is easy
to detect. A thin peak can be even easier if it contains sufficient probability mass, but a
thin hole is extremely hard to detect.

For the classical serial test, it is usually recommended to have n/k ≥ 5 for the chi-square
test to be (approximately) valid. But this imposes a (practical) upper bound on the value
of k, because k accumulators must be maintained in memory. Fortunately, this constraint
is not really necessary. We say that we have a sparse serial test if n/k ≪ 1 and a dense test
if n/k ≫ 1. In the sparse case, the distribution of Dδ under HA

0 is asymptotically normal
when n → ∞ and n/k → λ0 for some finite positive constant λ0. The sparse tests tend to
have more power than the dense ones to detect typical defects of RNGs (L’Ecuyer et al.,
2002), mainly because they permit larger values of k. When k is very large (e.g., k ≥ 230

or more), using an array of k integers to collect the Xj ’s would use too much memory. In
the sparse case, since most of the Xj ’s are zero, we use a hashing technique that maps the
k values of j to a smaller number of memory locations.

Collisions, empty cells, and the like. In addition to the power divergence family
of tests, TestU01 supports other choices of fn,k. For example, the number Nb of cells
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that contain exactly b points (for b ≥ 0), the number Wb of cells that contain at least
b points (for b ≥ 1), and the number C of collisions, i.e., the number of times a point
falls in a cell that already has one or more points in it. These statistics are related by
N0 = k−W1 = k−n + C, Wb = Nb + · · ·+ Nn, and C = W2 + · · ·+ Wn. They are studied
and compared in L’Ecuyer et al. (2002), where good approximations for their distributions
under HA

0 are given.

In each case, the test statistic is a measure of clustering: It decreases when the points
are more evenly distributed between the cells. (For the entropy, this is true if we take
−H.) The number of collisions C is often the most powerful test statistic among these
to detect typical problems found in RNGs, mainly because it permits one to take k ≫ n.
For example, this test is very efficient to detect the peak and split alternatives mentioned
earlier.

Under HA
0 , C, W2 and N2 have asymptotically the Poisson distribution with mean µc

where n2/(2k) → µc and the normal distribution with exact mean and variance that can
be computed as explained in L’Ecuyer et al. (2002) if n/k → λ, where 0 < λ < ∞, and
N0 is asymptotically Poisson with mean e−γ when n/k − ln(k) → γ. Knuth (1998) gives
an algorithm to compute the exact probabilities for C in O(n log n) time. However, in
most cases of interest, these exact probabilities are very expensive to compute and are not
needed, because the approximations based on the above asymptotics are excellent. For C,
we use the Poisson approximation when λ ≤ 1, the normal approximation when λ > 1 and
n > 105, and the exact distribution otherwise.

Overlapping versions. There are also overlapping versions of the serial tests, where the
points are defined by ui = (ui, . . . , ui+t−1) for i = 0, . . . , n − 1. This has the advantage of
providing more points (a larger n, and usually a more powerful test) for a given number
of calls to the generator (L’Ecuyer et al., 2002). Marsaglia and Zaman (1993b) name
these overlapping serial tests monkey tests: they view the generator as a monkey typing
“random” characters from a d-letter alphabet. The test counts how many times each t-
letter word appears in the sequence typed by the monkey. They use the statistic N0 and
call the corresponding tests OPSO for t = 2, OTSO for t = 3, and OQSO for t = 4. When
d = 4 and t around 10, they call it the DNA test.

In the overlapping case, the power divergence statistic Dδ no longer has an asymptotic
chi-square distribution in the dense case. The analysis is more difficult because the suc-
cessive cell numbers that are visited are no longer independent; they form a Markov chain
instead. The relevant test statistic in the dense case is

D̃δ,(t) = Dδ,(t) − Dδ,(t−1)

where Dδ,(t) is the power divergence statistic (6) in t dimensions. Under HA
0 , if k is fixed

and n → ∞, D̃δ,(t) is asymptotically chi-square with dt−dt−1 degrees of freedom. This was

proved by Good (1953) for X2 and generalized to D̃δ,(t) by Wegenkittl (1998), Wegenkittl
(2001) and L’Ecuyer et al. (2002).
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In the sparse case, no good asymptotic results have been proved, as far as we know.
Theorem 2 of Percus and Whitlock (1995) implies that E[N0] ≈ ke−n/k when k ≫ n ≫ 0,
as in the non-overlapping case. Marsaglia and Zaman (1993b) suggest that N0 is approx-
imately normal with mean ke−λ and variance ke−λ(1 − 3e−λ), where λ = n/k, but this
approximation is reasonably accurate only for 2 ≤ λ ≤ 5 (approximately) and is very bad
when λ is far outside this interval. Our simulation experiments indicate that C, W2, and
N2 have approximately the same Poisson distribution as in the non-overlapping case when
λ ≤ 1 (say) and n is large. We recommend using C with λ ≤ 1 and n as large as possible.

4.2.2 Other ways of partitioning the unit hypercube

Dividing the unit hypercube (0, 1)t into k = dt sub-cubes of equal size as in the serial
test is only one way of partitioning this hypercube into k pieces (or cells) and of mapping
the vectors to the cell numbers. Another way, for example, is to find which of the t!
permutations of t objects would reorder the coordinates of ui in increasing order. Number
the k = t! possible permutations from 0 to k−1, and let Xj be the number of vectors ui that
are reordered by permutation j, for j = 0, . . . , k − 1. The vector (X0, . . . ,Xk−1) has again
the multinomial distribution with parameters (n, 1/k, . . . , 1/k) and all the test statistics Y
defined above can still be used and have the same distributions. This setting is appropriate,
for instance, for testing an RNG that is going to be used to shuffle decks of cards for
computer games or gambling machines. Then, the collision test applied to permutations
could detect if certain permutations of the cards tend to appear more often than others.
Knuth (1998) recommends using the chi-square statistic to test if all permutations are
equally likely, but the number of collisions, C, is usually more sensitive and permits one
to apply the test with a larger t, because we only need n = O(

√
k) = O(

√
t!) instead of

n ≥ 5t!.

The argmax test employs a different mapping: it defines Xj as the number of vectors
ui whose largest coordinate is the jth. This tests if the location of the maximum is evenly
distributed among coordinates.

We can also compute the sum, product, maximum, etc., of u1, . . . , ut, say Y , partition
the range of possible values of Y in k intervals of equal probability under HA

0 , and define
Xj as the number of times Y falls in interval j. This gives a large family of multinomial
tests. With a small or moderate t and a large n, these tests can detect clumping of small
[or large] values in the sequence, for example.

The poker test of Kendall and Babington-Smith (1939), described by Knuth (1998), can
be seen as yet another way of partitioning the hypercube. The test generates t integers
in {0, . . . , d − 1}, looks at how many distinct integers there are, repeats this n times, and
counts the frequencies of each number of distinct integers. For t ≤ d, this is equivalent to
splitting (0, 1)t into dt sub-cubes and then regroup the sub-cubes into t classes as follows:
take the point at the corner of the sub-cube closest to the origin and put the sub-cube in
class j if this point has j distinct coordinates. These t classes form the final partition of
(0, 1)t used for the test. Note that the t cells do not have equal probabilities in this case.
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4.2.3 Alternatives to counting

Focusing on a single cell. The CAT test mentioned by Marsaglia and Zaman (1993b)
and analyzed by Percus and Whitlock (1995) (under the name of Monkey test) is a variation
of the collision test where the collisions are counted in a single cell only. In its original
version, the cells are determined as in the overlapping serial test, but the principle works
without overlapping and for an arbitrary partition as well. Under HA

0 , for large n, the
number Y of points in the target cell has approximately the Poisson distribution with
mean λ equal to the number of points generated multiplied by the volume of the target
cell, assuming that the points are asymptotically pairwise independent when n → ∞.
When the points are independent (no overlap), Y has the binomial distribution. This
test can be powerful only if the target cell happens to be visited too frequently, or if λ is
large enough and the target cell is visited too rarely, due to a particular weakness of the
generator.

Matsumoto and Kurita (1994, page 264) propose a very similar test with t = 1 but
with two levels: generate n0 numbers in (0, 1) and count how many fall in a given interval
[α, β], say Y . Repeat this n times and compare the distribution of the n realizations of Y
to the binomial distribution with parameters n0 and p = β − α by a chi-square test.

Time gaps between visits to cells. Instead of simply counting the visits to each cell
of the partition, we can examine more detailed information; for instance collect the gaps
(number of steps) between any two successive visits to a given cell, do this for each cell,
and compute an appropriate function of all these gaps as a test statistic. This combines the
ideas of the gap test and the multinomial test based on an hypercube partition. Maurer
(1992) introduced a special case of this type of test and proposed as a test statistic the
average of the logarithms of all the gaps, where the gaps start to be collected only after a
long warm-up. The justification is that this average measures in some way the entropy of
the sequence. He defined his test for bit strings (a block of bits determine the cell number)
but the test applies more generally. In our experiments with this test several years ago,
using a partition of the hypercube into sub-cubes, we found that it was always dominated
by (i.e., was much less sensitive than) the sparse multinomial tests described earlier, and in
particular by the collision test (at least for the sample sizes that we could handle and the
examples that we tried). Wegenkittl (2001) and Hellekalek and Wegenkittl (2003) report
similar results. Typically, several other tests fail long before this one does. Wegenkittl
(2001) studies the connection between serial tests in the dense case and entropy estimators
based on return times to cells (as in Maurer’s test); he shows that the two are essentially
equivalent. Since the serial test is usually not very sensitive in the dense case, it is no
surprise then, that the same is true for Maurer’s test.

Birthday spacings. An interesting refinement of the serial test is the birthday spacings
test, which operates as follows (Marsaglia, 1985; Knuth, 1998; L’Ecuyer and Simard, 2001).
We generate n points in k cells, just as for the serial test. Let I1 ≤ I2 ≤ · · · ≤ In be the
cell numbers where these n points fall, sorted in increasing order. The test computes the
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spacings Ij+1 − Ij, for 1 ≤ j < n, and counts the number Y of collisions between these
spacings. Under HA

0 , Y is approximately Poisson with mean λ = n3/(4k). If the test
is replicated N times, the sum of the N values of Y (the total number of collisions) is
computed and compared with the Poisson with mean Nλ to get the p-value. As a rule
of thumb, the error of approximation of the exact distribution of the sum by this Poisson
distribution is negligible when Nn3 ≤ k5/4 (L’Ecuyer and Simard, 2001). This two-level
procedure is usually more sensitive than applying a chi-square test to the collision counts,
as proposed by Knuth (1998).

The rationale for this test is that certain types of RNGs have their points in cells that
tend to be at regular spacings. This happens in particular for all LCGs when t ≥ 2, because
of their regular lattice structure in two or more dimensions (Knuth, 1998; L’Ecuyer and
Simard, 2001). To illustrate what happens, suppose that because of the regularity, all
the spacings are multiples of some integer b > 1 and that they otherwise have the same
distribution as if we had only k′ = k/b cells. Under this alternative, Y is approximately
Poisson with mean λ1 = bλ instead of λ. If Y takes its most likely realization, Y = bλ,
then the right p-value

pr(bλ) = P [Y ≥ bλ | HA
0 ] ≈ e−λ

∞
∑

x=bλ

λx/x!

decreases exponentially in b. For b = λ = 8, for example, we already have pr(64) =
1.9 × 10−35. If t ≥ 2 and the points are produced by an LCG with modulus near k, and if
we take n = (4kλ)1/3, we are in this situation, with a b that typically exceeds a few units.
As a result, we can get a p-value below some fixed small threshold (e.g., pr(y) < 10−15) with
a sample size n = O(k1/3). In other words, we have a clear failure of the test with a sample
size n that increases as the cubic root of the modulus. Empirically, n ≈ 8k1/3 suffices to get
pr(y) < 10−15 for practically all LCGs with modulus near k. If the generator has a very
bad lattice structure (all its points lie in only a few hyperplanes), then failure comes even
faster than this. Knuth (1998, page 72) gives an example of this for a lagged-Fibonacci
generator.

4.2.4 Close pairs of points in space

Again, we throw n points u1, . . . ,un independently and uniformly in the unit hypercube,
but we now look at the distances between the points. This is studied by L’Ecuyer et al.
(2000). The distance is measured with the Lp norm ‖ ·‖o

p in the unit torus (0, 1)t, obtained
by identifying (pairwise) the opposite sides of the unit hypercube, so that points that are
face to face on opposite sides are “close” to each other. The distance between two points
ui and uj is defined as Dn,i,j = ‖uj − ui‖o

p where

‖x‖o
p =







[

min(|x1|, 1 − |x1|)p + · · · + min(|xt|, 1 − |xt|)p
]1/p

if 1 ≤ p < ∞,

max(min(|x1|, 1 − |x1|), . . . ,min(|xt|, 1 − |xt|)) if p = ∞,
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for x = (x1, . . . , xt) ∈ [−1, 1]t. The reason for taking the torus is to get rid of the boundary
effect: it is then much easier to obtain a good approximation of the relevant distributions
(for the test statistics of interest) under HA

0 .

Let λ(n) = n(n − 1)Vt(1)/2, where Vt(r) is the volume of the ball {x ∈ R
t | ‖x‖p ≤ r}.

For each τ ≥ 0, let Yn(τ) be the number of distinct pairs of points (Xi,Xj), with i < j,

such that Dn,i,j ≤ (τ/λ(n))1/t. L’Ecuyer et al. (2000) show that under HA
0 , for any fixed

τ1 > 0 and large enough n, the truncated process {Yn(τ), 0 ≤ τ ≤ τ1} is approximately
a Poisson process with unit rate. This implies that if Tn,0 = 0 and Tn,1, Tn,2, . . . are the
successive jump times of the process {Yn}, then the spacings between these jump times
are independent exponential random variables with mean 1, and thus for any fixed integer
m > 0, the transformed spacings W ∗

n,i = 1 − exp[−(Tn,i − Tn,i−1)], for i = 1, . . . ,m, are
approximately i.i.d. U(0, 1) if n is large enough. An m-nearest-pairs test compares the
empirical distribution of these random variables to the uniform distribution. We use the
Anderson-Darling test statistic for this comparison, because typically, when a generator
has too much structure, the jump times of Yn tend to cluster, so there tends to be several
W ∗

n,i’s near zero, and the Anderson-Darling test is particularly sensitive to detect that type
of behavior (L’Ecuyer et al., 2000).

For a two-level test, there are several possibilities. A first one is to apply an AD
test to the N (independent) p-values obtained at the first level. A second possibility is
to pool all the Nm observations W ∗

n,i in a single sample and then apply an AD test of
uniformity. These two possibilities are suggested by L’Ecuyer et al. (2000). A third one
is to superpose the N copies of the process Yn, to obtain a process Y defined as the sum
of the N copies of Yn. We fix a constant τ1 > 0. Let J be the number of jumps of Y
in the interval [0, τ1] and let T1, . . . , TJ be the sorted times of these jumps. Under HA

0 , J
is approximately Poisson with mean Nτ1, and conditionally on J , the jump times Tj are
distributed as J independent uniforms over [0, τ1] sorted in increasing order. We can test
this uniformity with an AD test on the J observations. It is also worthwhile to compare
the realization of J with the Poisson distribution. We found several instances where the
AD test of uniformity conditional on J was passed but the value of J was much too small.
In one instance, we had Nτ1 = 100 and observed J = 2. This is a clear failure based on
the value of J . In yet another variant of the uniformity test conditional on J , we apply a
“spacings” transformation to the uniforms before applying the AD test. This latter test is
very powerful but is also very sensitive to the number of bits of “precision” in the output
of the generator. For example, for N = 20, n = 106, t = 2, and m = 20, all generators
returning less than 32 bits of precision fail the test.

Bickel and Breiman (1983) proposed a related goodness-of-fit test of uniformity based
on the statistic Bn =

∑n
i=1(Wn,(i) − i/n)2, where Wn,(1) ≤ · · · ≤ Wn,(n) are the ordered

values of the Wn,i = 1−exp[−nVt(Dn,i)], 1 ≤ i ≤ n, and Dn,i is the distance from point i to
its nearest neighbor (based on an arbitrary norm). These Wn,i are approximately U(0, 1)
under HA

0 and Bn measures their deviation from uniformity. In our extensive empirical
experiments on RNG testing (L’Ecuyer et al., 2000), this test was less powerful than a
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two-level m-nearest-pairs test. It is also difficult to obtain an accurate approximation of
the theoretical distribution of Bn.

4.3 Tests that generate n subsequences of random length

The tests in this category produce each subsequence by generating numbers uj until some
event happens, and the required number of uj’s is random. For example, in the coupon
collector’s test (Greenwood, 1955; Knuth, 1998), we partition the interval (0, 1) in d pieces
of equal sizes and count how many random numbers uj must be generated to obtain at
least one in each piece. The frequencies of the different counts are computed and compared
with the theoretical frequencies by a chi-square test. This could also be defined with an
arbitrary partition of (0, 1)t into k pieces of equal volume.

The sum collector test (Ugrin-Sparac, 1991) is similar, except that it counts how many
uniforms are required until their sum exceeds a given constant.

5 Tests for a Sequence of Random Bits

Here we suppose that the generator produces a stream of bits b0, b1, b2, . . . , and we want to
test the null hypothesis that the bi are independent and take the values 0 or 1 with equal
probability. These bits can come from any source. In particular, they can be extracted
from a sequence of real numbers in (0, 1) by taking specific bits from each number. The
standard procedure for doing this in TestU01 is to take bits r + 1, . . . , r + s from each
number, i.e., skip the first r bits and take the s bits that follow, for some integers r ≥ 0
and s ≥ 1, and concatenate all these bits in a long string. The values of r and s are
parameters of the tests.

5.1 One long binary stream of length n

Tests on binary sequences have been designed primarily in the area of cryptology, where
high entropy and complexity are key requirements. The test of Maurer (1992), discussed
earlier, is an entropy test, and the binary versions of the multinomial tests are essentially
entropy tests as well (Wegenkittl, 2001).

Linear complexity. One way of testing the complexity is to examine how the linear
complexity Lℓ of the first ℓ bits of the sequence increases as a function of ℓ. The linear
complexity Lℓ is defined as the smallest degree of a linear recurrence obeyed by the se-
quence. It is nondecreasing in ℓ and increases by integer-sized jumps at certain values of
ℓ. In our implementation, Lℓ is computed (updated) by the Berlekamp-Massey algorithm
(Berlekamp, 1984; Massey, 1969) and requires O(n2 log n) time overall. If the entire binary
sequence follows a linear recurrence of order k ≪ n (this is the case for several widely-used
classes of generators; see Section 7), then Lℓ will stop increasing at ℓ = k and this would
make the test fail. Carter (1989) and Erdmann (1992) examine two ways of testing the
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evolution of Lℓ. The jump complexity test counts the number J of jumps in the linear
complexity. Under HB

0 and for large n, J is approximately normally distributed with
mean and variance given by (Carter, 1989; Niederreiter, 1991; Wang, 1997). The jump size
test counts how many jumps of each size there are and compares these frequencies to the
theoretical distribution (a geometric with parameter 1/2) by a chi-square test. A different
type of test, used in the NIST suite (Rukhin et al., 2001), uses a two-level procedure with
a large N and relatively smaller n. It computes N realizations of Ln, counts how many
times each value has occurred, and uses a chi-square test to compare these counts to their
theoretical expectations. In our empirical investigations, this test was strongly dominated
by the jump complexity test and jump size test.

Lempel-Ziv complexity. Complexity can also be tested by counting the number W of
distinct bit patterns that occur in the string. This number measures the compressibility
of the sequence by the Lempel-Ziv compression algorithm given in Ziv and Lempel (1978).
According to Kirschenhofer et al. (1994), under HB

0 and for large n, W is approximately
normally distributed with mean n/log2 n and variance 0.266n/(log2 n)3. However, these
approximations of the mean and variance are not very accurate even for n as large as 224.
Our implementation uses better approximations, obtained by simulation and confirmed
with different types of (reliable) RNGs. This test turns out to be not very sensitive;
generators that fail it tend to fail many other tests as well.

Fourier coefficients. Spectral tests on a binary sequence of n = 2k bits compute (some
of) the discrete Fourier coefficients, which are complex numbers defined by

fℓ =

n−1
∑

j=0

(2bj − 1)e2πιjℓ/n, ℓ = 0, 1, . . . , n − 1,

where ι =
√
−1. Let |fℓ| be the modulus of fℓ. A first test, suggested in Rukhin et al.

(2001), counts the number Oh of |fℓ|’s that are smaller than some constant h, for ℓ ≤ n/2.
Under HB

0 , for large n and h =
√

2.995732274n, Oh is approximately normal with mean
µ = 0.95n/2 and variance σ2 = 0.05µ. Erdmann (1992) proposes several spectral-oriented
tests and some are implemented in TestU01. However, the available approximations of the
distributions of the test statistics under HB

0 are not very good.

Autocorrelations. The sample autocorrelation of lag ℓ in a bit sequence, defined as

Aℓ =

n−ℓ−1
∑

i=0

bi ⊕ bi+ℓ,

where ⊕ is the exclusive-or operation (or addition modulo 2), also defines an interesting test
statistic (Erdmann, 1992). Under HB

0 , Aℓ has the binomial distribution with parameters
(n − ℓ, 1/2), which is approximately normal when n − ℓ is large.
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Run and gap tests. The binary counterpart of the run test can be defined as follows.
Every binary sequence has a run of 1’s, followed by a run of 0’s, followed by a run of 1’s,
and so on, or vice-versa if it starts with a 0. Suppose we collect the lengths of all runs of 1’s
and all runs of 0’s until we have a total of 2n runs (n of each type). (The required length
of the string to get 2n runs is random.) We count the number of runs of 1’s of length j
and the number of runs of 0’s of length j, for j = 1, . . . , k for some integer k (regrouping
the runs of length larger than k with those of length k) and apply a chi-square test on
these 2k counts. Since any given run has length j with probability 2−j , we readily know
the expected number of runs of each length. Note that each run of 0’s is a gap between
the occurrence of 1’s, and vice-versa, so this test can also be seen as a gap test for binary
sequences.

5.2 Tests based on n bit strings of length m

5.2.1 Partitioning the set of m-bit strings and counting hits in subsets

We now consider tests that try to detect “dependencies” in bit strings of length m, in the
sense that some of the 2m possibilities are much more likely than others. All these tests use
essentially (indirectly) the following pattern: regroup the 2m possibilities for the bit string
into, say, k categories, count how many of the n strings fall in each category, and compare
the results with the expectations, exactly as in the multinomial tests of Section 4.2.

Serial tests. The counterpart of the serial test for bit strings operates as follows: number
the possible m-bit strings from 0 to k−1 = 2m−1 and let Xj be the number of occurrences
of string j in the n strings. The same set of test statistics as in Section 4.2 can be used
(chi-square, entropy, collisions, etc.). In the overlapping version, n bits are placed in a
circle and each block of m successive bits on the circle determines a cell number. In this
case, the test needs only n bits. The theoretical distribution is approximated as for an
ordinary m-dimensional overlapping serial test with d = 2 and t = m.

The CAT test and the tests that collect the gaps between visits to states also have
obvious binary versions, where the cells are replaced by the m-bit strings, constructed
either with or without overlapping (the theoretical probabilities are different for the two
cases). The test of Maurer (1992) discussed earlier was actually defined in this setting.
Maurer (1992) proved that his test is universal, in the sense that it can detect any type
of statistical defect in a binary sequence, when the test parameters and sample size go
to infinity in the appropriate way (this result was generalized by Wegenkittl (2001)). In
practice, however, it is typically less sensitive than the collision test for a comparable
sample size.

Rank of a binary matrix. A powerful test to detect linear dependencies between blocks
of bits is the matrix rank test (Marsaglia, 1985; Marsaglia and Tsay, 1985): Fill up a
k × ℓ binary matrix row by row with a bit string of length m = k × ℓ, and compute the
rank R of this binary matrix (the number of linearly independent rows). Repeat this n
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times and compare the empirical distribution of the n realizations of R with its theoretical
distribution under HB

0 , with a chi-square test. Bit sequences that follow linear recurrences
fail this test for large enough m, because of the linear dependencies.

Longest run of 1’s. The longest head run test (Földes, 1979; Gordon et al., 1986) is a
variant of the run test that looks at the length Y of the longest substring of successive 1’s
in a string of length m. This is repeated n times and the empirical distribution of the n
realizations of Y is compared with its theoretical distribution by a chi-square test.

Hamming weights. To measure the clustering of 0’s or of 1’s in a bit sequence, we can
examine the distribution of the Hamming weights of disjoint subsequences of length m.
More clustering should lead to higher variance of the Hamming weights and to positive
dependence between the Hamming weights of successive subsequences. The Hamming
weights tests in TestU01 generate n (non-overlapping) blocks of m bits and compute the
Hamming weight of each block, say Hi for block i. Under HB

0 , the Hi are i.i.d. bino-
mial r.v.’s with parameters (m, 1/2). Let Xj be the number of blocks having Hamming
weight j, for j = 0, . . . ,m. A first test compares the distribution of the Xj ’s to their
theoretical distribution (this test fits the framework of this section but the two that follow
do not). A second test, used by Rukhin et al. (2001), computes the chi-square statistic
X2 = (4/m)

∑n
i=1(Hi − m/2)2, which has approximately the chi-square distribution with

n degrees of freedom under HB
0 if m is large enough. For m = n, this test degenerates

to the monobit test (Rukhin et al., 2001), which simply counts the proportion of 1’s in a
string of n bits. A third test computes the linear correlation between the successive Hi’s:

ρ̂1 =
4

(n − 1)m

n−1
∑

i=1

(Hi − m/2) (Hi+1 − m/2) .

Under HB
0 and for large n, ρ̂1

√
n − 1 has approximately the standard normal distribution.

This only tests linear dependence between Hamming weights. L’Ecuyer and Simard (1999)
propose a different test of independence that takes 2n blocks of m bits. Again, Hi is the
Hamming weight of block i. The pairs (Hi,Hi+1), for i = 1, 3, . . . , 2n−1, can take (m+1)2

possible values. The test counts the number of occurrences of each possibility and compare
these counts to their theoretical expectations via a chi-square. This test showed significant
dependence between the Hamming weights of successive output values of LCGs with special
types of multipliers (L’Ecuyer and Simard, 1999).

Random walk tests. From a bit sequence of length ℓ, we can define a random walk over
the integers as follows: the walk starts at 0 and at step j, it moves by 1 to the left if bj = 0,

and by 1 to the right if bj = 1. If we define S0 = 0 and Sk =
∑k

j=1(2bj − 1) for k > 0,

then the process {Sk, k ≥ 0} is this random walk. Under HB
0 , we have (from the binomial

distribution)

pk,y
def
= P [Sk = y] = 2−k

(

k
(k + y)/2

)

if k + y is even



20 G–2006–69 Les Cahiers du GERAD

and pk,y = 0 otherwise. In what follows, we assume that ℓ is even. We define the statistics:

H = ℓ/2 + Sℓ/2,

M = max {Sk, 0 ≤ k ≤ ℓ} ,

J = 2

ℓ/2
∑

k=1

I[S2k−1 > 0],

Py = min {k : Sk = y} for y > 0,

R =

ℓ
∑

k=1

I[Sk = 0],

C =
ℓ

∑

k=3

I[Sk−2Sk < 0],

where I denotes the indicator function. Here, H is the number of steps to the right, M
is the maximum value reached by the walk, J is the fraction of time spent on the right of
the origin, Py is the first passage time at y, R is the number of returns to 0, and C is the
number of sign changes. The theoretical probabilities for these statistics under HB

0 are as
follows (Feller, 1968):

P [H = k] = P [Sℓ = 2k − ℓ] = pℓ,2k−ℓ = 2−ℓ

(

ℓ

k

)

, 0 ≤ k ≤ ℓ,

P [M = y] = pℓ,y + pℓ,y+1, 0 ≤ y ≤ ℓ,

P [J = k] = pk,0 pℓ−k,0, 0 ≤ k ≤ ℓ, k even,

P [Py = k] = (y/k)pk,y,

P [R = y] = pℓ−y,y, 0 ≤ y ≤ ℓ/2,

P [C = y] = 2pℓ−1,2y+1, 0 ≤ y ≤ (ℓ − 1)/2.

The n-block test of Vattulainen et al. (1995) is equivalent to counting the proportion of
walks for which H ≥ ℓ/2. Takashima (1996) applies some of these random walk tests to
LFSR generators.

An omnibus random walk test implemented in TestU01 takes two even integers m >
m0 > 0 as parameters and generate n random walks of length m. For each ℓ in {m0,m0 +
2, . . . ,m}, the test computes the n values of the statistics H, . . . , C defined above, and
compares their empirical distributions with the corresponding theoretical ones via a chi-
square test.

We have a different implementation with m = m0 that first applies a linear transforma-
tion to the original bit sequence: For a fixed vector of bits (c0, . . . , ct−1), not all zero, the
new bit j becomes yj = c0bj + · · ·+ ct−1bj+t−1. This requires m + t− 1 bits in the original
sequence. At step j, the walk goes left if yj = 0 and goes right if yj = 1.
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5.2.2 Close pairs

We have the following analogue of the close pair test for binary sequences. Each of the n
points in t dimensions is determined by a bit string of length m = st, where each coordinate
has s bits. Often, each such block of s bits would be obtained by making one call to a
generator and extracting s bits from the output value. The distance between two points
Xi and Xj is defined as 2−bi,j , where bi,j is the maximal value of b such that the first b bits
in the binary expansion of each coordinate are the same for both Xi and Xj . This means
that if the unit hypercube is partitioned into 2tb cubic boxes by dividing each axis into
2b equal parts, the two points are in the same box for b ≤ bi,j, but they are in different
boxes for b > bi,j. Let D = min1≤i<j≤n 2−bi,j be the minimal distance between any two
points. For a given pair of points, P [bi,j ≥ b] = 2−tb. One has D ≤ 2−b if and only if
− log2 D = max1≤i<j≤n bi,j ≥ b, if and only if at least b bits agree for at least one pair, and
the probability that this happens is approximately

qb
def
= P [D ≤ 2−b] ≈ 1 −

(

1 − 2−tb
)n(n−1)/2

.

If exactly b = − log2 D bits agree, the left and right p-values are pl = qb and pr = 1− qb−1,
respectively. If N > 1, the two-level test computes the minimum of the N copies of D and
uses it as a test statistic. The p-value is obtained from P [min{D1,D2, . . . ,DN} ≤ 2−b] ≈
1 − (1 − qb)

N .

Certain types of LFSR generators are constructed so that if we partition (0, 1)t into
2tℓ sub-cubes of equal size, where 2tℓ is the cardinality of the set Ψt, then each sub-cube
contains exactly one point from Ψt (L’Ecuyer, 1996b, 1999b; Tezuka, 1995). For these
generators, D has the lower bound 2−ℓ, so they systematically fail the test if n is large
enough.

6 Organization of TestU01

The software tools of TestU01 are organized in four classes of modules: those implementing
RNGs, those implementing statistical tests, those implementing predefined batteries of
tests, and those implementing tools for applying tests to entire families of generators. The
names of the modules in those four classes start with the letters u, s, b, and f, respectively,
and we shall refer to them as the u, s, b, and f modules. The name of every public identifier
(type, variable, function, . . . ) is prefixed by the name of the module to which it belongs.

6.1 Generator implementations: the u modules

TestU01 contains a large selection of predefined uniform RNGs. Some are good and many
are bad. These implementations are provided for experimental purpose only. They permit
one to perform empirical studies with several types of empirical tests and RNGs. Several



22 G–2006–69 Les Cahiers du GERAD

classes of generators are implemented in generic form; the user provides the parameters to-
gether with the seed, at construction time. Other RNGs have fixed hard-coded parameters,
exactly as in their originally proposed versions.

Generator objects. The unif01 module provides the basic tools for defining and manip-
ulating uniform RNGs. It contains the (structured) type unif01 Gen, which implements
the definition of an arbitrary RNG object. Every RNG in TestU01 is an object of this
type. The unif01 Gen structure contains the name of the generator, its parameters, its
state, a function that can write the state in readable format, a function GetU01 that re-
turns a U(0, 1) random variate and advances the generator by one step, and a function
GetBits that returns a block of 32 bits and advances the generator by one step. Statistical
tests in TestU01 can be applied only to objects of this type. To test a new generator not
already available in TestU01, it may be implemented as a unif01 Gen object, normally
by implementing all fields of unif01 Gen. Simplified constructors are also provided that
only require an implementation of either GetU01 or GetBits. For the situations where the
random numbers to be tested are already in a file, there are predefined special types of
unif01 Gen objects that simply read the numbers from a file, either in text or in binary
format. The GetU01 and GetBits methods simply return these numbers in the appropri-
ate format. This is convenient, for instance, if the generator to be tested cannot easily be
called directly in C, or if the numbers are produced by a physical device, or if they are
already in a file for some other reason.

Output filters. When a statistical test is applied to a generator, the test usually invokes
the GetU01 and GetBits methods only indirectly, through the basic filters unif01 StripD

(g, r), unif01 StripL(g, r, d), and unif01 StripB(g, r, s). These three filters get
the next output value u from the generator g, drop the r most significant bits and shift
the other ones to the left by r positions, and return the resulting uniform u′ = 2ru mod 1,
the integer ⌊du′⌋ in {0, . . . , d − 1}, and the integer ⌊2su′⌋ (a block of s bits), respectively.

Other types of output filters predefined in TestU01 can be inserted between the RNG
and these basic filters. These filters are implemented as containers: each filter applied to
a unif01 Gen object g is itself a unif01 Gen object g′ that contains g in one of its fields.
Thus, several filters can be applied in series to any given generator.

A Double filter, for example, is a generator g′ that calls the contained generator g twice
to get u1 and u2, and returns u = (u1 + hu2) mod 1, each time it has to produce a U(0, 1)
random number, where h is a fixed constant (usually a negative power of 2). This permits
one to increase the number of bits of precision in the generator’s output. A Trunc filter
does essentially the opposite. It calls the contained generator and truncates the output to
its s most significant bits, for a selected integer s. This is useful to study empirically how
sensitive are some tests to the number of bits of precision in the output values. A Bias
filter introduces a deliberate bias in the output; it generates a random variate of constant
density with probability p over the interval [0, a), and of constant density with probability
1− p over the interval [a, 1), where a and p are selected constants, by inversion from u. A
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Lux filter implements luxury on an arbitrary generator: out of every group of L random
numbers, it keeps the first k and skips the next L − k. This is done in order to remove
possible long-term correlations in a stream of random numbers. A Lac filter is a generator
g′ that picks up only selected output values from g, and discards the other ones. The
indices of the selected values are specified by a set of integers 0 ≤ i1 < i2 < · · · < ik. If
the output sequence of g is u0, u1, u2, . . . , then the output sequence of g′ will be

ui0 , ui1 , . . . , uik−1
, uL+i0 , uL+i1 , . . . , uL+ik−1

, u2L+i0 , u2L+i1 , . . .

For example, if k = 3 and I = {0, 3, 5}, the output sequence will be the numbers
u0, u3, u5, u6, u9, u11, u12, . . . To obtain the decimated sequence us−1, u2s−1, u3s−1, . . . , one
should take k = 1 and I = {s − 1}. Taking k = 2 and I = {0, s} will return u0, us, us+1,
u2s+1, . . . Additional filters can be defined by the users if needed.

Parallel generators. Suppose we want to build a sequence by taking output values from
k generators in a round-robin fashion, say L numbers at a time from each generator, and
apply statistical tests to the resulting sequence. This is easily achieved via the parallel
filter. It suffices to pass the k generators and the value of L when creating the filter and it
will correspond to a generator that produces the required sequence. The k generators can
also be k different substreams from the same underlying generator, started with different
seeds. This tool is convenient for testing the dependence between the substreams for a
random number generator with multiple streams (L’Ecuyer et al., 2002) or between the
different generators for parallel simulation.

Combinations of generators. Predefined tools permit one to combine two or three
generators of any types either by adding their outputs modulo 1 or by a bitwise exclusive-
or of their outputs. The combined generator is implemented as a unif01 Gen object that
contains its components, which are also unif01 Gen objects. For example, if g combines
g1 and g2 by addition modulo 1, then each output value of g will be produced by output
values u1 and u2 from g1 and g2, and returning u = (u1 + u2) mod 1. These combination
tools give a lot of room for experimentation. The users can define other ones if needed.

Predefined generators. Nearly 200 different generators are predefined and implemented
in TestU01, including LCGs, MRGs, combined MRGs, lagged-Fibonacci generators, add-
with-carry, subtract-with-borrow, and multiply-with-carry generators, LFSR and combined
LFSR generators, GFSR and twisted GFSR generators, Mersenne twisters, WELL gener-
ators, different families of nonlinear inversive generators (explicit and implicit), quadratic
and cubic congruential generators, and Weyl and nested Weyl generators, and so on. Spe-
cific generators taken from popular software such as Unix, Excel, Visual Basic, Java, Math-
ematica, Matlab, Maple, S-Plus, etc., or proposed in articles, are also available.

6.2 Statistical tests: the s modules

The statistical tests are implemented in several s modules. When invoking a function that
applies a test to a generator g, we pass the generator object as the first parameter, then
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a pointer to a structure res that will contain detailed information about what happened
during the test (if we just want a printout and not recover these detailed results, we just
pass NULL for this parameter), and then the parameters of the test. Most tests have the
following three parameters in common: N is the number of (second-level) replications, n
is the sample size at the first level, and r is the number of (most significant) bits that are
stripped from the output before applying the test. The level of detail in the printout of the
test results can be selected by the user. The structure res is convenient in case we want to
do further computations with the results of the tests or with the contents of intermediate
collectors.

6.3 Batteries of tests: the b module

Some users of TestU01 may not have a clear idea of which tests they want to apply to
their generators and what parameter values they should use for the tests. Many prefer
predefined suites (or batteries) of statistical tests, with fixed parameters, that they can
apply with a single function call. The DIEHARD and NIST batteries, for example, are
popular mainly for that reason. A good battery should contain different types of tests that
can detect weaknesses of different kinds. We need small batteries than can run in a few
seconds as well as more stringent ones that may require several hours. The small batteries
may be used to detect gross defects in generators or errors in their implementation.

Six predefined batteries of tests are available in TestU01; three of them are for se-
quences of U(0, 1) random numbers and the three others are for bit sequences. In the first
category, we have SmallCrush, Crush, and BigCrush, whose respective running times to
test a generator such as MT19937 (for example), on a computer with an AMD Athlon 64
processor running at 2.4 GHz, are 14 seconds, 1 hour, and 5.5 hours. To test an RNG,
it is recommended to start with the quick battery SmallCrush. If everything is fine, one
could try Crush, and finally the more time-consuming BigCrush. Note that some of the
tests compute more than one statistic (and p-value). In the current version, Crush uses
approximately 235 random numbers and applies 96 statistical tests (it computes a total of
144 test statistics and p-values), whereas BigCrush uses approximately 238 random num-
bers and applies 106 tests (it computes 160 test statistics and p-values). The tests are
those described in Sections 4 and 5, plus a few others. This includes the classical tests
described in Knuth (1998), e.g. the run, poker, coupon collector, gap, max-of-t and per-
mutation tests. There are collision and birthday spacings tests in 2, 3, 4, 7, 8 dimensions,
several close pairs tests in 2, 3, 5, 7, 9 dimensions, and correlation tests. Some tests use the
generated numbers as a sequence of “random” bits: random walk tests, linear complexity
tests, a Lempel-Ziv compression test, several Hamming weights tests, matrix rank tests,
run and correlation tests, among others.

The batteries Rabbit , Alphabit and BlockAlphabit are for binary sequences (e.g., a cryp-
tographic pseudorandom generator or a source of random bits produced by a physical
device). They were originally designed to test a finite sequence contained in a binary file.
When invoking the battery, one must specify the number nb of bits available for each test.
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When the bits are in a file, nb must not exceed the number of bits in the file, and each
test will reuse the same sequence of bits starting from the beginning of the file (so the
tests are not independent). When the bits are produced by a generator, each test uses a
different stream. In both cases, the parameters of each test are chosen automatically as a
function of nb. Rabbit and Alphabit apply 38 and 17 different statistical tests, respectively.
BlockAlphabit applies the Alphabit battery of tests repeatedly to a generator or a binary
file after reordering the bits by blocks of different sizes (with sizes of 2, 4, 8, 16, 32 bits).
On a 64-bit AMD Athlon processor running at 2.4 GHz, Rabbit takes about 2 seconds to
test a stream of 220 bits in a file and about 9 minutes for a stream of 230 bits. Alphabit
takes less than 1 second for 220 bits and about 1 minute for 230 bits.

We do not claim that the tests selected in the predefined batteries are independent
or exhaustive. We tried to avoid selecting tests that are obviously nearly equivalent. But
beyond that, we think it is quite difficult to measure the independence of the proposed tests
and to compare their efficiencies for testing RNGs, because there is no fixed alternative
hypothesis, as explained earlier. We also kept a few tests that have always been dominated
by others in our experiments (e.g., Maurer’s test, Lempel-Ziv complexity, etc.), mainly
because of their popularity. These tests may turn out to be useful in the future, against
certain alternatives that we have not met yet; otherwise we may eventually remove them
from the batteries.

6.4 Testing families of generators: the f modules

The f modules provide tools designed to perform systematic studies of the interaction
between certain types of tests and the structure of the point sets produced by given families
of RNGs. The idea is to find prediction formulas for the sample size n0 for which the test
starts to reject an RNG decisively, as a function of its period length ρ. For each family,
an RNG of period length near 2i has been pre-selected, on the basis on some theoretical
criteria that depend on the family, for all integers i in some interval (from 10 to 30, for
example). There are several families such as LCGs (single or combined), MRGs of order
2 and 3, LFSRs (single or combined), cubic and combined cubic generators, and inversive
generators (explicit and implicit).

In experiments already performed with specific classes of generators and tests (L’Ecuyer
and Hellekalek, 1998; L’Ecuyer et al., 2000; L’Ecuyer and Simard, 2001), the results were
often surprisingly regular, in the sense that a regression model of the form log n0 = a log ρ+
δ, where a is a constant and δ a small noise, fits very well. Typically, for a given RNG that
fails a test, as the sample size of the test is increased, the p-value remains “reasonable”
for a while, say for n up to some threshold n0, and then converges to 0 or 1 exponentially
fast as a function of n. The result gives an idea of what period length ρ of the RNG is
required, within a given family, to be safe with respect to the considered test, for a given
sample size n.
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For full-period LCGs with good spectral test behavior for example, the relationships
n0 ≈ 16 ρ1/2 for the collision test and n0 ≈ 16 ρ1/3 for the birthday spacings test have been
obtained. This means that no LCG is safe with respect to these particular tests unless its
period length ρ is so large that generating ρ1/3 numbers is practically unfeasible. A period
length of 248 or less, for example, does not satisfy this requirement.

6.5 An example

Figure 1 illustrates the use of various facilities in TestU01. In this C program, the function
xorshift implements a 32-bit xorshift generator (Marsaglia, 2003). These generators with
only three shifts have been shown to have deep defects (Panneton and L’Ecuyer, 2005) and
SmallCrush detects that unequivocally. After putting this generator inside a wrapper to
make it compatible with TestU01 by invoking CreateExternGenBits, the program applies
the battery SmallCrush to it.

In the next block of instructions, we set up a subtract-with-borrow (SWB) genera-
tor gen2, based on the recurrence xi = (xi−8 − xi−48 − ci−1) mod 231 and ui = xi/2

31.
The array A contains the initial values (seed) for this generator and it is filled using the
first 31 bits of 48 successive output values of gen1. We then apply a Lac filter to gen2,
with lacunary indices {0, 40, 48}, to create another generator gen3 (the filtered generator).
The output sequence of gen3, in terms of the original sequence numbering of gen2, is
u0, u40, u48, u49, u89, u97, u98, and so on. With these particular lacunary indices, it turns
out that all the points produced by three successive output values of gen3 fall (with up to
31 bits of accuracy) in exactly two planes in the unit hypercube (Couture and L’Ecuyer,
1994). For this reason, gen3 fails several simple tests in three dimensions, including the
small birthday spacings test (with t = 3, k = 212t, and sample size n = 10000) applied
here.

Next, the program creates the LFSR113 generator of L’Ecuyer (1999b) in gen1 and the
MRG31k3p generator of L’Ecuyer and Touzin (2000) in gen2, then invokes CreateCombAdd2
to create a generator gen3 which adds the outputs of gen1 and gen2 modulo 1, and finally
CreateDoubleGen produces a fourth generator gen4 whose output values are formed by
adding two output values of gen3 modulo 1, after dividing one of them by 224. This
provides an output with a full 53 bits of accuracy. The battery Crush is then applied to
gen4. Finally, all generators are deleted and the program ends.

The detailed output of this program is not given here (to save space), but the results
can be summarized as follows. The xorshift generator gen1 fails the SmallCrush battery
with four p-values smaller than 10−10, gen3 fails the birthday spacings test with a p-value
smaller than 10−300, and gen4 passes all the tests of Crush.
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#include "TestU01.h"
#include <stddef.h>
#define IMAX 48
#define LACN 3
static unsigned int y = 2463534242U;

unsigned int xorshift (void) {
y ^= (y << 13); y ^= (y >> 17); return y ^= (y << 5);

}

int main (void) {
unif01_Gen *gen1, *gen2, *gen3, *gen4;
unsigned long A[IMAX + 1];
long Lac[LACN] = {0, 40, 48};
int i;
gen1 = unif01_CreateExternGenBits ("Xorshift-32", xorshift);
bbattery_SmallCrush (gen1);

for (i = 0; i < IMAX; i++)
A[i] = unif01_StripB (gen1, 0, 31);

gen2 = ucarry_CreateSWB (8, 48, 0, 2147483648, A);
gen3 = unif01_CreateLacGen (gen2, LACN, Lac);
smarsa_BirthdaySpacings (gen3, NULL, 1, 10000, 0, 4096, 3, 1);
unif01_DeleteLacGen (gen3); ucarry_DeleteSWB (gen2);
unif01_DeleteExternGen01 (gen1);

gen1 = ulec_Createlfsr113 (12345, 12345, 12345, 12345);
gen2 = ulec_CreateMRG31k3p (123, 123, 123, 123, 123, 123);
gen3 = unif01_CreateCombAdd2 (gen1, gen2, "Comb_ulec");
gen4 = unif01_CreateDoubleGen (gen3, 24);
bbattery_Crush (gen4);
unif01_DeleteDoubleGen (gen4); unif01_DeleteCombGen (gen3);
ulec_DeleteGen (gen2); ulec_DeleteGen (gen1);
return 0;

}

Figure 1: Example of a C program using TestU01

7 Testing widely used RNGs

We applied the test suites SmallCrush, Crush and BigCrush to a long list of well-known
or widely used RNGs. Table 1 gives a representative subset of the results. The RNGs not
in the table behave in a similar way as other RNGs shown in the table.

For each RNG, the column log2 ρ gives the logarithm in base 2 of the period length ρ
(when we know it). The columns t-32 and t-64 give the CPU time (in seconds) required
to generate 108 random numbers on a 32-bit computer with an Intel Pentium processor
of clock speed 2.8 GHz and a 64-bit computer with an AMD Athlon 64 processor of clock
speed 2.4 GHz, respectively, both running Red Hat Linux. We must emphasize that our
implementations of specific RNGs are not necessarily the fastest possible, but most should
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Table 1: Results of test batteries applied to well-known RNGs

Generator log2 ρ t-32 t-64 SmallCrush Crush BigCrush

LCG(224, 16598013, 12820163) 24 3.9 0.66 14 — —
LCG(231, 65539, 0) 29 3.3 0.65 14 125 (6) —
LCG(232, 69069, 1) 32 3.2 0.67 11 (2) 106 (2) —
LCG(232, 1099087573, 0) 30 3.2 0.66 13 110 (4) —
LCG(246, 513, 0) 44 4.2 0.75 5 38 (2) —
LCG(248, 25214903917, 11) 48 4.1 0.65 4 21 (1) —
Java.util.Random 47 6.3 0.76 1 9 (3) 21 (1)
LCG(248, 519, 0) 46 4.1 0.65 4 21 (2) —
LCG(248, 33952834046453, 0) 46 4.1 0.66 5 24 (5) —
LCG(248, 44485709377909, 0) 46 4.1 0.65 5 24 (5) —
LCG(259, 1313, 0) 57 4.2 0.76 1 10 (1) 17 (5)
LCG(263, 519, 1) 63 4.2 0.75 5 8
LCG(263, 9219741426499971445, 1) 63 4.2 0.75 5 (1) 7 (2)
LCG(231–1, 16807, 0) 31 3.8 3.6 3 42 (9) —
LCG(231–1, 215 − 210, 0) 31 3.8 1.7 8 59 (7) —
LCG(231–1, 397204094, 0) 31 19.0 4.0 2 38 (4) —
LCG(231–1, 742938285, 0) 31 19.0 4.0 2 42 (5) —
LCG(231–1, 950706376, 0) 31 20.0 4.0 2 42 (4) —
LCG(1012–11, 427419669081, 0) 39.9 87.0 25.0 1 22 (2) 34 (1)
LCG(261–1, 230 − 219, 0) 61 71.0 4.2 1 (4) 3 (1)
Wichmann-Hill 42.7 10.0 11.2 1 12 (3) 22 (8)
CombLec88 61 7.0 1.2 1
Knuth(38) 56 7.9 7.4 1 (1) 2
ran2 61 7.5 2.5
CLCG4 121 12.0 5.0
Knuth(39) 62 81.0 43.3 (1) 3 (2)
MRGk5-93 155 6.5 2.0
DengLin (231–1, 2, 46338) 62 6.7 15.3 (1) 11 (1) 19 (2)
DengLin (231–1, 4, 22093) 124 6.7 14.6 (1) 2 4 (2)
DX-47-3 1457 — 1.4
DX-1597-2-7 49507 — 1.4
Marsa-LFIB4 287 3.4 0.8
CombMRG96 185 9.4 2.0
MRG31k3p 185 7.3 2.0 (1)
MRG32k3a 191 10.0 2.1
MRG63k3a 377 — 4.3
LFib(231, 55, 24, +) 85 3.8 1.1 2 9 14 (5)
LFib(231, 55, 24, −) 85 3.9 1.5 2 11 19
ran3 2.2 0.9 (1) 11 (1) 17 (2)
LFib(248, 607, 273, +) 638 2.4 1.4 2 2
Unix-random-32 37 4.7 1.6 5 (2) 101 (3) —
Unix-random-64 45 4.7 1.5 4 (1) 57 (6) —
Unix-random-128 61 4.7 1.5 2 13 19 (3)
Unix-random-256 93 4.7 1.5 1 (1) 8 11 (1)
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Generator log2 ρ t-32 t-64 SmallCrush Crush BigCrush

Knuth-ran array2 129 5.0 2.6 3 4
Knuth-ranf array2 129 11.0 4.5
SWB(224, 10, 24) 567 9.4 3.4 2 30 46 (2)
SWB(224, 10, 24)[24, 48] 566 18.0 7.0 6 (1) 16 (1)
SWB(224, 10, 24)[24, 97] 565 32.0 12.0
SWB(224, 10, 24)[24, 389] 567 117.0 43.0
SWB(232–5, 22, 43) 1376 3.9 1.5 (1) 8 17
SWB(231, 8, 48) 1480 4.4 1.5 (2) 8 (2) 11
Mathematica-SWB 1479 — — 1 (2) 15 (3) —
SWB(232, 222, 237) 7578 3.7 0.9 2 5 (2)
GFSR(250, 103) 250 3.6 0.9 1 8 14 (4)
GFSR(521, 32) 521 3.2 0.8 7 8
GFSR(607, 273) 607 4.0 1.0 8 8
Ziff98 9689 3.2 0.8 6 6
T800 800 3.9 1.1 1 25 (4) —
TT800 800 4.0 1.1 12 (4) 14 (3)
MT19937 19937 4.3 1.6 2 2
WELL1024a 1024 4.0 1.1 4 4
WELL19937a 19937 4.3 1.3 2 (1) 2
LFSR113 113 4.0 1.0 6 6
LFSR258 258 6.0 1.2 6 6
Marsa-xor32 (13, 17, 5) 32 3.2 0.7 5 59 (10) —
Marsa-xor64 (13, 7, 17) 64 4.0 0.8 1 8 (1) 7
Matlab-rand 1492 27.0 8.4 5 8 (1)
Matlab-LCG-Xor 64 3.7 0.8 3 5 (1)
SuperDuper-73 62 3.3 0.8 1 (1) 25 (3) —
SuperDuper64 128 5.9 1.0
R-MultiCarry 60 3.9 0.8 2 (1) 40 (4) —
KISS93 95 3.8 0.9 1 1
KISS99 123 4.0 1.1
Brent-xor4096s 131072 3.9 1.1
ICG(231–1, 1, 1) 31 58.0 69.0 6 11 (6)
ICG(231–1, 22211, 11926380) 31 74.0 69.0 5 10 (8)
EICG(231–1, 1, 1) 31 49.0 57.0 6 13 (7)
EICG(231–1, 1288490188, 1) 31 55.0 64.0 6 14 (6)
SNWeyl 32 12.0 4.2 1 56 (12) —
Coveyou-32 30 3.5 0.7 12 89 (5) —
Coveyou-64 62 — 0.8 1 2
LFib(264, 17, 5, ∗) 78 — 1.1
LFib(264, 55, 24, ∗) 116 — 1.0
LFib(264, 607, 273, ∗) 668 — 0.9
LFib(264, 1279, 861, ∗) 1340 — 0.9
ISAAC 3.7 1.3
AES (OFB) 10.8 5.8
AES (CTR) 130 10.3 5.4 (1)
AES (KTR) 130 10.2 5.2
SHA-1 (OFB) 65.9 22.4
SHA-1 (CTR) 442 30.9 10.0
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be close to the best available. The missing entries are the generators for which we do
not have an implementation; we tested them by direct calls to the relevant software (e.g.,
Mathematica). In the following columns, for each test suite and each RNG, we give the
number of statistical tests for which the p-value is outside the interval [10−10, 1 − 10−10].
Although the choice of this interval is arbitrary, this can be interpreted conservatively as
the number of clear failures. A blank entry means that no p-value was outside that interval,
whereas a long dash (—) indicates that the test suite was not applied to this particular
RNG (usually, because the RNG was already failing decisively a smaller battery). Some
entries have a second number in parentheses; this is the number of tests whose p-value
was in (10−10, 10−4]∪ [1− 10−4, 1− 10−10). These can be viewed as suspect p-values. For
instance, when applying Crush to the generator LCG(231−1, 215−210, 0), we obtained 59
clear failures and 7 additional suspect p-values. The generators in the table are regrouped
by categories according to their underlying algorithm.

LCGs. The first category contains linear congruential generators, which obey the recur-
rence xi = (axi−1 + c) mod m with output function ui = xi/m; they are denoted by
LCG(m,a, c). LCGs with power-of-two modulus m = 2e are known to be badly behaved,
especially in their least significant bits (L’Ecuyer, 1990). This is confirmed by the tests.
The first one, LCG(224, 16598013, 12820163), is the toy generator used in Microsoft Visual-
Basic 6.0. LCG(231, 65539, 0) is the infamous RANDU (IBM, 1968). LCG(232, 69069, 1) is
from Marsaglia (1972) and has been much used in the past, alone and in combination with
other RNGs. LCG(232, 1099087573, 0) is an LCG with “optimal multiplier” found by Fish-
man (1990). LCG(246, 513, 0) was used by the Numerical Aerodynamic Simulation at NASA
Ames Research Center in their benchmarks (Agarwal et al., 2002). LCG(248, 25214903917,
11) is the drand48 from the Unix standard library. The RNG in java.util.Random of the
Java standard library is based on the same recurrence, but uses two successive values to
build each output, via ui = (227⌊x2i/2

22⌋ + ⌊x2i+1/2
21⌋)/253. This is an improvement over

drand48, but still not acceptable. LCG(248, 519, 0) has been the traditional MCNP gen-
erator used at the Los Alamos National Laboratory (Brown and Nagaya, 2002). LCG(248,
33952834046453, 0) is one of the LCGs with “optimal multipliers” found by Fishman
(1990); it is used in LAPACK. LCG(248, 44485709377909, 0) was used on CRAY systems
and is provided as an intrinsic function on the IBM XLF and XLHPF Fortran compilers
as well as in PESSL (Parallel Engineering and Scientific Subroutine Library) from IBM.
LCG(259, 1313, 0) is the basic generator in the NAG mathematical library (NAG, 2002)
and is available in VSL, the Vector Statistical Library from the Intel Math Kernel Library
(Intel, 2003). LCG(263, 519, 0) and LCG(263, 9219741426499971445, 0) are recommanded for
future use at the Los Alamos National Laboratory (Brown and Nagaya, 2002).

The following LCGs have a prime modulus m, which makes them a little better behaved
than those with a power-of-two modulus, but they are still unacceptable because their
period is too short and they fail several tests. LCG(231 − 1, 16807, 0) was proposed long
ago by Lewis et al. (1969) and has been very popular in books and software for many
years. LCG(231 − 1, 742938285, 0) and LCG(231 − 1, 950706376, 0) use two of the “optimal
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multipliers” found by Fishman and Moore III (1986). This last as well as LCG(231–1,
397204094, 0) are available amongst others in IMSL (1997). LCG(1012 − 11, 427419669081,
0) was used in Maple 9.5 (Maplesoft, 2006) and in MuPAD 3 (SciFace Software, 2004).
This LCG has been replaced by MT19937 (see below) in Maple 10. LCGs with multipliers
of the form a = ±2r ± 2s, such as LCG(231 − 1, 215 − 210, 0) and LCG(261 − 1, 230 − 219,
0), were proposed by Wu (1997). L’Ecuyer and Simard (1999) have shown that they are
statistically weaker than LCGs with the same m and a good multiplier a, because they do
not mix the bits well enough.

All these LCGs with moduli up to 261 fail several tests and should be discarded.

Combined LCGs. A combined LCG provides an efficient way of implementing an LCG
with a large composite modulus, equal to the product of the moduli of the components.
The combined LCGs of Wichmann and Hill (1982) is of that form, with three components
of moduli near 30300, whose outputs are added modulo 1. This is the RNG provided in
Microsoft Excel since 2003. L’Ecuyer (1988) introduced a slightly different type of com-
bination, giving a generator that can be closely approximated by an LCG. He proposed
CombLec88, a combination of two LCGs of moduli near 231, used in several software pack-
ages, including RANLIB, CERNLIB, Boost, Octave, and Scilab. Knuth (1998, page 108),
Eq. (38), proposed a variant of it named Knuth(38) in the table. It can be found in the
GNU Scientific Library (GSL) (Galassi et al., 2004), under the name fishman2x (although
G. Fishman never proposed this generator). Press and Teukolsky (1992) proposed a slightly
modified version of CombLec88 (with shuffled output) named ran2. L’Ecuyer and Andres
(1997) also proposed CLCG4, a combination of four LCGs, which is definitely more robust
but also slower. CLCG4 and ran2 are the only ones that pass all the tests; this is not sur-
prising because the other combined LCGs are essentially equivalent to LCGs with moduli
smaller than 261. CombLec88 fails a four-dimensional birthday spacings test in Crush, with
a p-value of around 10−98 (the number of collisions is about twice the expected number).

MRGs and combined MRGs. A multiple recursive generator (MRG) is defined by
a recurrence of the form xi = (a1xi−1 + · · · + akxi−k) mod m, with output function
ui = xi/m. In the table, Knuth(39) is from Knuth (1998, page 108), Eq. (39), and has re-
currence xi = (271828183xi−1+314159269xi−2) mod (231−1). MRGk5-93 is from (L’Ecuyer
et al., 1993) and has recurrence xi = (107374182xi−1 + 104480xi−5) mod (231 − 1). The
DengLin(m,k, a) have the form xi = (−xi−1 + axi−k) mod m and were proposed by Deng
and Lin (2000). The DX∗ are selected among the long-period MRGs proposed by Deng
(2005). The recurrences are xi = (226+219)(xi−1+xi−24+xi−47) mod (231−1) for DX-47-3
and xi = (−225 − 27)(xi−7 + xi−1597) mod (231 − 1) for DX-1597-2-7. Marsa-LFIB4 is an
MRG with recurrence xi = (xi−55+xi−119+xi−179+xi−256) mod 232 proposed by Marsaglia
(1999).

CombMRG96, MRG32k3a, and MRG31k3p are combined MRGs for 32-bit computers, pro-
posed by L’Ecuyer (1996a), L’Ecuyer (1999a), and L’Ecuyer and Touzin (2000), respec-
tively. MRG63k3a is a combined MRG for 64-bit computers, proposed by L’Ecuyer (1999a).
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MRG32k3a is now widely used in simulation and statistical software such as VSL, SAS,
Arena, Automod, Witness, and SSJ. All these MRGs except the smaller ones perform very
well in the tests. MRG31k3p came up with a suspect p-value of 7.3 × 10−5 for a random
walk test. To see if this generator was really failing this test, we repeated the same test
five times on disjoint subsequences and obtained the following p-values: 0.66, 0.86, 0.34,
0.10, 0.22. We conclude that the suspect p-value was a statistical fluke.

Decimation. For certain types of recurrences of order k, the vectors of the form (xi, . . . ,
xi+k) have a bad structure, because of the excessive simplicity of the recurrence. For
example, if xi = (xi−r + xi−k) mod m, then all nonzero vectors of the form (xi−k, xi−r, xi)
lie in only two planes! For this reason, Lüscher (1994) and other authors proposed to use
a decimated version of the sequence: from each block of ℓ successive terms xi from the
recurrence, retain the first c to produce c output values and discard the other ones. Often,
c is fixed and the parameter ℓ is called the luxury level. When this type of decimation is
used, we add [c, ℓ] after the generator’s name, in the table.

Lagged-Fibonacci. Lagged Fibonacci generators LFib(m, r, k, op) use the recurrence
xi = (xi−r op xi−k) mod m, where op is an operation that can be + (addition), − (sub-
traction), ∗ (multiplication), ⊕ (bitwise exclusive-or). With the + or − operation, these
generators are in fact MRGs. LFib(231, 55, 24, +) was recommended in Knuth (1981)
based on a suggestion by G. J. Mitchell and D. P. Moore [unpublished]. LFib(231, 55,
24, −) is Ran055 in Matpack (Gammel, 2005). The ran3 generator of Press and Teukol-
sky (1992) is essentially a LFib(109, 55, 24, −). LFib(248, 607, 273, +) is one of several
lagged Fibonacci RNGs included in the Boost Random Number Library (Maurer et al.,
2004). The Unix-random’s are RNGs of different sizes derived from BSD Unix and avail-
able as function random() on several Unix-Linux platforms. They are LFib(232, 7, 3,+),
LFib(232, 15, 1,+), LFib(232, 31, 3,+) and LFib(232, 63, 1,+), with the least significant
bit of each random number dropped. Knuth-ran array2 and Knuth-ranf array2 are
LFib(230, 100, 37, −)[100, 1009] and LFib(230, 100, 37, +)[100, 1009], respectively, pro-
posed by Knuth (1998). The second version is proposed in the most recent reprints of his
book, since 2002, as an improvement to the first. It is the only one in this class that passes
the tests.

Subtract with borrow. These generators, denoted SWB(m, r, k), employ a linear recur-
rence like a subtractive lagged-Fibonacci but with a borrow (Marsaglia and Zaman, 1991):
xi = (xi−r − xi−k − ci−1) mod m where ci = ⌊(xi−r − xi−k − ci−1)/m⌋, and ui = xi/m.
It is now well-known that they are approximately equivalent to LCGs with large moduli
and bad structure, similar to that of additive or subtractive lagged-Fibonacci RNGs (Cou-
ture and L’Ecuyer, 1994, 1997; L’Ecuyer, 1997a). SWB(224, 10, 24), SWB(232 − 5, 22,
43), and SWB(231, 8, 48) were proposed by Marsaglia and Zaman (1991). SWB(224, 10,
24)[24, ℓ], called RANLUX, was advocated in (Lüscher, 1994; James, 1994) with luxury
levels ℓ = 24, 48, 97, 223, 389. In its original form it returns only 24-bit output values. For
our tests, we use a version with 48 bits of precision obtained by adding two successive
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numbers modulo 1 as ui = (x2i/2
24 + x2i+1/2

48) mod 1. This makes the RNG much more
robust, but also slower. SWB(232 − 5, 22, 43) was proposed as a component of the RNG
of Marsaglia et al. (1990). Mathematica-SWB is implemented in the Random[] function
of Mathematica, version 5.2 and earlier. It uses two steps of the recurrence SWB(231,
8, 48) to produce real-valued output in (0,1) with 53 bits of precision, apparently via
ui = (x2i/2

31 + x2i+1)/2
31. SWB(232, 222, 237) was proposed by Marsaglia (1999). All

these generators fail several tests unless we use decimation with a large-enough luxury
level, which slows them down considerably.

LFSR and GFSR generators. These generators are all based on linear recurrences
modulo 2. If ui,j denotes the jth bit of the output ui, then {ui,j , i ≥ 0} follows the
same binary linear recurrence for all j. All these generators obviously fail statistical tests
that measure the linear complexity of the binary sequences or that try to detect linear
dependence (for example, the matrix-rank test). The well-known trinomial-based GFSRs,
with recurrences of the form xi = xi−r ⊕ xi−k (we use the notation GFSR(k, r)), are in
fact lagged-Fibonacci RNGs with the bitwise exclusive or operation ⊕.

GFSR(250, 103) is the R250 of Kirkpatrick and Stoll (1981). It has been widely used
in the past and is included in VSL. GFSR(521, 32) has also been very popular; we use
the initialization of Ripley (1990). GFSR(607, 273) was proposed by Tootill et al. (1973).
Ziff98 is a pentanomial-based GFSR from Ziff (1998) with recurrence xi = xi−471 ⊕
xi−1586 ⊕ xi−6988 ⊕ xi−9689.

T800 and TT800 are twisted GFSR generators proposed in (Matsumoto and Kurita,
1992, 1994). MT19937 is the famous Mersenne twister of Matsumoto and Nishimura (1998).
It is used in Goose, SPSS, EViews, GNU R, VSL and in many other software packages. The
WELL generators were introduced by Panneton et al. (2006) to correct some weaknesses
in MT19937. LFSR113 and LFSR258 are the combined Tausworthe generators of L’Ecuyer
(1999b) designed specially for 32-bit and 64-bit computers, respectively. MT19937 and
WELL19937a fail only two linear complexity tests, with p-values larger than 1 − 10−15 (all
LFSR and GFSR-type generators fail these two tests). WELL19937a also has a slightly
suspect p-value of 7.2 × 10−5 for a Hamming independance test in Crush.

The xorshift RNGs are a special form of LFSR generators proposed by Marsaglia (2003),
and further analyzed by Brent (2004) and Panneton and L’Ecuyer (2005). In a xorshift
operation, a word (block of bits) is xored (bitwise exclusive-or) with a shifted (either left
or right) copy of itself. Marsaglia (2003) recommends the 3-shift RNGs Marsa-xor32(13,
17, 5) for 32-bit computers, and Marsa-xor64(13, 7, 17) for 64-bit computers, either
alone or in combination with some other RNGs.

All these generators fail linear complexity tests for bit sequences, because their bit
sequences obey linear recurrences by construction. Some also fail several other tests.

Mixed combined generators. Matlab-rand is the uniform generator rand included
in MATLAB (Moler, 2004). It is a XOR combination of a SWB(253, 12, 27) with
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Marsa-xor32(13, 17, 5) mentioned above. MATLAB uses another uniform RNG to
generate its normal variates: it is the same xorshift RNG combined with LCG(232, 69069,
1234567) by addition modulo 232. SuperDuper-73 is the Super-Duper generator from
Marsaglia et al. (1973): it is a XOR combination of the LCG(232, 69069, 0) with a small
shift-register RNG. SuperDuper-73 is used in S-PLUS (Ripley and Venables, 1994; Math-
Soft Inc., 2000). SuperDuper64 is a 64-bit additive combination of an LCG with an LFSR,
proposed by Marsaglia (2002). R-MultiCarry was proposed by Marsaglia (1997) and con-
catenates two 16-bit multiply-with-carry generators; it is used in the R statistical package
(Project, 2003). KISS93, from Marsaglia and Zaman (1993a), combines an LCG with two
small LFSR generators. KISS99, from Marsaglia (1999), combines an LCG, a 3-shift LFSR,
and two multiply-with-carry generators. Brent-xor4096s, proposed by Brent (2004), com-
bines a xorshift RNG with 4 xorshifts with a Weyl generator. Brent (2004) proposes several
other RNGs of that type.

Some of these mixed combined generators pass the tests, but many do not. KISS93

fails a linear complexity test based on bit 30, with a p-value larger than 1− 10−15, in both
Crush and BigCrush.

Inversive generators. These RNGs use nonlinear recurrences. The inversive congru-
ential generator ICG (m,a, b) uses the recurrence xj+1 = (axj + b) mod m, where xx =
1 mod m if x 6= 0, and 0 = 0 (Eichenauer and Lehn, 1986). The output is uj = xj/m.
ICG(231 − 1, 1, 1) was suggested by Eichenauer-Herrmann (1992). ICG(231 − 1, 22211,
11926380) was suggested by Hellekalek (1995). The explicit inversive congruential gen-

erator EICG (m,a, b) uses the recurrence xj = (a j + b) mod m with output uj = xj/m.
EICG(231−1, 1, 1) and EICG(231−1, 1288490188, 1) were suggested by (Hellekalek, 1995,
1998). A significant drawback of inversive RNGs is that they require modular inversion,
a slow and costly operation. All the inversive generators tested here have a short period
and fail the tests.

Other nonlinear generators. SNWeyl is a shuffled version of a nested Weyl generator
defined by νj = m(j(jα mod 1) mod 1) + 1/2, uj = νj(νjα mod 1) mod 1, where m =

1234567 and α =
√

2 mod 1 (Holian et al., 1994; Liang and Whitlock, 2001). Without the
shuffling, the generator is much worse. These RNGs have been used in statistical physics.
They are not portable, since their output depends on the processor and the compiler,
and they also fail the tests. Coveyou-32 and Coveyou-64 (Coveyou, 1969) are quadratic
generators with recurrence xj+1 = xj(xj + 1) mod 2ℓ, with ℓ = 32 and 64 respectively.
They both fail, although the larger one is better behaved.

The multiplicative lagged Fibonacci generators LFib(264, 17, 5, ∗), LFib(264, 55,
24, ∗), LFib(264, 607, 273, ∗) and LFib(264, 1279, 861, ∗) are from Marsaglia (1985)
and are available in SPRNG (Mascagni and Srinivasan, 2000). These generators pass all
the tests.
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ISAAC was designed for cryptography by Jenkins (1996). AES uses the Advanced En-
cryption standard based on the Rijndael cipher (NIST, 2001; Daemen and Rijmen, 2002)
with a 128-bit key, in output feedback mode (OFB), in counter mode (CTR), and in key
counter mode (KTR). The KTR mode uses a counter as key that is increased by 1 at each
encryption iteration. AES under these modes was tested empirically by Hellekalek and
Wegenkittl (2003). Our implementation is based on the optimized C code for the Rijndael
cipher written by Rijmen et al. (2000). AES in CTR mode had a slightly suspect p-value
of 9.2 × 10−5 for an overlapping collision test in BigCrush, but further replications of this
test gave no further suspect value. SHA-1 is based on the Secure Hash Algorithm SHA-1
(NIST, 2002; Barker and Kelsey, 2006) in output feedback mode (OFB) and in counter
mode (CTR). These generators pass all the tests.

8 Summary and Conclusion

We have described the TestU01 package for testing random number generators and used it
to test several widely used or recently proposed generators. A minority of these generators
pass all the tests (in the sense that no p-value is outside the interval [10−10, 1 − 10−10]).
The default generators of many popular software programs (e.g., Excel, MATLAB, Math-
ematica, Java standard library, R, etc.) fail several tests miserably. The survivors are the
long-period MRGs with good structure, the multiplicative lagged-Fibonacci generators,
some nonlinear generators designed for cryptology, and some combined generators with
components from different families. SWB and additive lagged-Fibonacci generators also
pass when using appropriate decimation, but the decimation slows them down significantly.
We believe that combined generators with components from different families should be
given better attention because theoretical guarantees about their uniformity can be proved
(L’Ecuyer and Granger-Piché, 2003), their period can easily be made very long, splitting
their period into long disjoint substreams is easy to do if we can do it for the components
and it is not hard to select the components with this in mind. We emphasize that the
RNGs implementations in TestU01 are only for testing purposes. For simulation, we rec-
ommend RNGs with multiple streams and substreams such as those described in L’Ecuyer
et al. (2002) and L’Ecuyer and Buist (2005), for example.
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