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Abstract

Importance sampling (IS) is the primary technique for constructing reliable es-
timators in the context of rare-event simulation. The asymptotic robustness of IS
estimators is often qualified by properties such as bounded relative error (BRE) and
asymptotic optimality (AO). These properties guarantee that the estimator’s relative
error remains bounded (or does not increase too fast) when the rare events becomes
rarer. Other recently introduced characterizations of IS estimators are bounded nor-
mal approximation (BNA), bounded relative efficiency (BREff), and asymptotic good
estimation of mean and variance.

In this paper we introduce three additional property named bounded relative error
of empirical variance (BREEV), bounded relative efficiency of empirical variance (BR-
EffEV), and asymptotic optimality of empirical variance (AOEV), which state that
the empirical variance has itself the BRE, BREff and AO property, respectively, as an
estimator of the true variance. We then study the hierarchy between all these differ-
ent characterizations for a model of highly-reliable Markovian systems (HRMS) where
the goal is to estimate the failure probability of the system. In this setting, we show
that BRE, BREff and AO are equivalent, that BREffEV, BREEV and AOEV are also
equivalent, and that these two properties are strictly stronger than all other properties
just mentioned. We also obtain a necessary and sufficient condition for BREEV in
terms of quantities that can be readily verified from the parameters of the model.

Résumé

L’échantillonnage préférentiel (IS) est la méthode privilégiée pour construire des es-
timateurs fiables dans le contexte de la simulation d’événements rares. La robustesse
asymptotique des estimateurs IS est souvent caractérisée par des propriétés telles
que l’erreur relative bornée (BRE) et l’optimalité asymptotique (AO). Ces propriétés
garantissent que l’erreur relative de l’estimateur reste bornée (ou n’augmente pas trop
rapidement) quand les événements rares deviennent encore plus rares. D’autres car-
actérisations récemment introduites des estimateurs IS sont l’approximation normale
bornée (BNA), l’efficacité relative bornée (BREff), et la bonne estimation asympto-
tique de la moyenne et de la variance.

Dans cet article nous introduisons trois propriétés supplémentaires nommées er-
reur relative bornée de la variance empirique (BREEV), efficacité relative bornée de la
variance empirique (BREffEV), et optimalité asymptotique de la variance empirique
(AOEV), qui établissent que la variance empirique, comme estimateur de la vraie
variance, vérifie elle-même les propriétés BRE, BREff et AO respectivement. Nous
étudions alors la hiérarchie entre toutes ces différentes caractérisations pour un modèle
de systèmes Markoviens hautement fiables (HRMS) où l’objectif est d’estimer la prob-
abilité de défaillance d’un système. Dans ce cadre, nous démontrons que BRE, BREff
et AO sont équivalents, que BREffEV, BREEV et AOEV sont aussi équivalents, et que
ces deux propriétés sont strictement plus fortes que les autres propriétés précédemment
mentionnées. Nous obtenons aussi une condition nécessaire et suffisante pour la pro-
priété BREEV en fonction de quantités qui peuvent être aisément vérifiées à partir des
paramètres du modèle.
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1 Introduction

Rare event simulation has received a lot of attention due to its frequent occurrence in
areas such as reliability, telecommunications, finance, and insurance, among others [3, 10,
11]. In typical rare-event settings, Monte Carlo simulation is not viable unless special
“acceleration” techniques are used to make the important rare events occur frequently
enough for moderate sample sizes. The two main families of techniques for doing that are
splitting [7, 12, 21] and importance sampling (IS) [3, 8, 10].

Asymptotic analysis of rare-event simulations is usually made in an asymptotic regime
where rarity is controlled by a parameter ε > 0; the rare events become increasingly
rare when ε → 0 and we are interested in asymptotic properties of a given (unbiased)
estimator Y in the limit. (Some authors use a parameter m that goes to infinity instead,
but this is equivalent; it suffice to take ε = 1/m to recover our framework.) Asymptotic
characterizations of estimators in this setting include the widely-used concepts of bounded
relative error (BRE) and asymptotic optimality (AO) [10, 11], as well as the lesser-known
properties of bounded relative efficiency (BREff) [4], bounded normal approximation (BNA)
and asymptotic good estimation of the mean (AGEM) and of the variance (AGEV) (also
called probability and variance well-estimation) [18, 19].

BRE means that the relative error (the standard deviation divided by the mean) of
the estimator Y = Y (ε) remains bounded when ε → 0. AO requires that when the mean
converges to zero exponentially fast in ε, the standard deviation converges at the same
exponential rate. In general, this is a weaker condition than BRE [10, 15]. BREff general-
izes BRE by taking into account the computational time associated with the estimator Y ,
which may vary with ε. BNA implies that if we approximate the distribution of the average
of n i.i.d. copies of Y by the normal distribution (e.g., to compute a confidence interval),
the quality of the approximation does not degrade when ε → 0. AGEM and AGEV have
been defined in the context of estimating a probability in a HRMS, and basically mean
that the sample paths that contribute the most to the estimator and its second moment
are not rare under the sampling scheme that is examined. The main goals of splitting and
IS, from the asymptotic viewpoint, is to design estimators that enjoy some (or all) of these
properties when the original (crude or naive) estimator does not satisfy them.

An important difficulty often lurking around in rare-event simulation is that of esti-
mating the variance of the mean estimator: reliable variance estimators are typically more
difficult to obtain than reliable mean estimators, because the rare events have a stronger
influence on the variance than on the mean. Variance estimators are important because
we need them to assess the accuracy of our mean estimators, e.g., via confidence intervals.
They are also frequently used when we compare the efficiencies of alternative mean esti-
mators; poor variance estimators can easily yield misleading results in this context. This
motivates our introduction of three additional characterizations of estimators: bounded rel-
ative error of empirical variance (BREEV), bounded relative efficiency of empirical vari-
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ance (BREffEV), and asymptotically optimal empirical variance (AOEV). BREEV means
that the empirical variance has the BRE property while AOEV means that it has the AO
property.

In this paper, we focus on IS and its application to an important HRMS model studied
by several authors [4, 9, 10, 13, 14, 16, 18, 19], and used for reliability analysis of computer
and telecommunication systems. In this model, a smaller value of the rarity parameter ε
implies a smaller failure rate for the system’s components, and we want to estimate the
probability that the system reaches a “failed” state before it returns to a state where all
the components are operational. This probability converges to 0 when ε → 0.

In general, IS consists in simulating the original model with different (carefully selected)
probability laws for its input random variables, and counter-balancing the bias caused by
this change of measure with a weight called the likelihood ratio. For the HRMS model, we
actually simulate a discrete-time Markov chain whose transitions correspond to failures and
repairs of individual components and IS generally increases [decreases] the probabilities of
the failure [repair] transitions.

For this particular HRMS model, specific conditions on the model parameters and IS
probabilities have been obtained for the BRE property [14], for BNA [18, 19], and for
AGEM and AGEV [19]. It is also shown in [19] that BNA implies AGEV, which implies
BRE, which implies AGEM, which implies BRE, and that for each implication the converse
is not true. In this paper we extend this hierarchy to incorporate AO, BREEV, and AOEV.
We show that in our context, BRE, BREff and AO are equivalent, BREEV, BREffEV and
AOEV are equivalent, and the latter three properties are strictly stronger than all the
others. We also obtain a necessary and sufficient condition on the model parameters and
the IS measure for BREEV, BREffEV and AOEV to hold.

The remainder of the paper is organized as follows. In Section 2, we give formal defini-
tions of the asymptotic characterizations discussed so far: BRE, AO, BREff, BNA, AGEV,
AGEM, BREEV, BREffEV, and AOEV, in a general rare-event framework. In Section 3,
we recall the basic definition of IS in its general form. In Section 4, we describe the HRMS
model and how IS is applied to this model. Section 5 is devoted studying to asymptotic
robustness properties in the HRMS context. We establish a complete hierarchy between
these properties and derive easily verifiable conditions for BREEV, BREffEV and AOEV.
Finally, in Section 6, we conclude and highlight perspectives for further research.

The following notation is used all along the paper. For a function f : (0,∞) → R, we
say that f(ε) = o(εd) if f(ε)/εd → 0 as ε → 0; f(ε) = O(εd) if |f(ε)| ≤ c1ε

d for some
constant c1 > 0 for all ε sufficiently small; f(ε) = O(εd) if |f(ε)| ≥ c2ε

d for some constant
c2 > 0 for all ε sufficiently small; and f(ε) = Θ(εd) if f(ε) = O(εd) and f(ε) = O(εd).
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2 Asymptotic Robustness Properties in a Rare-Event

Setting

Rare-event framework. We want to estimate a positive value γ = γ(ε) that depends on
a rarity parameter ε > 0. We assume that γ is a monotone (strictly) increasing function
of ε and that limε→0+ γ(ε) = 0. We have at our disposal a family of estimators Y = Y (ε)
such that E[Y (ε)] = γ(ε) for each ε > 0. Recall that the variance and relative error of
Y (ε) are defined by

σ2(ǫ) = Var[Y (ε)] = E[(Y (ε) − γ(ε))2]

and
RE[Y (ε)] = (Var[Y (ε)])1/2/γ(ε).

In applications, γ(ε) is usually a performance measure in the model, defined as a math-
ematical expectation, and some model parameters are defined as functions of ε. For exam-
ple, in queuing systems, the service time and inter-arrival time distributions and the buffer
sizes might depend on ε, while in Markovian reliability models, the failure rates and repair
rates might be functions of ε. The convergence γ(ε) → 0 can be exponential, polynomial,
etc.; this depend on the application and how the model is parameterized. Note that in all
cases, the limit as γ(ε) → 0+ is the same as the limit as ε → 0+, because of the strict
monotonicity.

We now define several properties that the family of estimators {Y (ε), ε > 0} can have.
In these definitions (and elsewhere) we use the shorthand notation Y (ε) to refer to this
family (a slight abuse of notation). We write “→ 0” to mean “→ 0+.” In typical rare-event
settings, these properties do not hold for the naive Monte Carlo estimators and the aim is
to construct alternative unbiased estimators (e.g., via IS or other methods) for which they
hold.

Bounded relative error.

Definition 1 (BRE) The estimator Y (ε) has the BRE property if

lim sup
ε→0

RE[Y (ǫ)] < ∞. (1)

When computing a confidence interval on γ(ε) based on i.i.d. replications on Y (ε) and
the (classical) central-limit theorem, for a fixed confidence level, the width of the confidence
interval is (approximately) proportional to the standard deviation σ(ε). The BRE property
means that this width decreases at least as fast as γ(ε) when ε → 0.

Asymptotic optimality. For several rare-event applications where γ(ε) decreases expo-
nentially fast (e.g., in queueing and finance), it has not been possible to find practical BRE
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estimators so far, but estimators with the (weaker) AO property have been constructed by
exploiting the theory of large deviations [1, 6, 10, 11, 17]. AO means that when γ2(ε) con-
verges to zero exponentially fast, the second moment E[Y 2(ε)] also converges exponentially
fast and at the same exponential rate. This is the best possible rate; it cannot converge at
a faster rate because we always have E[Y 2(ε)] − γ2(ε) = σ2(ε) ≥ 0.

Definition 2 (AO) The estimator Y (ε) is AO if

lim
ε→0

ln E[Y 2(ε)]

ln γ(ε)
= 2. (2)

AO is generally weaker than BRE [10, 15]. But there are situations where the two
are equivalent; this is what will happen in our HRMS setup in Section 4. The following
examples illustrate the two possibilities.

Example 1 Suppose that γ(ε) = exp[−k/ǫ] for some constant k and that our estimator
has σ2(ε) = q(1/ε) exp[−2k/ε] for some polynomial function q. Then, the AO property is
easily verified, whereas BRE does not hold because RE2[Y (ε)] = q(1/ε) → ∞ when ε → 0.

Example 2 Suppose now that γ2(ε) = q1(ε) = εt1 + o(εt1) and E[Y 2(ε)] = q2(ε) =
εt2 + o(εt2). That is, both converge to 0 at a polynomial rate. Clearly, t2 ≤ t1, because
E[Y 2(ε)]− γ2(ε) ≥ 0. We have BRE if and only if (iff) q2(ε)/q1(ε) remains bounded when
ε → 0, iff t2 = t1. On the other hand, − ln q1(ε) = − ln(εt1(1 + o(1))) = −t1 ln(ε) − ln(1 +
o(1)) and similarly for q2(ε) and t2. Then,

lim
ε→0

ln E[Y 2(ε)]

ln γ(ε)
= lim

ε→0

t2 ln ε

(t1/2) ln ε
=

2t2
t1

.

Thus, AO holds iff t2 = t1, which means that BRE and AO are equivalent in this case.

Bounded relative efficiency.

Definition 3 (BREff) Let t(ε) be the expected computational time to generate the esti-
mator Y (ε), whose variance is σ2(ε). The relative efficiency of Y (ε) is defined by

REff[Y (ε)] =
γ(ε)2

σ2(ε)t(ε)
=

1

RE2[Y (ε)]t(ε)
.

We will say that Y (ε) has bounded relative efficiency (BREff) if lim infε→0 REff[Y (ε)] > 0.

BREff basically looks at the BRE property, but for a given computational budget. Indeed,
the computation time may vary with ε; this has to be encompassed in the BRE property.

Example 3 If t(ε) = Θ(1), then BREff and BRE are equivalent properties.
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Example 4 In [4], an example with BREff but without BRE is exhibited. In that example,
t(ε) = O(ε) but RE[Y (ε)] = O(ε−1). Conversely, we might have examples such that
t(ε) = O(ε−1) and RE[Y (ε)] = Θ(1) so that BRE is verified, but not BREff.

Bounded normal approximation. We mentioned earlier the computation of a confi-
dence interval on γ(ε) based on the central-limit theorem. This type of confidence interval
is reliable if the sample average has approximately the normal distribution, so it is relevant
to examine the quality of this normal approximation when ε → 0. An error bound for this
approximation is provided by the following version of the Berry-Esseen theorem [2]:

Theorem 1 (Berry-Esseen) Let Y1, . . . , Yn be i.i.d. random variables with mean 0, vari-
ance σ2, and third absolute moment β3 = E[|Y1|3]. Let Ȳn and S2

n be the empirical mean
and variance of Y1, . . . , Yn, and let Fn denote the distribution function of the standardized
sum (or Student statistic)

S∗
n =

√
nȲn/Sn.

Then, there is an absolute constant a < ∞ such that for all x ∈ R and all n ≥ 2,

|Fn(x) − Φ(x)| ≤ aβ3

σ3
√

n
,

where Φ is the standard normal distribution function. The classical result usually has σ in
place of Sn in the definition of S∗

n [5]; in that case one can take a = 0.8 [20].

This result motivated the introduction of the BNA property in [18], which requires that
the Berry-Esseen bound remains O(n−1/2) when ε → 0.

Definition 4 (BNA) The estimator Y (ε) is said to have the BNA property if

lim sup
ε→0

E
[

|Y (ε) − γ(ε)|3
]

σ3(ε)
< ∞. (3)

The BNA property implies that
√

n|Fn(x)−Φ(x)| remains bounded as a function of ε,
i.e., that the approximation error of Fn by the normal distribution remains in O(n−1/2).
The reverse is not necessarily true, however. Perhaps it could seem more natural to define
the BNA property as meaning that

√
n|Fn(x) − Φ(x)| remains bounded, but we keep

Definition 4 because it has already been adopted in several papers and because it is often
easier to obtain necessary and sufficient conditions for BNA with this definition.

If a confidence interval of level 1 − α is obtained using the normal distribution while
the true distribution is Fn, the error of coverage of the computed confidence interval does
not exceed 2 supx∈R |Fn(x) − Φ(x)|. If that confidence interval is computed from an i.i.d.
sample Y1(ε), . . . , Yn(ε) of Y (ε), BNA implies that the coverage error remains in O(n−1/2)
when ε → 0, with a hidden constant that does not depend on ε, so it is controlled.
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Bounded relative error, bounded relative efficiency, and asymptotic optimality

of the empirical variance. The next properties concern the stability of the empirical
variance as an estimator of the true variance σ2(ε). Let Y1(ε), . . . , Yn(ε) be an i.i.d. sample
of Y (ε), where n ≥ 2. The empirical mean and empirical variance are Ȳn(ε) = (Y1(ε) +
· · · + Yn(ε))/n and

S2
n = S2

n(ε) =
1

n − 1

n
∑

i=1

(Yi(ε) − Ȳn(ε))2.

When the variance and/or the relative error of an estimator are estimated by simulation
in a rare-event setting, it happens frequently that S2

n(ε) takes a very small value (orders
of magnitude smaller than the true variance, because the important rare events did not
happen) with large probability 1 − p(ε), and an extremely large value with very small
probability p(ε), where p(ε) → 0 when ε → 0. This gross underestimation of the variance
leads to wrong conclusions on the accuracy of the simulation, with high probability. This
motivates the following definition.

Definition 5 (BREEV and AOEV) The estimator Y (ε) has the BREEV property if

lim sup
ε→0

RE[S2
n(ǫ)] < ∞. (4)

It has BREffEV property if
lim inf

ε→0
REff[S2

n(ǫ)] > 0. (5)

It has the AOEV property if

lim
ε→0

ln E[S4
n(ε)]

lnσ2(ε)
= 2. (6)

A classical result states that

Var[S2
n] =

1

n

(

E[(Y (ε) − E[Y (ε)])4] − n − 3

n − 1
σ4

)

. (7)

Thus, the BREEV, BREffEV, and AOEV properties are linked with the fourth moment of
Y (ε).

Asymptotic good estimation of the mean and of the variance. AGEM and AGEV
are two additional robustness properties introduced in [19], under the name of “well esti-
mated mean and variance,” in the context of the application of IS to an HRMS model. Here
we provide more general definitions of these properties. We assume that Y (ε) is a discrete
random variable, which takes value y with probability p(ε, y) = P[Y (ε) = y], for y ∈ R.
We also assume that its mean and variance are polynomial functions of ε: γ(ε) = Θ(εt1)
and σ2(ε) = Θ(εt2) for some constants t1 ≥ 0 and t2 ≥ 0. AGEM and AGEV state that
the sample paths that contribute to the highest-order terms in these polynomial functions
are not rare.
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Definition 6 (AGEM and AGEV) The estimator Y (ε) has the AGEM property if yp(ε, y)
= Θ(ǫt1) implies that p(ε, y) = Θ(1) (or equivalently, that y = Θ(ǫt1)). It has the AGEV
property if [y − γ(ε)]2p(ε, y) = Θ(ǫt2) implies that p(ε, y) = Θ(1) (or equivalently, that
[y − γ(ε)]2 = Θ(ǫt2)).

These properties means that for the realizations y of Y that provide the leading contri-
butions to the estimator, the contributions decrease only because of decreasing values of y,
and not because of decreasing probabilities. In a setting where IS is applied and Y is the
product of an indicator function by a likelihood ratio (this will be the case in Sections 4.2
and 5), this means that the value of the likelihood ratio when yp(ε, y) contributes to the
leading term must converge at the same rate at this leading term when ε → 0.

3 Importance Sampling

The aim of IS is to reduce the variance by simulating the model with different probability
laws for its input random variables and correcting the estimator by a multiplicative weight
called the likelihood ratio to recover an unbiased estimator. In rare-event simulation, the
probability laws are changed so that the rare events of interest occur more frequently under
the new probability measure. We briefly recall the basic definition of IS; for comprehensive
overviews see, e.g., [3, 10, 11].

In a general measure theoretic setting, IS is based on the application of the Radon-
Nikodym theorem, and the likelihood ratio corresponds to the Radon-Nikodym derivative.
All applications of IS are special cases of this setting.

Consider two probability measures P and P
∗ on a measurable space (Ω,A), where P is

absolutely continuous with respect to P
∗, which means that for all A ∈ A, P

∗{A} = 0 ⇒
P{A} = 0. Then, the Radon-Nikodym theorem guarantees that for P-almost all ω ∈ Ω,
the Radon-Nikodym derivative L(ω) = (dP/dP

∗)(ω) exists, and that

P{A} =

∫

A
L(ω)dP ∗(ω) for all A ∈ A.

In the context of IS, P
∗ is called the IS measure and we refer to the random variable

L = L(ω) as the likelihood ratio. If Y = Y (ω) is a random variable defined on (Ω,A), and
if dP

∗(ω) > 0 whenever Y (ω)dP(ω) > 0, then

EP[Y ] =

∫

Y (ω)dP(ω) =

∫

Y (ω)L(ω)dP
∗(ω) = EP∗[Y L].

As a special case, consider a discrete time Markov chain {Xj , j ≥ 0} with a dis-
crete state space S, initial distribution µ over S, and probability transition matrix P.
This defines a probability measure over the sample paths of the chain. We are inter-
ested in a random variable Y = g(X0,X1, . . . ,Xτ ) where τ is a random stopping time
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and g is a real-valued function. Let µ∗ be another initial distribution and let P∗ be
another probability transition matrix such that µ∗(x0)

∏τ
j=1 P∗(xj−1, xj) > 0 whenever

g(x0, x1, . . . , xτ )µ(x0)
∏τ

j=1 P(xj−1, xj) > 0. Let P
∗ be the corresponding probability mea-

sure on the Markov chain trajectories. When the sample path is generated from P
∗,

the likelihood ratio that corresponds to a change from (µ,P) to (µ∗,P∗) and realization
(X0, . . . ,Xτ ) is the random variable

L(ω) = L(X0,X1, . . . ,Xτ ) =
µ(X0)

∏τ
j=1 P(Xj−1,Xj)

µ∗(X0)
∏τ

j=1 P∗(Xj−1,Xj)

if µ∗(X0)
∏τ

j=1 P∗(Xj−1,Xj) 6= 0, and 0 otherwise. Hence,

EP[g(X0, . . . ,Xτ )]

=

∞
∑

n=0

∑

(x0,x1,...,xn)∈Sn

1{τ=n}g(x0, x1, . . . , xn)µ(x0)

n
∏

j=1

P(xj−1, xj)

=

∞
∑

n=0

∑

(x0,x1,...,xn)∈Sn

1{τ=n}g(x0, x1, . . . , xn)L(x0, x1, . . . , xn)µ∗(x0)

n
∏

j=1

P∗(xj−1, xj)

= EP∗[g(X0, . . . ,Xτ )L(X0, . . . ,Xτ )].

Note that P
∗(X0, . . . ,Xτ ) = 0 is required only if g(X0, . . . ,Xτ )P(X0, . . . ,Xτ ) = 0. An IS

estimator generates a sample path X0, . . . ,Xτ using P
∗ and computes

Y = g(X0,X1, . . . ,Xτ )L(X0,X1, . . . ,Xτ ) (8)

as an estimator of EP[Y ] = EP[g(X0,X1, . . . ,Xτ )].

4 Importance Sampling for a Highly Reliable Markovian

System

4.1 The Model

We consider an HRMS with c types of components and ni components of type i, for
i = 1, . . . , c. Each component is either in a failed state or an operational state. The state
of the system is represented by a vector x = (x(1), . . . , x(c)), where x(i) is the number
of failed components of type i. Thus, we have a finite state space S of cardinality
(n1 + 1) · · · (nc + 1). We suppose that S is partitioned in two subsets U and F , where
U is a decreasing set (i.e., if x ∈ U and x ≥ y ∈ S, then y ∈ U) that contains the state
1 = (0, . . . , 0) in which all the components are operational. We say that y ≺ x when y ≤ x
and y 6= x.
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We assume that the times to failure and times to repair of the individual components
are independent exponential random variables with respective rates

λi(x) = ai(x)εbi(x) = O(ε) and µi(x) = Θ(1)

for type-i components when the current state is x, where ai(x) is a strictly positive real
number and bi(x) a strictly positive integer for each i. The parameter ε ≪ 1 represents the
rarity of failures; the failure rates tend to zero when ε → 0. Failure propagation is allowed:
from state x, there is a probability pi(x, y) (which may depend on ε) that the failure of a
type-i component directly drives the system to state y, in which there could be additional
component failures. Thus, the net jump rate from x to y is

λ(x, y) =
c

∑

i=1

λi(x)pi(x, y) = O(ε).

Similarly, the repair rate from state x to state y is µ(x, y) (with possible grouped repairs),
where µ(x, y) does not depend on ε (i.e., repairs are not rare events when they are possible).
The system starts in state 1 and we want to estimate the probability γ(ε) that it reaches
the set F before returning to state 1. Estimating this probability is relevant in many
practical situations [10, 11].

This model evolves as a continuous-time Markov chain (CTMC) (Y (t), t ≥ 0}, where
Y (t) is the system’s state at time t. Its canonically embedded discrete time Markov chain
(DTMC) is {Xj , j ≥ 0}, defined by Xj = Y (ξj) for j = 0, 1, 2, . . . , where ξ0 = 0 and
0 < ξ1 < ξ2 < · · · are the jump times of the CTMC. Since the quantity of interest here,
γ(ε), does not depend on the jump times of the CTMC, it suffices to simulate the DTMC.
This chain {Xj , j ≥ 0} has transition probability matrix P with elements

P(x, y) = P[Xj = y | Xj−1 = x] = λ(x, y)/q(x)

if the transition from x to y corresponds to a failure and

P(x, y) = µ(x, y)/q(x)

if it corresponds to a repair, where

q(x) =
∑

y∈S

(λ(x, y) + µ(x, y))

is the total jump rate out of x, for all x, y in S. We will use P to denote the corresponding
measure on the sample paths of the DTMC.

Let Γ denote the set of pairs (x, y) ∈ S2 for which P(x, y) > 0. Our final assumptions
are that the DTMC is irreducible on S and that for every state x ∈ S, x 6= 1, there exists
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a state y ≺ x such that (x, y) ∈ Γ (that is, at least one repairman is active whenever a
component is failed).

Again, our goal is to estimate γ(ε) = P[τF < τ1], where τF = inf{j > 0 : Xj ∈ F} and
τ1 = inf{j > 0 : Xj = 1}. It has been shown [16] that for this model, there is an integer
r > 0 such that γ(ε) = Θ(εr), i.e., the probability of interest decreases at a polynomial
rate when ε → 0.

4.2 IS for the HRMS Model

Naive Monte Carlo estimates γ(ε) by simulating samples paths with the transition prob-
ability matrix P and counting the fraction of those paths for which τF < τ1. But since
γ(ε) = Θ(εr), the relative error of this estimator increases toward infinity when ε → 0 and
something else must be done to obtain a viable estimator.

Several IS schemes have been proposed in the literature for this HRMS model; see,
e.g., [4, 14, 16]. Here we limit ourselves to the so-called simple failure biasing (SFB), also
named Bias1. SFB changes the matrix P to a new matrix P∗ defined as follows. For states
x ∈ F ∪ {1}, we have P∗(x, y) = P(x, y) for all y ∈ S, i.e., the transition probabilities
are unchanged. For any other state x, a fixed probability ρ is assigned to the set of all
failure transitions, and a probability 1 − ρ is assigned to the set of all repair transitions.
In each of these two subsets, the individual probabilities are taken proportionally to the
original ones. Under certain additional assumptions, this change of measure increases the
probability of failure when the system is up, in a way that failure transitions are no longer
rare events, i.e., P

∗[τF < τ1] = Θ(1).

For a given sample path ending at step τ = min(τF , τ1), the likelihood ratio for this
change of measure can be written as

L = L(X0, . . . ,Xτ ) =
P[(X0, . . . ,Xτ )]

P∗[(X0, . . . ,Xτ )]
=

τ
∏

j=1

P(Xj−1,Xj)

P∗(Xj−1,Xj)

and the corresponding (unbiased) IS estimator of γ(ε) is given by (8), with g(X0, . . . ,Xτ ) =
1{τF<τ1}. Thus, the random variable Y (ε) of Section 2 is

Y (ε) = 1{τF<τ1}L(X0, . . . ,Xτ ). (9)

We will now examine the robustness properties of this estimator under the SFB sampling.

5 Asymptotic Robustness Properties for the HRMS Model

Under IS

A characterization of the IS schemes for the HRMS model that satisfy the BRE property
was obtained in [14]. AO is weaker than BRE in general. However, our first result states
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that for the HRMS model, the two are equivalent. This was mentioned without proof in
[10].

Theorem 2 In our HRMS framework, with SFB, AO and BREff are equivalent to BRE.

Proof. Recall that γ(ε) = Θ(εr) for some integer r ≥ 0. It has also been shown in [18]
that for this model, E[Y 2(ε)] = Θ(εs) for some s ≤ 2r, where Y (ε) is defined in (9). Also
t(ε) = Θ(1) for static changes of measure such as SFB. The equivalence between AO and
BRE then follows from Example 2, and the equivalence between BREff and BRE follows
from Example 3. 2

A characterization of IS measures that satisfy BNA for the HRMS model is given in
[18, 19] and the following relationships between measures of robustness was proved in [19]:

Theorem 3 In our HRMS framework, BNA implies AGEV, which implies BRE, which
implies AGEM. For each of these implications, the converse is not true.

Our next results characterize the BREEV and AOEV in the HRMS framework. They
require additional notation. We will restrict our change of measure for IS to a class I of
measures P

∗ defined by a transition probability matrix P∗ with the following properties:
whenever (x, y) ∈ Γ and P(x, y) = Θ(εd), if y ≻ x 6= 1, then P∗(x, y) = O(εd−1), whereas
if x ≻ y or if y ≻ x = 1, then P∗(x, y) = O(εd). This class I was introduced in [18]; these
measures increase the probability of each failure transition from a state x 6= 1 and satisfy
the assumptions of Lemma 1 of [18] (we will use this lemma to prove our next results).
From now on, we assume that P∗ satisfies these properties.

We define the following sets of sample paths:

∆m = {(x0, · · · , xn) : n ≥ 1, x0 = 1, xn ∈ F , xj 6∈ {1, F}
and (xj−1, xj) ∈ Γ for 1 ≤ j ≤ n,

and P{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εm)};
∆m,k = {(x0, · · · , xn) ∈ ∆m : P

∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(εk)};
∆′

t =
⋃

{m,k : m−k=t}

∆m,k;

and let s be the integer such that σ2
P∗(ε) = Θ(εs).

A necessary and sufficient condition on P
∗ for BREEV is as follows. This result means

that a path cannot be too rare under the IS measure P ∗ to verify BREEV. Similar results
were obtained under the same conditions for BRE in [14], where it is shown that k ≤ 2m−r
is needed when ∆m,k 6= ∅, and for BNA in [18, 19], where the necessary and sufficient
condition is k ≤ 3m/2 − 3s/4.
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Theorem 4 For an IS measure P
∗ ∈ I, we have BREEV if and only if for all integers k

and m such that m − k < r and all (x0, · · · , xn) ∈ ∆m,k,

P ∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = O(ε4m/3−2s/3).

In other words, we must have k ≤ 4m/3 − 2s/3 whenever ∆m,k 6= ∅.

Proof. (a) Necessary condition. Suppose that there exist k,m ∈ N and (x0, · · · , xn) ∈
∆m,k such that k = 4m/3 − 2s/3 + k′ with k′ > 0 and m − k < r. This means that
P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(ε4m/3−2s/3+k′

). Then we have

E[(Y (ε) − γ(ε))4] ≥ [L(x0, · · · , xn) − γ(ε)]4 P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

= Θ(ε4(m−k)+k)

= Θ(ε2s−3k′

).

Thus E[(Y (ε) − γ(ε))4]/σ4
P∗(ε) = O(ε−2k′

), which is unbounded when ε → 0.

(b) Sufficient condition. Let (x0, · · · , xn) ∈ ∆′
t such that t < r (i.e., m − k < r). Since

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = O(ε4m/3−2s/3)

for all (x0, · · · , xn) ∈ ∆m,k if m − k < r, we have

(L(x0, · · · , xn) − γ(ε))4P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} =

Θ(ε4m)

Θ(ε4k)
Θ(εk) = O(ε2s).

Using the fact that
∑

t<r |∆′
t| < ∞ and the first part of Lemma 1 of [18], we have

∑

t<r

∑

(x0,··· ,xn)∈∆′
t

(L(x0, · · · , xn))4P ∗{(X0, · · · ,XτF
) = (x0, · · · , xn)} = O(ε2s).

Since
∞

∑

t=r

∑

(x0,··· ,xn)∈∆′
t

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} ≤ 1

and
∑

(x0,··· ,xn)∈∆′
t

P
∗{(X0, · · · ,XτF

) = (x0, · · · , xn)} ≤ 1 for all t, Lemma 1 of [18] implies

that

∞
∑

t=r

∑

(x0,··· ,xn)∈∆′
t

(L(x0, · · · , xn) − γ(ε))4P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

≤
∞
∑

t=r

∑

(x0,··· ,xn)∈∆′
t

(γ(ε)4 + 4γ(ε)3κηtεt + 6γ2(ε)κ2η2tε2t + 4γ(ε)κ3η3tε3t + κ4η4tε4t) ·
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P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

= γ4(ε)

∞
∑

t=r

∑

(x0,··· ,xn)∈∆′
t

P
∗{(X0, · · · ,XτF

) = (x0, · · · , xn)}

+

∞
∑

t=r

(4γ3(ε)κηtεt + 6γ2(ε)κ2η2tε2t + 4γ(ε)κ3η3tε3t + κ4η4tε4t) ·
∑

(x0,··· ,xn)∈∆′
t

P
∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

≤ γ4 + 4γ3(ε)κ

∞
∑

t=r

(ηε)t + 6γ2(ε)κ2
∞
∑

t=r

(η2ε2)t4γ(ε)κ3
∞

∑

t=r

(η3ε3)t + κ4
∞
∑

t=r

(η4ε4)t

= Θ(ε4r) + Θ(ε4r) + Θ(ε4r) + Θ(ε4r) + Θ(ε4r)

= O(ε2s),

because 2r ≥ s. 2

Theorem 5 BREEV, BREffEV, and AOEV are equivalent.

Proof. This follows again directly from Example 2, using the fact that σ2(ε) = Θ(εs)
and E[S4

n(ε)] = Θ(εt) with t ≤ 2s, and from Example 3 since t(ε) = Θ(1). 2

Next we show that BREEV and AOEV are the strongest properties in our list.

Theorem 6 BREEV implies BNA.

Proof. This is a direct consequence of the necessary and sufficient conditions over the
paths for the BNA and BREEV properties. These conditions are that for all k and m such
that m− k < r, whenever ∆m,k is non-empty, we must have k ≤ 4m/3− 2s/3 for BREEV
and k ≤ 3m/2 − 3s/4 for BNA. But 4m/3 − 2s/3 = 8/9(3m/2 − 3s/4), so the theorem is
proved if we always have 3m/2 − 3s/4 ≥ 0, i.e., 2m ≥ s, which is true since 2m ≥ 2r ≥ s.

2

The following counter-example show that the converse is not true: there exist systems
and IS measures P

∗ for which BNA is verified but not BREEV.

Example 5 Consider the example of Figure 1, using SFB failure biasing as shown in
Figure 2. The states where the system is down are colored in grey.

For this model, as it can be easily seen in Figure 1, r = 6 and ∆6 is comprised of the
single path (< 2, 2 >,< 1, 2 >,< 0, 2 >). Moreover, s = 12 and the sole path in ∆ such
that

P
2{(X0, · · · ,Xτ ) = (x0, · · · , xn)}

P∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(ε12)
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Figure 1: A two-dimensional model with its transition probabilities.
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Figure 2: A two-dimensional example with SFB transition probabilities.

is the path in ∆6 for which Figure 2 shows that it is Θ(1) under probability measure P
∗.

It can also be readily checked that k ≤ 3m/2 − 3s/4 for all paths, meaning that BNA is
verified.

However, the path (< 2, 2 >,< 2, 1 >,< 2, 0 >) is in ∆m,k with m = 14 and k = 12.
Then 12 = k > 4m/3 − 2s/3 = 32/3, so the necessary and sufficient condition of Theorem
4 is not verified.

6 Conclusions

We have extended the hiecharchy of robustness properties of IS estimators for an HRMS
model by adding AO and the newly defined BREEV, BREffEV, and AOEV, that assert
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the stability of the relative size of the confidence interval for independent samples, as rarity
increases. The complete hierarchy can be summarized as:

(BREEV⇔BREffEV⇔AOEV)⇒BNA⇒AGEV⇒(BRE⇔BREff⇔AO)⇒AGEM.

All these properties have some practical relevance and understanding the links between
them is certainly of high interest. BREEV is the strongest, but it may be difficult to verify
in some applications. A direction of future research is to study this hierarchy of properties
in more general (or different) settings; for example in situations where γ(ε) converges to
zero exponentially fast. It is already known that AO is generally not equivalent to BRE
in this case. What about the other implications in the hierarchy?
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