
Les Cahiers du GERAD ISSN: 0711–2440

Efficient Jump Ahead for F2-Linear

Random Number Generator

H. Haramoto, M. Matsumoto,
T. Nishimura, F. Panneton,

P. L’Écuyer

G–2006–62

October 2006

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.





Efficient Jump Ahead for F2-Linear Random

Number Generators

Hiroshi Haramoto, Makoto Matsumoto

Department of Mathematics
Hiroshima University
Kagamiyama 1-3-1

Higashi-Hiroshima, Hiroshima 739-8526, Japan
m-mat@math.sci.hiroshima-u.ac.jp

Takuji Nishimura

Department of Mathematics
Yamagata University

Yamagata 990-8586, Japan
nisimura@sci.kj.yamagata-u.ac.jp

François Panneton, Pierre L’Écuyer∗

Département d’informatique et de recherche opérationnelle
Université de Montréal

C.P. 6128, Succ. Centre-ville
Montréal (Québec) Canada, H3C 3J7
{panneton;lecuyer}@iro.umontreal.ca

∗ and GERAD

October 2006

Les Cahiers du GERAD

G–2006–62

Copyright c© 2006 GERAD





Abstract

The fastest long-period random number generators currently available are based on
linear recurrences modulo 2. So far, software that provides multiple disjoint streams
and substreams has not been available for these generators because of the lack of effi-
cient jump-ahead facilities. In principle, it suffices to multiply the state (a k-bit vector)
by an appropriate k× k binary matrix to find the new state far ahead in the sequence.
However, when k is large (e.g., for a generator such as the popular Mersenne twister,
for which k = 19937), this matrix-vector multiplication is slow and a large amount of
memory is required to store the k × k matrix. In this paper, we provide a faster algo-
rithm to jump ahead by a large number of steps in a linear recurrence modulo 2. The
method uses much less than the k2 bits of memory required by the matrix method. It
is based on polynomial calculus modulo the characteristic polynomial of the recurrence
and uses a sliding window algorithm for the multiplication.

Key Words: simulation, random number generation, jumping ahead, multiple
streams.

Résumé

Les générateurs de nombres aléatoires à longue période qui sont les plus rapides
sont basés sur une récurrence linéaire modulo 2. À ce jour, il n’y a pas de logiciel qui
offre de flots disjoints pour ces générateurs à cause de l’inefficacité des méthodes qui
permettent de sauter en avant dans la récurrence. En principe, il suffit de multiplier
l’état (un vecteur de k bits) par une matrice binaire k × k pour obtenir un nouvel
état qui se trouve beaucoup plus loin dans la séquence. Malheureusement, quand k est
grand (par exemple, pour un générateur comme le populaire Mersenne twister pour
lequel k = 19937), cette multiplication matrice-vecteur est lente et une quantité impor-
tante de mémoire est nécessaire pour emmagasiner la matrice k × k. Dans cet article,
nous introduisons un algorithme plus rapide pour sauter en avant par un grand nom-
bre d’itérations dans une récurrence linéaire modulo 2. La méthode utilise beaucoup
moins que les k2 bits de mémoire requis par la méthode matricielle. Elle est basée sur
l’arithmétique dans l’extension du corps fini à deux éléments défini par le polynôme
caractéristique de la récurrence et utilise un algorithme à fenêtre glissante pour la
multiplication.

Acknowledgments: This study is partially supported by JSPS/Ministry of Educa-
tion Grant-in-Aid for Scientific Research No. 18654021 and 16204002, JSPS Core-to-
Core Program No. 18005, NSERC-Canada grant No. ODGP0110050, and a Canada
Research Chair to the last author. The paper was written while the last author was
enjoying hospitality of IRISA-INRIA in Rennes, France.





Les Cahiers du GERAD G–2006–62 1

1 Introduction

Random number generators (RNGs) with multiple disjoint streams and substreams are an
important component of any good general-purpose simulation or statistical software. They
are very handy, for example, to obtain parallel RNGs and to support the implementation
of variance reduction techniques (Kelton, 2006; Law and Kelton, 2000; L’Ecuyer et al.,
2002). The most convenient way of getting these streams and substreams is to start with a
backbone RNG having a huge period, and partition its output sequence into long disjoint
subsequences and subsubsequences whose starting points are at equidistant lags. When a
new stream is needed, we find its starting point by jumping ahead from the starting point
of the current subsequence to the starting point of the next one. Substreams are obtained
from subsequences in a similar way. To make sure that no overlap occurs, the streams
and substreams must be very long, so that they cannot be exhausted even with days of
computing time. To implement this, we need to know how to quickly jump ahead by large
lags in the sequence of numbers produced by the generator.

Most generators used for simulation are based on linear recurrences. For these gener-
ators, the state xn at step n is a vector of k integers in {0, . . . ,m − 1} for some integer
m called the modulus, and it evolves as xn = Axn−1 mod m where A is a k × k matrix
with elements in {0, . . . ,m− 1}. To jump ahead by ν steps from any state xn, regardless
of how large is ν, it suffices to precompute the matrix Aν mod m (once for all) and then
compute xn+ν = (Aν mod m)xn mod m by a simple matrix-vector multiplication. This
technique is used to provide streams and substreams in the random number package of
L’Ecuyer et al. (2002), based on combined multiple recursive generators (CMRG), and
which has been adopted in several simulation and statistical software products such as
Arena, Automod, Witness, SSJ, SAS, etc.

There are faster generators than the CMRG, based on linear recurrences modulo 2,
with extremely long periods and good statistical properties. The Mersenne twister and the
WELL (Matsumoto and Nishimura, 1998; Panneton et al., 2006), for example, belong to
that class. But efficient software that provides multiple disjoint streams and substreams
for them is lacking. Since these generators are linear, the technique just described applies
in principle (with m = 2). But the matrix-vector multiplication is slow if implemented
naively and an excessive amount of memory is required to store the matrix when k is very
large, which is typical. For example, the Mersenne twister generator has k = 19937. Then,
the k × k binary matrix occupies 47.4 MBytes of memory!

We propose a more efficient technique to perform this multiplication. It uses a represen-
tation of the recurrence in a space of polynomials. For a given step size ν, the state xn+ν

is expressed as a polynomial in A of degree less than k, say g(A), multiplied by xn. A key
ingredient is that we use the implementation of the original recurrence (i.e., of the genera-
tor) to compute the product g(A)xn. The most expensive operations in this computation
turn out to be the k-bit vector additions modulo 2. We use a sliding window technique to
reduce the number of these additions, e.g., by a factor of about 4 when k = 19937. For



2 G–2006–62 Les Cahiers du GERAD

this particular value of k, with the proposed method, the generator can jump ahead for an
arbitrary lag in less than 5 milliseconds on a 32-bit 3.0 GHz computer.

The next section gives a framework for F2-linear generators and states the jump-ahead
problem. In Section 3, we examine how to jump ahead, explain our proposed technique,
and analyze its computational efficiency. The algorithm is stated in Section 3.4 and some
timings are given in Section 3.5.

2 F2-Linear Generators

All along this paper, arithmetic operations are assumed to be performed in F2, the finite
field with two elements, represented as 0 and 1. This corresponds to doing arithmetic
modulo 2. Note that in F2, subtraction and addition are equivalent; so we can always
write “+” instead of “−” and we do so everywhere in this paper. The RNGs considered
obey the general F2-linear recurrence

xn = Axn−1, (1)

where xn = (xn,0, . . . , xn,k−1)
t ∈ F

k
2 is the k-bit state vector at step n and A is the k × k

transition matrix with elements in F2. The output can be defined by any transformation
xn 7→ un; the exact form of this transformation is irrelevant for the remainder of the
paper. Usually, the output un ∈ [0, 1) at step n is defined by un =

∑w
ℓ=1

yn,ℓ−12
−ℓ for

some positive integer w, where yn = (yn,0, . . . , yn,w−1)
t = Bxn and B is a w × k matrix

with elements in F2. Several types of RNGs fit this framework, including the Tausworthe
or linear feedback shift register (LFSR), the generalized feedback shift register (GFSR),
the twisted GFSR (TGFSR), the Mersenne twister, the WELL, and xorshift generators
(Tezuka, 1995; Matsumoto and Nishimura, 1998; L’Ecuyer and Panneton, 2005; Panneton
and L’Ecuyer, 2005; Panneton et al., 2006).

Our aim is to compute

xn+ν = Aνxn (2)

for a large value of ν, say larger than 2100 or even more. We assume that ν is fixed
in advance and that (2) must be computed for several arbitrary vectors xn unknown in
advance. This is what we need to implement multiple streams and substreams. The
algorithm also works if ν is not fixed, but then the computationally expensive setup must
be repeated each time.

3 Jumping Ahead

3.1 Matrix Method

A first method to jump ahead is the standard one, described in the introduction: We
start by precomputing the matrix J = Aν in F2. By a standard square-and-multiply



Les Cahiers du GERAD G–2006–62 3

exponentiation technique (Knuth, 1998), this requires O(k3 log ν) operations, and we need
k2 bits to store J. Then, whenever jumping-ahead is required from state x, we compute
the vector Jx. To obtain the ith element of Jx, we compute the componentwise product
of the ith row of J by the (transposed) vector x, by a bitwise AND, and add the bits of the
resulting vector, modulo 2. A straightforward implementation of this on a w-bit computer
requires k⌈k/w⌉ AND operations, followed by k2 operations to count the bits.

But the work to add the bits modulo 2 can be reduced as follows. Observe that we
only need the parity of the sum of bits in the vector, which can be obtained by xoring all
its bits. This can be achieved as follows: partition the k-bit vector into w-bit blocks (this
is how it is stored), xor all these blocks together (for a given vector, this requires ⌈k/w⌉
xor operations), then xor the bits in the resulting w-bit block (w operations). The total
number of operations with this approach is 2k⌈k/w⌉ + kw.

Nevertheless, for k = 19937, for instance, storing J takes around 47.4 megabytes of
memory, and computing it by squaring and multiplying the binary matrices is impractical
(each squaring takes O(k3) time).

3.2 Using the Polynomial Representation

A more efficient approach, when k is large, works with the polynomial representation of
the recurrence, as follows. Write the characteristic polynomial of the matrix A as

p(z) = det(zI + A) = zk + α1z
k−1 + · · ·+ αk−1z + αk,

where I is the identity matrix and αj ∈ F2 for each j, and recall that

p(A) = zk + α1A
k−1 + · · ·+ αk−1A + αkI = 0

(this is a fundamental property of the characteristic polynomial). Let

g(z) = zν mod p(z) = a1z
k−1 + · · ·+ ak−1z + ak. (3)

This g(z) can be computed (once for all) in O(k2 log ν) time by the square-and-multiply
method (Knuth, 1998) in the space of polynomials modulo p(z). Observe that g(z) =
zν + q(z)p(z) for some polynomial q(z). Combining this with the fact that p(A) = 0, we
see that g(A) = Aν and thus

J = Aν = g(A) = a1A
k−1 + · · · + ak−1A + akI.

Therefore, Jx can be computed by

Jx = (a1A
k−1 + · · ·+ ak−1A + akI)x

= A(· · ·A(A(Aa1x + a2x) + a3x) + · · · + ak−1x) + akx, (4)



4 G–2006–62 Les Cahiers du GERAD

where the latter represents Horner’s method for polynomial evaluation. To compute this,
we can simply advance the RNG by k−1 steps from state x and add (by bitwise exclusive-
or) the states obtained at the steps that correspond to the nonzero aj’s. This computation
requires running the RNG for k − 1 steps and adding at most (k − 1) k-bit vectors. For
a random polynomial g(z) (whose coefficients a1, . . . , ak are drawn uniformly over the set
of all 2k possibilities), there is on average k/2 nonzero coefficients, so (k/2) − 1 vector
additions are required. This computation still demands O(k2) operations, but only k bits
of storage are needed for the coefficients of g(z).

To examine more closely the cost of this implementation, let us suppose that the com-
puter has w-bit words and that g(z) has k/2 nonzero coefficients. Each k-bit vector addition
requires η = ⌈k/w⌉ XOR operations on the computer, so we need ((k/2) − 1)η ≈ k2/(2w)
operations to add the vectors if we use a “standard” method.

It is important to recall here that the large-period F2-linear RNGs are normally designed
so that Ax can be computed with only a handful of binary operations (such as XORs, shifts,
and bit masks). Suppose our RNG needs c such operations at each step. Then we need
(k− 1)c operations to advance the RNG by k− 1 steps. The total jump-ahead cost is thus
(k − 1)c + ((k/2) − 1)η operations.

As a typical illustration, take w = 32, k = 19937, and c = 10. Then (k−1)c ≈ 2.0×105

whereas ((k/2) − 1)η ≈ 6.2 × 106, so the vector additions dominate the cost. Our next
improvement will reduce this number of additions in exchange for some additional storage.

3.3 Improvement via Decomposition and a Sliding Window

We choose a small positive integer q, say somewhere from 4 to 10. Let Tq be the set
of polynomials with coefficients in F2 and of degree exactly q, i.e., of the form h(z) =
zq + b1z

q−1 + · · ·+ bq where the bj ’s are in F2. This set has cardinality 2q. We decompose
g(z) as

g(z) = h1(z)zd1 + · · · + hm(z)zdm + hm+1(z) + zq (5)

where hj(z) ∈ Tq for j = 1, . . . ,m + 1, 0 ≤ dm < · · · < d1 < k, and m is as small as
possible. This decomposition is obtained as follows. We write the coefficients of g(z) in a
sequence:

a1 a2 a3 · · · ak−1 ak.

If i1 = min{i > 0 : ai = 1} is the index of the first nonzero coefficient in the sequence, we
set d1 = k − q − i1, we define

h1(z) = zq + ai1+1z
q−1 + · · ·+ ai1+q,

and we remove a1, . . . , ai1+q from the sequence. Then we repeat the same process with
the sequence that starts with ai1+q+1 to define d2 and h2(z), and so on. In general, if



Les Cahiers du GERAD G–2006–62 5

ij = min{i > ij−1 + q : ai = 1} is the index of the first nonzero element in the sequence
aij−1+q+1, . . . , ak and if k − ij ≥ q, we put dj = k − q − ij and

hj(z) = zq + aij+1z
q−1 + · · ·+ aij+q.

As soon as k − ij < q, we put m = j − 1 and

hm+1(z) = zq + aijz
k−ij + · · ·+ ak.

This completes the decomposition (5). Note that this decomposition does not depend on
x.

Now, from (5), we can rewrite

Jx = g(A)x

= Adm(· · · (Ad2−d3(Ad1−d2h1(A)x + h2(A)x) + h3(A)x) + · · ·

+ hm(A)x) + hm+1(A)x + Aqx. (6)

To compute Jx, we first compute the vectors h(A)x for all 2q polynomials h(z) in Tq, and
store these vectors in a table. Then, we start the RNG from state h1(A)x, advance it by
d1− d2 steps, add h2(A)x to its state, advance it by d2− d3 steps, . . . , add hm(A)x to the
state, advance the RNG by dm steps, and finally add hm+1(A)x + Aqx. We still need to
advance the RNG by a total of k− 1 steps, but m + 1 vector additions now suffice instead
of k/2, where m ≤ ⌈k/(q + 1)⌉.

This method is a direct adaptation of the sliding window algorithm used for exponen-
tiation in a group (Möller, 2005). We illustrate it by an example.

Example 1 Let k = 18, q = 3, and suppose that the coefficients of g(z) are the following:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

0 0 1 1 1 1
| {z }

0 1 0 0 0
| {z }

1 1 1 0
| {z }

0 0 1
|{z}

h1(z) h2(z) h3(z) h4(z) + z
3

In this case, we have i1 = 3, d1 = 15 − i1 = 12, h1(z) = z3 + z2 + z + 1, i2 = 8,
d2 = 15 − i2 = 7, h2(z) = z3, i3 = 12, d3 = 15 − i3 = 3, h3(z) = z3 + z2 + z, and
h4(z) = z3 + 1.

We also need an efficient method to compute the 2q vectors h(A)x, because this has
to be redone for each new vector x. These 2q vectors can be computed efficiently by
using a Gray code (Savage, 1997) to represent the elements of Tq: we enumerate these
elements as t0(z), t1(z), . . . , t2q

−1(z) so that t0(z) = zq and any two successive elements
in the sequence differ by a single coefficient. This is Gray code enumeration. The first
vector t0(A)x = Aqx is computed automatically when we advance the RNG, and then
each vector ti(A)x is computed from the previous one, ti−1(A)x, by adding or subtracting
(in F2 this is the same) a single vector of the form Ajx for 0 ≤ j < q. These q vectors are
precomputed when we advance the generators by q steps.

In the next subsection, we put together these ingredients to define our algorithm.



6 G–2006–62 Les Cahiers du GERAD

3.4 Algorithm

The algorithm has two parts: (a) a one-time setup for each jump size ν and (b) the jumping
from xn to xn+ν . It is described in Figure 1.

Preliminary setup for a given ν.
Compute the polynomial g(z) in (3) and store its coefficients in an array.
Select q > 0 and choose a Gray code to enumerate the polynomials of Tq

(equivalently, the integers 0, 1, . . . , 2q − 1).
Compute m,d1, . . . , dm, h1(z), . . . , hm(z), hm+1(z), c1, . . . , cm, cm+1,

where cj is the Gray code of hj(z), i.e., hj(z) = tcj
(z), for each j.

Jump-ahead by ν steps, from state x.
Compute Ax,A2x, . . . ,Aqx by running the RNG for q steps.
y0 ← t0(x) = Aqx.
For i = 1, . . . , 2q − 1 do

Compute yi+1 = ti+1(A)x from yi = ti(A)x; this requires a single vector XOR.
x′ ← yc1 .
For j = 2, . . . ,m do

x′ ← Adj−1−djx′ + ycj
.

x′ ← Admx′ + ycm+1
+ y0.

Return x′.

Figure 1: The jump-ahead algorithm

To summarize the computing costs in the second part, we need (k − 1)c operations to
advance the RNG by k − 1 steps, then 2q − 1 vector additions to compute all the vectors
ti(A)x, and a further m + 1 ≤ 1 + ⌈k/(q + 1)⌉ additions to compute (6). Since each vector
addition requires η operations, the total cost is at most

(k − 1)c + (2q − 1 + m + 1)η ≤ (k − 1)c + (2q + ⌈k/(q + 1)⌉)η

operations. The value of q can be chosen to minimize this number, i.e., minimize the upper
bound na(k, q) = 2q +⌈k/(q+1)⌉ on the number of vector additions (since the term (k−1)c
does not depend on q). As an illustration, Table 1 gives the value of na(k, q) as a function
of q for k = 19937 and w = 32. The minimum is attained for q = 8. The case q = 0
refers to the computation via the ordinary Horner method given in (4), for which the table
gives the expected number of vector additions for a random polynomial. With q = 8, the
number of additions is reduced approximately by a factor of 4.

This algorithm can still be applied when the value of ν is not fixed, but then the (costly)
preliminary setup must be repeated each time.



Les Cahiers du GERAD G–2006–62 7

Table 1: Value of na(k, q) as a function of q for k = 19937.

q 0 . . . 4 5 6 7 8 9 10 11 12
na(k, q) 9968 . . . 4004 3355 2913 2621 2472 2506 2837 3710 5630

3.5 Timings

We made the following experiment to measure the CPU time required by the proposed
algorithm to jump ahead by an arbitrary number of steps, from an arbitrary state, for
k = 19937 with both the Mersenne twister and a WELL generator, k = 1024 with a
WELL generator, and various values of q. We generated a polynomial g(z) and a state x

at random, uniformly over the set of possible values, and measured the time to compute
g(A)x. Thus, g(z) was a polynomial of degree ≤ k and x was a k-bit vector. We replicated
this 1000 times and computed the average CPU time for jumping ahead, in milliseconds
(msec). Table 2 reports these CPU times and the required memory size for each method, on
the following computers: (a) An Intel Pentium 4 at 3.0 GHz, with 1.0 GB of memory, using
the gcc compiler with the -O2 option, under Linux; and (b) a 64-bit AMD-Athlon 64 3200+,
with 2.0 GB of memory, also using Linux and the same compiler. The tested generators are
the 32-bit MT19937 (Matsumoto and Nishimura, 1998), the 32-bit WELL19937 (Panneton
et al., 2006), and a 64-bit Mersenne Twister named MT19937-64 (Nishimura, 2000).

The timings show that the proposed jump-ahead algorithm is viable even with q = 0.
For k = 19937, the sliding window with a good value of q provides a speedup by a factor of
about 3 on a 32-bit computer. It also requires 312 Kb of memory, but for most practical
applications this is not a serious drawback given the memory sizes currently available.
There is more improvement on the Pentium than on the AMD Athlon, and this especially
true for the MT19937-64 generator. Note that the speed does not necessarily double when
going from a 32-bit to a 64-bit processor, for several reasons (memory access is not twice
faster, the Pentium and Athlon are different, etc.). Even for k = 1024 (a small value) the
sliding window remains advantageous.

Table 2: Required memory size and average CPU time (in milliseconds) for a random jump
ahead, for k = 19937, on Pentium 4 (32-bit) and AMD Athlon (64-bit) computers.

q 0 4 5 6 7 8 9 10
Memory (Kb) 2.5 39 78 156 312 624 1248 2496

MT19937, w = 32 15.9 5.8 5.1 4.7 4.3 4.5 5.1 6.8
32-bit Pentium WELL19937, w = 32 15.9 6.3 5.4 4.9 4.6 4.7 5.4 7.4

MT19937-64, w = 64 19.8 7.1 6.2 5.7 5.2 5.3 6.1 8.4
MT19937, w = 32 9.0 3.9 3.6 3.3 3.2 3.3 4.5 6.7

64-bit Athlon WELL19937, w = 32 9.7 4.0 3.8 3.5 3.4 3.5 4.8 7.1
MT19937-64, w = 64 5.6 2.4 2.4 2.3 2.1 2.3 2.9 5.0



8 G–2006–62 Les Cahiers du GERAD

Table 3: Required memory size and average CPU time (in milliseconds) for a random jump
ahead, for k = 1024, on Pentium 4 (32-bit) and AMD Athlon (64-bit) computers.

q 0 3 4 5 6 7
Memory (Kb) 0.13 1.0 2.0 4.0 8.0 16.0

32-bit Pentium WELL1024, w = 32 0.098 0.069 0.068 0.075 0.077 0.092
64-bit Athlon WELL1024, w = 32 0.096 0.060 0.062 0.068 0.071 0.086

A similar experiment with a clever implementation of the matrix method of Section 3.1
gave the following results: For k = 19937, the jump ahead took 24.5 msec on the 32-bit
Pentium and 17.0 msec on the 64-bit Athlon, on average. For k = 1024, the timings were
0.117 msec on the 32-bit Pentium and 0.096 msec on the 64-bit Athlon, on average. This
is roughly five times slower than the proposed method for k = 19937 and 50% slower for
k = 1024.

We also estimated the time to precompute zν mod p(z) using C++ and the NTL library
(http://www.shoup.net/ntl) for the polynomial calculations. For this, we generated 1000
values of ν randomly and uniformly in {0, 1, . . . , 264 − 1}, and measured the average CPU
time to compute zν mod p(z). The average was 239 milliseconds for k = 19937 and 1.9
milliseconds for k = 1024. This is much more than the time required to jump ahead.

4 Conclusions

We have developed a viable jump-ahead algorithm for large linear RNGs over F2. With this
technique, one can easily implement RNG packages with multiple streams and substreams,
based on long-period generators such as the Mersenne twister and the WELL with period
length of 219937 − 1. For these generators, jumping ahead takes a few milliseconds with
the proposed method. This is still significantly slower than for the MRG32k3a generator
in L’Ecuyer et al. (2002), whose jump-ahead time is a few microseconds. On the other
hand, MRG32k3a is slower to generate its numbers, by a factor of 2 or 3 on common 32-bit
computers, and has a much shorter period length. For applications where jumping ahead
is not required too frequently and where a fast long-period RNG is desired, the new jump-
ahead algorithm comes very handy.

References

Kelton, W. D. 2006. Implementing representations of uncertainty. S. G. Henderson, B. L.
Nelson, eds., Simulation. Handbooks in Operations Research and Management Science,
Elsevier, Amsterdam, The Netherlands, 181–191. Chapter 7.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms. 3rd ed. Addison-Wesley, Reading, Mass.



Les Cahiers du GERAD G–2006–62 9

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis. 3rd ed. McGraw-Hill,
New York.

L’Ecuyer, P., F. Panneton. 2005. Fast random number generators based on linear recur-
rences modulo 2: Overview and comparison. Proceedings of the 2005 Winter Simulation

Conference. IEEE Press, 110–119.

L’Ecuyer, P., R. Simard, E. J. Chen, W. D. Kelton. 2002. An object-oriented random-
number package with many long streams and substreams. Operations Research 50 1073–
1075.

Matsumoto, M., T. Nishimura. 1998. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling

and Computer Simulation 8 3–30.

Möller, B. 2005. Sliding window exponentiation. H. C. A. van Tilborg, ed., Encyclopedia

of Cryptography and Security . Springer-Verlag, New York, 588–590.

Nishimura, T. 2000. Tables of 64-bit Mersenne twisters. ACM Transactions on Modeling

and Computer Simulation 10 348–357.

Panneton, F., P. L’Ecuyer. 2005. On the xorshift random number generators. ACM

Transactions on Modeling and Computer Simulation 15 346–361.

Panneton, F., P. L’Ecuyer, M. Matsumoto. 2006. Improved long-period generators based
on linear recurrences modulo 2. ACM Transactions on Mathematical Software 32 1–16.

Savage, C. 1997. A survey of combinatorial Gray codes. SIAM Review 39 605–629.

Tezuka, S. 1995. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Norwell, Mass.


