
Les Cahiers du GERAD ISSN: 0711–2440

Mathematical Programming

Formulations for the Design of

Convolutional Self-Doubly

Orthogonal Codes

B. Jaumard
C. Meyer

G–2006–46

July 2006

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.

Mathematical Programming Formulations for the

Design of Convolutional Self-Doubly

Orthogonal Codes

Brigitte Jaumard

GERAD and CIISE – Concordia Institute for Information Systems Engineering
Concordia University

1455, boul. de Maisonneuve ouest, CB-410-12
Montréal (Québec) Canada H3G 1M8

bjaumard@CIISE.concordia.ca

Christophe Meyer

GERAD and Département d’informatique et de recherche opérationnelle
Université de Montréal

C.P. 6128, Succ. Centre-ville
Montréal (Québec) Canada H3C 3J7

christophe.meyer@gerad.ca

July 2006

Les Cahiers du GERAD

G–2006–46

Copyright c© 2006 GERAD

Abstract

Convolutional Self-Doubly Orthogonal Codes (cso
2
c) have been introduced in 1998

by Haccoun et al. as a novel class of convolutional codes which can be decoded using
an iterative threshold decoding algorithm that does not require interleavers. However,
these codes need to satisfy some orthogonal properties. Moreover, the memory length
of the code is a key issue for their overall latency. Unfortunately, the design of cso

2
c

codes with minimum span corresponds to a highly combinatorial problem and only
heuristics have been proposed up to now. We here investigate different mathematical
programming formulations for the optimum design of cso

2
c codes, or, at least, for

deriving a lower bound on their optimum span in order to evaluate the quality of the
heuristic solutions. It therefore leads to an assessment on the length of the best known
cso

2
c codes.

Key Words: Convolutional code, convolutional self-doubly orthogonal code (cso
2
c),

code span, mixed integer linear program, lower bound.

Résumé

Les codes convolutionnels doublement orthogonaux (cso
2
c) ont été introduits en

1998 par Haccoun et al. comme une nouvelle classe de codes convolutionnels pouvant
être décodés par un algorithme itératif de décodage à seuil sans entrelaceurs. Ces codes
doivent satisfaire certaines propriétés d’orthogonalité et leur longueur est un facteur
déterminant de la latence du système. Malheureusement la construction de tels codes
de longueur minimale correspond à un problème hautement combinatoire et seules des
heuristiques ont été proposées jusqu’à présent. Nous explorons différentes formulations
mathématiques pour la construction optimale de codes cso

2
c, ou à tout le moins, pour

obtenir une borne inférieure sur leur longueur minimale de façon à évaluer la qualité
des solutions heuristiques. Ceci conduit à une estimation de la qualité des meilleurs
codes connus.

Mots clés : Code convolutionnel, code convolutionnel doublement orthogonal, pro-
gramme linéaire mixte, borne inférieure.

Acknowledgments: This work was supported by the Concordia University Research
Chair on the Optimization of Communication Networks of the first author.

Les Cahiers du GERAD G–2006–46 1

1 Introduction

Haccoun et al. [3, 4] introduced a novel class of convolutional codes, called convolutional
Self-Doubly Orthogonal Codes (cso

2
c), and studied two types of them: wide-sense con-

volutional Self-Doubly Orthogonal Codes (cso
2
c-ws) and strict-sense convolutional Self-

Doubly Orthogonal Codes (cso
2
c-ss), see Haccoun et al. [2] for the details. Heuristics

have been devised in order to search for cso
2
c codes with minimum span for a given num-

ber of taps. Both projective geometry methods [2] and pseudorandom computer search
[5] have been investigated and provide efficient cso

2
c codes. However, no exact method

has been devised even only with the goal of computing lower bounds in order to estimate
the quality of the heuristic solutions. We therefore study mathematical programming for-
mulations for the design of cso

2
c in order to derive lower bounds and hence evaluate the

”practical complexity” of finding optimal cso
2
c codes, i.e., how much difficult it is in com-

parison with Golomb rulers for which it is well known that although geometry methods are
not exact methods, they do find optimum rulers in practice, while accurate lower bounds
are difficult to compute.

The paper is organized as follows. We will restrict our study to cso
2
c-ws codes. In

Section 2, we provide concise and equivalent definitions of cso
2
c-ws codes. In Section 3,

we explore various mathematical programming formulations, a straightforward nonlinear
one (Subsection 3.1), a first MILP - Mixed Integer Linear Programming - formulation (Sub-
section 3.2), and then a second MILP formulation (Subsection 3.3) that is more amenable
in terms of the number of constraints and variables. We next investigate the linear re-
laxation of the second MILP formulation in order to derive lower bounds in Section 4.
Computational results are summarized in Section 5 and conclusions are drawn in the last
section.

2 Definitions

Two different, but equivalent definitions have been given by Cardinal, Haccoun and Gagnon
[2] for cso

2
c-ws codes. We recall them below and assess their advantages and induced

properties.

Definition 1 A wide-sense convolutional self-doubly orthogonal code (cso
2
c-ws) of order

N is a sequence of N integers a1 < a2 < · · · < aN such that

1. the differences δij = aj − ai with j 6= i are distinct;

2. the differences of differences δkℓ − δij = (aℓ − ak) − (aj − ai) are distinct for all
(i, j, k, ℓ), ℓ 6= k, j 6= i, k 6= i, ℓ 6= j except for the unavoidable repetitions;

3. the differences of differences are distinct from the differences.

2 G–2006–46 Les Cahiers du GERAD

Unavoidable repetitions refer to identities, for example (aℓ−ak)−(aj −ai) = (aℓ−aj)−
(ak − ai), i.e., differences of differences that are always equal. Since the overall latency of
the iterative threshold decoding process is proportional to the memory length of the codes,
best codes correspond to those with the smallest memory or, in other words, those with
minimum span. Therefore, we are interested in finding the codes of smallest length, i.e.,
that minimize aN − a1.

Condition 1) taken alone defines Golomb Ruler with N marks, see, e.g., [11]. General-
ization of Golomb Ruler that look like the convolutional self-doubly orthogonal code, but
nevertheless with a slightly different definition are studied in [9].

Haccoun, Cardinal and Gagnon [5] claimed that conditions 1) and 3) are implied by
condition 2), yielding a shorter definition. To the best of your knowledge, no formal proof
of this result is available in the literature (the proof in Baechler’s PhD thesis [1] was done
for codes corresponding to sets “without the negative”, which is a variant of cso

2
c codes),

therefore we provide a proof of it below.

Proposition 1 For N ≥ 4, Conditions 1) and 3) in Definition 1 are implied by Condition
2).

Proof. Condition 2 states that (aℓ −ak)− (aj −ai) are distinct for all (i, j, k, ℓ), ℓ 6= k, j 6=
i, k 6= i, ℓ 6= j. Taking ℓ = i and k = j, we get that 2(ai−aj) are distinct for all (i, j), i 6= j.
This shows that Condition 1 is satisfied.

Let us now show that Condition 3 is also satisfied using a proof by contradiction.
Assume that there exists (i, j, k, ℓ, p, q), ℓ 6= k, j 6= i, k 6= i, ℓ 6= j, p 6= q such that

(aℓ − ak) − (aj − ai) = aq − ap (1)

or equivalently
ai + aℓ + ap = aj + ak + aq. (2)

Observe first that (1) cannot correspond to unavoidable repetitions. Indeed if it does, then
{i, ℓ, p} = {j, k, q}. Since i 6= j, i 6= k we have necessarily i = q. Similarly ℓ = q and
j = k = p. We then get 2(aq − ap) = (aq − ap), i.e., aq = ap, a contradiction with the fact
that p 6= q and that a cso

2
c-ws code is defined by a sequence of distinct integers. Hence

(1) does not correspond to unavoidable repetitions.
We distinguish the cases N ≥ 5 and N = 4. Consider first the case N ≥ 5. Then (1) can
be rewritten as:

(aℓ − ak) − (ar − ai) = (aq − ap) − (ar − aj)

with r 6∈ {i, j, ℓ, q}. If j 6= p, this equality contradicts Condition 2, hence (1) does not hold.
If j = p but k 6= p, we invert the role of j and k. Therefore it remains to consider the case
where j = k = p. (1) then becomes

aℓ − ak = aq − ai.

Les Cahiers du GERAD G–2006–46 3

Since i 6= k, this contradicts Condition 1.

If N = 4, then some indices in (1) must be identical. Let us first consider the case where
one of the indices appearing in the left-hand side of (2) is equal to an index appearing in
the right-hand side. Assume for example that p = j. Then (1) can be written

aℓ − ak = aq − ai.

Since k 6= i, this yields a contradiction with Condition 1. The cases p = k, q = i and
q = ℓ are handled similarly. From now on, we can therefore assume {i, ℓ, p} ∩ {j, k, q} = ∅.
Moreover the indices in {i, ℓ, p} play a symmetrical role, as well as the indices in {j, k, q}.
Recall that we must have |{i, ℓ, p} ∩ {j, k, q}| ≤ 4. Exploiting the symmetry, we are left
with four cases:

• i = ℓ and j = k, all other indices being distinct: then (1) can be written

(ai − aj) − (ap − ai) = (aj − ap) − (ap − aq).

Since the indices i, j, p, q are all distinct, we get a contradiction with Condition 2.

• i = ℓ = p, all other indices being distinct. Then (1) can be written

(ai − aj) − (aj − ai) = (ak − ai) − (aj − aq)

which is in contradiction with Condition 2.

• i = ℓ = p, j = k, j 6= q. In this case, (1) can be written

(ai − aq) − (ar − ai) = (aj − ai) − (ar − aj)

where r is chosen such that r 6∈ {i, j, q}. Again we get a contradiction with Condi-
tion 2.

• i = ℓ = p and j = k = q. (1) simplifies to ai = aj , a contradiction.

This shows that Conditions 1 and 3 are implied by Condition 2. 2

Note that it is possible to simplify furthermore the Condition 2 of Definition 1, by
eliminating some of the unavoidable repetitions. Let introduce the following notation:

δijkℓ = ai + aℓ − aj − ak.

Without loss of generality we can assume i ≤ ℓ and j ≤ k. Observe furthermore that if a
number is present in the set {δijkℓ : i ≤ ℓ, j ≤ k}, then its opposite is also present. Indeed
δijkℓ = −δjiℓk and (j, i, ℓ, k) satisfies the conditions if and only if (i, j, k, ℓ) satisfies them.
Therefore Condition 2 can be simplified by adding the condition ℓ > k, provided that δijkℓ

is replaced by |δijkℓ|.

We now show that there are no other unavoidable repetitions:

4 G–2006–46 Les Cahiers du GERAD

Proposition 2 Assume that (i, j, k, ℓ) satisfies the conditions i 6= j, i 6= k, i ≤ ℓ, j ≤ k < ℓ.
Then there are no unavoidable repetitions.

Proof. Assume that for some (i, j, k, ℓ, i′, j′, k′, ℓ′) satisfying i 6= j, i 6= k, i ≤ ℓ, j ≤ k <

ℓ, i′ 6= j′, i′ 6= k′, i′ ≤ ℓ′, j′ ≤ k′ < ℓ′, we have

|δijkℓ| = |δi′j′k′ℓ′ |. (3)

We will show that we must have (i, j, k, ℓ) = (i′, j′, k′, ℓ′).

There are two cases to distinguish depending on whether or not δijkℓ and δi′j′k′ℓ′ have
the same sign or not. In the first case, (3) becomes

aℓ + ai + ak′ + aj′ = ak + aj + aℓ′ + ai′ . (4)

This holds for all a if and only if (ℓ, i, k′, j′) is a permutation of (k, j, ℓ′, i′). Since k 6= ℓ,
k 6= i, j 6= ℓ and j 6= i, we have necessarily {j, k} = {j′, k′} and {i, ℓ} = {i′, ℓ′}. Since
j ≤ k, j′ ≤ k′, i ≤ ℓ and i′ ≤ ℓ′, we deduce (i, j, k, ℓ) = (i′, j′, k′, ℓ′).

We now consider the case where δijkℓ and δi′j′k′ℓ′ are of opposite sign. (3) becomes

aℓ + ai + aℓ′ + ai′ = ak + aj + ak′ + aj′ . (5)

For (5) to be true for all a, (ℓ, i, ℓ′, i′) must be a permutation of (k, j, k′, j′). Again since
k 6= ℓ, k 6= i, j 6= ℓ and j 6= i, we have necessarily {j, k} = {i′, ℓ′} and {j′, k′} = {i, ℓ}.
Since j ≤ k, i′ ≤ ℓ′, j′ ≤ k′ and i ≤ ℓ, we deduce (i, j, k, ℓ) = (j′, i′, ℓ′, k′). This is not
possible because of the conditions k < ℓ and k′ < ℓ′.

Hence there are no unavoidable repetitions. 2

It follows that Definition 1 can be rewritten:

Definition 2 A wide-sense convolutional self-doubly orthogonal code (cso
2
c-ws) of order

N is a sequence of N integers a1 < a2 < · · · < aN such that the |δijkℓ| are distinct for all
(i, j, k, ℓ), i 6= j, i 6= k, i ≤ ℓ, j ≤ k < ℓ.

Note that the condition defines a partial order on the indices. Completing in all possible
ways this partial order to a total order yields the following sets of indices.

I1 = {(i, j, k, ℓ) : 1 ≤ i < j ≤ k < ℓ ≤ N}

I2 = {(i, j, k, ℓ) : 1 ≤ j < i < k < ℓ ≤ N}

I3 = {(i, j, k, ℓ) : 1 ≤ j ≤ k < i ≤ ℓ ≤ N}.

Les Cahiers du GERAD G–2006–46 5

Let I = I1 ∪ I2 ∪ I3. Observe that only for (i, j, k, ℓ) ∈ I1, we do not know the sign of δijkℓ.
Indeed for (i, j, k, ℓ) ∈ I2 ∪ I3, δijkℓ ≥ 0.
We have

|I1| =
(N − 2)(N − 1)N(N + 1)

24

|I2| =
(N − 3)(N − 2)(N − 1)N

24

|I3| =
(N − 1)N(N + 1)(N + 2)

24
.

3 Mathematical Formulations for the Optimum Design of

CSO2C-WS Codes

3.1 A Compact Nonlinear Integer Formulation

Using the predicate all different, which is well-known in Constraint Programming (see,
e.g., [13]), the problem of finding a cso

2
c-ws code with smallest length can be compactly

formulated as follows:
min aN − a1

subject to:

δijkl = ai + aℓ − aj − ak (i, j, k, ℓ) ∈ I

all different ({|δijkℓ| : (i, j, k, ℓ) ∈ I})

ai+1 − ai ≥ 0 i = 1, . . . , n − 1

a1 = 0

ai integer i = 1, . . . , n − 1.

Note that there are two sources of nonlinearities, in addition to the integrality constraint:
the all different constraint, and the absolute values. We next propose two Mixed Integer
Linear Programming (MILP) formulations, in which these nonlinearities are removed.

3.2 A First MILP Formulation

Let L be an upper bound on the minimum length of a cso
2
c-ws code of order N . For

instance, set L to the length of the best known cso
2
c-ws code. Let D = {1, 2, . . . , 2L}.

Then δijkℓ ∈ (−D) ∪ D and |δijkℓ| ∈ D for all (i, j, k, ℓ) ∈ I.

Define

λijkℓu =

{

1 if δijkℓ = u

0 otherwise
(i, j, k, ℓ) ∈ I, u ∈ (−D) ∪ D.

6 G–2006–46 Les Cahiers du GERAD

The constraints will enforce that exactly one value of D is assigned to each |δijkℓ|. In
particular for (i, j, k, ℓ) ∈ I1 and u ∈ D, we will have δijkℓu + δijkℓ,−u = 1 if and only if
|δijkℓ| = u.

A first MILP formulation, denoted by MILP1, for the cso
2
c-ws code problem is as

follows:
min aN − a1

subject to:

ai + aℓ − aj − ak =
∑

u∈D

(λijkℓu − λijkℓ,−u)u (i, j, k, ℓ) ∈ I (6)

∑

(i,j,k,ℓ)∈I

(λijkℓ,u + λijkℓ,−u) ≤ 1 u ∈ D (7)

∑

u∈D

(λijkℓu + λijkℓ,−u) = 1 (i, j, k, ℓ) ∈ I (8)

ai+1 − ai ≥ 1 i = 1, . . . , N − 1 (9)

a1 = 0 (10)

λijkℓ,−u = 0, (i, j, k, ℓ) ∈ I \ I1, u ∈ D (11)

λijkℓu, λijkℓ,−u ∈ {0, 1} (i, j, k, ℓ) ∈ I, u ∈ D. (12)

This formulation has a very large number of binary variables λijkℓ,u, even if we use (11)
to reduce this number. Indeed the number of binary variables is

n1
B = (2|I1| + |I2| + |I3|) 2L =

1

3
N(N − 1)(N2 − N + 1)L.

By Jaumard and Morel [7], L∗ = Ω(N4) (where L∗ is the minimum length of a cso
2
c-ws

code of order N), hence n1
B = O(N8).

3.3 A Second MILP Formulation

In this second formulation, the all different constraint will be on |δijkℓ| rather than on
δijkℓ. Let ∆ijkℓ be the variable associated with |δijkℓ|. For (i, j, k, ℓ) ∈ I \ I1, we have
∆ijkℓ = δijkℓ, so we focus on (i, j, k, ℓ) ∈ I1. Let us introduce the following variables

xijkℓ =

{

1 if δijkℓ < 0
0 otherwise

for all (i, j, k, ℓ) ∈ I1. The following constraints ensure the equality ∆ijkℓ = |δijkℓ|:

Les Cahiers du GERAD G–2006–46 7

∆ijkℓ ≥ δijkℓ

∆ijkℓ ≥ −δijkℓ

∆ijkℓ ≤ δijkℓ + 4Lxijkℓ

∆ijkℓ ≤ −δijkℓ + 4L(1 − xijkℓ).

We can now deduce a second MILP formulation, denoted by MILP2:

min aN − a1

subject to:

∆ijkℓ =
∑

u∈D

µijkℓuu, (i, j, k, ℓ) ∈ I (13)

∆ijkℓ ≥ ai + aℓ − aj − ak (i, j, k, ℓ) ∈ I1 (14)

∆ijkℓ ≥ −(ai + aℓ − aj − ak) (i, j, k, ℓ) ∈ I1 (15)

∆ijkℓ ≤ ai + aℓ − aj − ak + 4Lxijkℓ (i, j, k, ℓ) ∈ I1 (16)

∆ijkℓ ≤ −(ai + aℓ − aj − ak) + 4L(1 − xijkℓ) (i, j, k, ℓ) ∈ I1 (17)

∆ijkℓ = ai + aℓ − aj − ak (i, j, k, ℓ) ∈ I \ I1 (18)
∑

(i,j,k,ℓ)∈I

µijkℓu ≤ 1 u ∈ D (19)

∑

u∈D

µijkℓu = 1 (i, j, k, ℓ) ∈ I (20)

ai+1 − ai ≥ 1 i = 1, . . . , N − 1 (21)

a1 = 0 (22)

µijkℓu ∈ {0, 1} (i, j, k, ℓ) ∈ I, u ∈ D (23)

xijkℓ ∈ {0, 1} (i, j, k, ℓ) ∈ I1. (24)

This formulation has (2L − 1)|I1| less binary variables than the first, but their number
is still large:

n2
B = (|I1| + |I2| + |I3|) 2L + |I1|.

Table 1 gives the value of the number of binary variables for the two MILP formulations,
for some N , assuming L equal to the length of the best known cso

2
c-ws code.

8 G–2006–46 Les Cahiers du GERAD

Table 1: Number of binary variables in the two MILP formulations

N 4 5 6 7 8 9

L 15 41 100 211 423 807

n1
B 780 5740 31000 127022 450072 1413864

n2
B 635 4525 24035 97552 343602 1075134

4 Linear programming relaxation

Denote by (LP1) and (LP2) the linear programming relaxation of the MILP1 and MILP2
formulations respectively. Although we do not know exactly how (LP1) and (LP2) com-
pare, we expect (LP1) to be weaker due to the fact that δijkℓ can be written as convex
combination of positive and negative numbers for (i, j, k, ℓ) ∈ I1. Therefore we focus on
(LP2).

4.1 Redundant and equivalent constraints

When relaxing constraints (24), constraints (16) and (17) can be removed: indeed given a
feasible value for a and ∆, it is always possible to find a value xijkℓ ∈ [0, 1] such that these
constraints are satisfied for (i, j, k, ℓ) ∈ I1.

Let us explore an alternate way to consider the all different constraint. Williams and
Yan [13] have shown that the convex hull of the feasible solutions of this constraint is
described by the inequalities:

∑

(i,j,k,ℓ)∈J

∆ijkℓ ≥

|J |
∑

u=1

u J ⊆ I (25)

∑

(i,j,k,ℓ)∈J

∆ijkℓ ≤

|J |
∑

u=1

(2L + 1 − u) J ⊆ I. (26)

Note that constraints (13), (19), (20) also describe the convex hull of the feasible integer
solutions of the all different constraint when (23) is relaxed. Therefore we replace (13),
(19), (20), (23) by (25)-(26). Notice that the constraints (25)-(26) depend only on the
variables ∆ijkℓ, but that they are in exponential number.

4.2 Tightening the LP relaxation

Recall that Conditions 1 and 3 of Definition 1 were shown to be implied by Condition
2, see Proposition 1. The LP relaxation can be tightened by reintroducing Conditions 1

Les Cahiers du GERAD G–2006–46 9

and 3. This is done by adding to I the set I4 defined by:

I4 = {(i, j, k, ℓ) : 1 ≤ i = j = k < ℓ ≤ N}.

The next valid inequalities exploit the observation that a subset of a set of integers
{a1, . . . , aN} defining a cso

2
c-ws code must itself be a cso

2
c-ws code. We start with a

lemma:

Lemma 1 Any cso
2
c-ws code of order h, h ≥ 2 has a length at least equal to

Lh =

⌈

h(h − 1)(h2 − h + 6)

16

⌉

. (27)

Proof. A proof of this lower bound for h ≥ 4 is given in Haccoun et al. [5, Section IV].
We need to extend this inequality to the cases h = 2 and h = 3. The inequality (27) is still
valid for h = 2: indeed the right-hand side becomes 1. For h = 3, the right-hand side is
5. In order to extend the validity of the inequality to h = 3, we have to show that a3 − a1

cannot be equal to 3, nor 4 in a cso
2
c-ws code defined by {a1, a2, a3}.

• Case 1: a3 − a1 = 3. There is only one possible solution up to symmetry: a1 = 0,
a2 = 1, a3 = 3. But this solution is not feasible since 2a2 − 2a1 = 2 = a3 − a2.

• Case 2: a3 − a1 = 4. The solution a = (0, 2, 4) is clearly not possible, hence up to
symmetry there is again only one solution: a = (0, 1, 4). But this solution violates
the constraint |a3 − a2| − |a2 − a1| 6= 2(a2 − a1).

This shows that (27) is valid for h ≥ 2. 2

From Lemma 1, we deduce:

Proposition 3 The following inequalities are valid:

ai+h−1 − ai ≥ Lh i = 1, . . . , N + 1 − h, h = 2, . . . , N (28)

∆ijkℓ ≤ aj + aℓ − ai − ak − 2Lh

where h = min{ℓ − k + 1, j − i + 1} (i, j, k, ℓ) ∈ I1. (29)

Proof. Constraints (28) follow from the observation that {ai, ai+1, . . . , ai+h−1} must be a
cso

2
c-ws code of order h.

Let us show (29). Note that

∆ijkℓ = aj + aℓ − ai − ak − 2min{aj − ai, aℓ − ak}.

10 G–2006–46 Les Cahiers du GERAD

From (28), we get

aj − ai ≥ Lj−i+1 ≥ Lh

aℓ − ak ≥ Lℓ−k+1 ≥ Lh.

Hence the result. 2

A last class of valid inequalities is given by the following Proposition:

Proposition 4 The following inequalities hold:

∆i+1,j,k,ℓ − ∆ijkℓ ≤ ai+1 − ai 1 ≤ i < i + 1 < j < k < ℓ ≤ N (30)

∆ijkℓ − ∆i,j+1,k,ℓ ≤ aj+1 − aj 1 ≤ i < j < j + 1 < k < ℓ ≤ N (31)

∆ijkℓ − ∆i,j,k+1,ℓ ≤ ak+1 − ak 1 ≤ i < j < k < k + 1 < ℓ ≤ N (32)

∆i,j,k,ℓ+1 − ∆ijkℓ ≤ aℓ+1 − aℓ 1 ≤ i < j < k < ℓ < ℓ + 1 ≤ N. (33)

Proof. We give the proof for (33). The proof of the other inequalities is similar. Because
of (21), we have δijk,ℓ+1 ≥ δijkℓ. There are three cases to consider depending on the position
of 0.

(i) 0 ≥ δijk,ℓ+1 ≥ δijkℓ: then ∆i,j,k,ℓ+1 − ∆ijkℓ = −(δijk,ℓ+1 − δijkℓ) = −(aℓ+1 − aℓ) and
(33) is satisfied.

(ii) δijk,ℓ+1 ≥ 0 ≥ δijkℓ: then ∆i,j,k,ℓ+1−∆ijkℓ = δijk,ℓ+1+δijkℓ = 2(ai−aj−ak)+aℓ+1+aℓ.
Hence ∆i,j,k,ℓ+1−∆ijkℓ−(aℓ+1−aℓ) = 2(ai+aℓ−aj−ak) = 2δijkℓ ≤ 0 by assumption.
Hence (33) is satisfied.

(iii) δijk,ℓ+1 ≥ δijkℓ ≥ 0: then ∆i,j,k,ℓ+1 − ∆ijkℓ = δi,j,k,ℓ+1 − δijkℓ = aℓ+1 − aℓ, hence (33)
is satisfied at equality.

2

4.3 Reducing the number of variables by exploiting the symmetry

Let (LP2+) be the LP relaxation of the MILP2 formulation, modified as explained in
Sections 4.1 and 4.2:

(LP2+) min aN − a1

s.t.

(14) − (15), (18)
(21) − (22)
(25) − (26)
(28) − (33).

Les Cahiers du GERAD G–2006–46 11

As it is the case for the Golomb Ruler problem [6] or for the more general DTS problem
[12], the number of variables can be reduced roughly by an half by exploiting the symmetry.
This reduction is based on the following result.

Proposition 5 There exists an optimal solution to (LP2+) satisfying

ai = aN − aN−i+1 i = 1, . . . , N (34)

∆ijkℓ = ∆N−ℓ+1,N−k+1,N−j+1,N−i+1 (i, j, k, ℓ) ∈ I1 (35)

∆ijkℓ = ∆N−k+1,N−ℓ+1,N−i+1,N−j+1 (i, j, k, ℓ) ∈ I2 ∪ I3 (36)

∆iiiℓ = ∆N−ℓ+1,N−ℓ+1,N−ℓ+1,N−i+1 (i, i, i, ℓ) ∈ I4. (37)

Proof. Let (a∗,∆∗) be an optimal solution. We will show that an alternate optimal
solution is (ã, ∆̃) with

ãi = a∗N − a∗N−i+1 i = 1, . . . , N (38)

∆̃ijkℓ = ∆∗
N−ℓ+1,N−k+1,N−j+1,N−i+1 (i, j, k, ℓ) ∈ I1 (39)

∆̃ijkℓ = ∆∗
N−k+1,N−ℓ+1,N−i+1,N−j+1 (i, j, k, ℓ) ∈ I2 ∪ I3 (40)

∆̃iiiℓ = ∆∗
N−ℓ+1,N−ℓ+1,N−ℓ+1,N−i+1 (i, i, i, ℓ) ∈ I4. (41)

Then by linearity, (â, ∆̂) = 1
2 (a∗,∆∗) + 1

2(ã, ∆̃) is also an optimal solution. This optimal
solution satisfies the condition of the Proposition.
So let us show that (ã, ∆̃) is an optimal solution. Notice that

(i, j, k, ℓ) ∈ I1 ⇔ (N − ℓ + 1, N − k + 1, N − j + 1, N − i + 1) ∈ I1 (42)

(i, j, k, ℓ) ∈ I2 ∪ I3 ⇔ (N − k + 1, N − ℓ + 1, N − i + 1, N − j + 1) ∈ I2 ∪ I3 (43)

(i, i, i, ℓ) ∈ I4 ⇔ (N − ℓ + 1, N − ℓ + 1, N − ℓ + 1, N − i + 1) ∈ I4. (44)

Assume that (i, j, k, ℓ) ∈ I1 and consider (14).

∆̃ijkℓ = ∆∗
N−ℓ+1,N−k+1,N−j+1,N−i+1

≥ −
(

a∗N−ℓ+1 + a∗N−i+1 − a∗N−k+1 − a∗N−j+1

)

= ãi + ãℓ − ãj − ãk

where we used (15) and (42). This shows that (14) is satisfied. By inverting the role of
(14) and (15) , we show similarly that (15) is satisfied.
Assume that (i, j, k, ℓ) ∈ I2 ∪ I3. Then

∆̃ijkℓ = ∆∗
N−k+1,N−ℓ+1,N−i+1,N−j+1

= a∗N−k+1 + a∗N−j+1 − a∗N−ℓ+1 − a∗N−i+1

= ãi + ãℓ − ãj − ãk

12 G–2006–46 Les Cahiers du GERAD

where we used (18) and (43). This shows that (18) is satisfied for I2 ∪ I3. We show in a
similar way that (18) is satisfied for I4.
Assume that (i, j, k, ℓ) ∈ I1 and consider (29). We have

∆̃ijkℓ = ∆∗
N−ℓ+1,N−k+1,N−j+1,N−i+1

≤ a∗N−k+1 + a∗N−i+1 − a∗N−ℓ+1 − a∗N−j+1 − 2Lmin{j−i+1,ℓ−k+1}

= ãℓ + ãj − ãk − ãi − 2Lmin{j−i+1,ℓ−k+1}

which shows that (29) is satisfied.
Consider now (25). Let J be a subset of I. By (42)-(44),

∑

(i,j,k,ℓ)∈J

∆̃ijkℓ is a sum of variables

∆∗
i′j′k′ℓ′ for a set J ′ with |J ′| = |J |. Hence (25) is satisfied.

It can be shown in a similar way that the other constraints are also satisfied. Hence (ã, ∆̃)
is a feasible solution to (LP2+). Its objective value is ãN − ã1 = (a∗N − a∗1)− (a∗N − a∗N) =
a∗N − a∗1, which shows that (ã, ∆̃) is an optimal solution. 2

5 Computational results

We solved the linear program (LP2+) with roughly half the variables eliminated using
(34)-(37). Due to their exponential number, constraints (25) were generated on a “as
needed basis” in a similar way than [10]. More specifically we generated only constraints
that are violated by more than 10−4 by the current solution. We did not consider (26).
Constraints (28) and (30)-(33) did not help, so we removed them.

zH denotes the value of the lower bound reported in [5]; z corresponds to the span of
the best code found in Jaumard and Morel [7] and Jaumard and Solari [8]; zlp

1234 is the
lower bound obtained by solving the LP with sets I1, I2, I3 and I4 (this corresponds to
Definition 1) while zlp

123 is the same lower bound without set I4 (this corresponds to the
simplified Definition 2). The gap is defined as

gap =
z − ⌈zlp

1234⌉

z
.

The computational results are presented in Table 2. A star (*) in the column for z indicates
that the upper bound is known to be the optimal value (see Jaumard and Solari [8]).1

1 Note that the codes for N = 5 and N = 6 reported in Table II of [5] are incorrect: indeed for N = 5,
|δ1345| = 28 = |δ5235|, and for N = 6, |δ6556| = 6 = |δ3456 |.

Les Cahiers du GERAD G–2006–46 13

Table 2: Computational results

N zH zlp

123 zlp

1234 z gap (%)

4 13.5 9.84 13.94 15∗ 6.67
5 32.5 27.14 34.90 41∗[2] 14.63
6 67.5 62.23 74.73 100∗[2] 25.00
7 126.0 125.76 143.71 211∗[8] 31.75
8 217.0 229.77 254.74 423∗[8] 39.72
9 351.0 388.68 421.78 807 [8] 47.71

10 540.0 618.49 660.54 1,475 [8] 55.19
11 797.5 940.17 992.51 2,767 [8] 64.11
12 1,138.5 1,374.71 1,438.30 4,988 [8] 71.15
13 1,579.5 1,943.70 2,020.02 8,405 [8] 75.95
14 2,138.5 2,674.77 2,764.71 11,347 [7] 75.63
15 2,835.0 3,599.63 3,704.10 20,792 [7] 82.18
16 3,690.0 4,739.93 4,860.35 25,396 [7] 80.86
17 4,726.0 6,136.25 6,273.79 30,387 [7] 79.35
18 5,967.0 7,823.54 7,979.01 38,426 [7] 79.23
19 7,438.5 9,832.54 10,007.32 53,657 [7] 81.35
20 9,167.5 12,209.18 12,404.15 62,345 [7] 80.10
21 11,183.0 14,994.34 15,210.89 104,310 [7] 85.42
22 13,513.5 18,228.31 18,467.33 116,314 [7] 84.12
23 16,192.0 21,961.06 22,223.88 128,609 [7] 82.72
24 19,251.0 26,242.47 26,530.25 143,280 [7] 81.48
25 22,725.0 31,117.68 31,431.39 198,899 [7] 84.20
26 26,650.0 36,647.99 36,988.55 210,825 [7] 82.46
27 31,063.5 42,882.13 43,251.38 277,146 [7] 84.39
28 36,004.5 49,881.35 50,280.44 301,619 [7] 83.33
29 41,513.5 57,670.79 58,077.46 363,589 [7] 84.03
30 47,632.5 65,493.40 65,932.13 412,259 [7] 84.01

6 Conclusion

We have presented two mixed integer linear formulations for the optimum design of cso
2
c-

ws codes. Adding valid inequalities to the second formulation allowed us to compute new
lower bounds for the optimum span of cso

2
c-ws codes, by solving the LP relaxation.

These lower bounds improve significantly on the ones proposed by [5]. Comparing these
lower bounds with the value of the span of the best known cso

2
c-ws codes however shows

the existence of a gap, which is much larger than for convolutional orthogonal codes, see

14 G–2006–46 Les Cahiers du GERAD

[11]. This clearly shows the need of additional works to both strengthen the lower bound
and to design more efficient methods for the derivation of good cso

2
c-ws codes.

References

[1] B. Baechler. Analyse et détermination de codes doublement orthogonaux pour
décodage itératif. Master’s thesis, École Polytechnique de Montreal, 2000.

[2] C. Cardinal, D. Haccoun, and F. Gagnon. Iterative threshold decoding without inter-
leaving for convolutional self-doubly orthogonal codes. IEEE Transactions on Com-
munications, 51(8):1274–1282, 2003.

[3] C. Cardinal, D. Haccoun, F. Gagnon, and N. Batani. Convolutional self doubly or-
thogonal codes for iterative decoding without interleaving. In Proceedings of the 1998
IEEE International Symposium on Information Theory, page 280, 1998.

[4] F. Gagnon, D. Haccoun, N. Batani, and C. Cardinal. Apparatus for convolutional self-
doubly orthogonal encoding and decoding. U.S. Patent 6,167,225, December 2000.

[5] D. Haccoun, C. Cardinal, and F. Gagnon. Search and determination of convolutional
self-doubly orthogonal codes for iterative threshold decoding. IEEE Transactions on
Communications, 53(5):802–809, 2005.

[6] P. Hansen, B. Jaumard, and C. Meyer. On lower bounds for numbered complete
graphs. Discrete Applied Mathematics, 94(1-3):205–225, 1999.

[7] B. Jaumard and M. Morel. Enhancing algebraic methods for the design of better cso2c
codes. in preparation.

[8] B. Jaumard and Y. Solari. With the search of shorter second order golomb rulers for
cso2c codes. in preparation.

[9] B. Jaumard, Y. Solari, and P. Galinier. On the design of optimum order 2 Golomb
ruler. Technical Report G-2003-79, GERAD, Université de Montréal, 2003.

[10] R. Lorentzen and R. Nilsen. Application of linear programming to the optimal dif-
ference triangle set problem. IEEE Transactions on Information Theory, 37(5):1486–
1488, 1991.

[11] C. Meyer and B. Jaumard. Equivalence of some LP-based lower bounds for the golomb
ruler problem. Discrete Applied Mathematics, 154:120–144, 2006.

[12] J. B. Shearer. Improved LP lower bounds for difference triangle sets. The Electronic
Journal of Combinatorics, 6(R31), 1999.

[13] H. Williams and H. Yan. Representations of the all different predicate of constraint
satisfaction in integer programming. INFORMS Journal on Computing, 13(2):96–103,
2001.

