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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
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Abstract

In this paper we consider the constant rank unconstrained quadratic 0-1 optimiza-
tion problem, CR-QP01 for short. This problem consists in minimizing the quadratic
function 〈x,Ax〉 + 〈c, x〉 over the set {0, 1}n where c is a vector in Rn and A is a
symmetric real n× n matrix of constant rank r.

We first present a pseudo-polynomial algorithm for solving the problem CR-QP01,
which is known to be NP-hard already for r = 1. We then derive two new classes of
special cases of the CR-QP01 which can be solved in polynomial time. These classes
result from further restrictions on the matrixA. Finally we compare our algorithm with
the algorithm of Allemand et al. (2001) for the CR-QP01 with negative semidefinite A
and extend the range of applicability of the latter algorithm. It turns out that neither
of the two algorithms dominates the other with respect to the class of instances which
can be solved in polynomial time.

Key Words: Quadratic 0-1 programming, Special case, Local minima, Constant
rank matrix, Stable sets.

Résumé

Dans cet article nous considérons le problème de minimisation quadratique 0-1 non-
contraint avec une matrice de rang constant, noté CR-QP01. Ce problème consiste
à minimiser la fonction quadratique 〈x,Ax〉 + 〈c, x〉 sur l’ensemble {0, 1}n où c est un
vecteur de Rn et A est une matrice symétrique réelle de dimension n × n et de rang
constant r.

Nous présentons d’abord un algorithme pseudo-polynomial pour résoudre le pro-
blème CR-QP01, qui est connu pour être NP-difficile déjà pour r = 1. Nous dérivons
ensuite deux nouvelles classes de cas spéciaux de CR-QP01 qui peuvent être résolues
en temps polynomial. Ces classes s’obtiennent en ajoutant des restrictions supplémen-
taires sur la matrice A. Finalement nous comparons notre algorithme avec l’algorithme
de Allemand et al. (2001) pour CR-QP01 lorsque A est une matrice semi-définie
négative et nous étendons le domaine d’application de ce dernier algorithme. Nous
montrons qu’aucun des deux algorithmes ne domine l’autre par rapport aux classes
d’instances qui peuvent être résolues en temps polynomial.

Mots clés : programmation quadratique 0-1, cas spécial, complexité, minimum local,
matrice de rang constant.
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2002).





Les Cahiers du GERAD G–2006–36 1

1 Introduction

Problem statement. In this paper we consider a special case of the unconstrained 0-1
quadratic programming problem, QP01 for short. The QP01 can be stated as follows:

min
x∈{0,1}n

〈x,Ax〉 + 〈c, x〉 (1)

where c is a vector in Rn, A is a symmetric real n × n matrix and 〈·, ·〉 denotes the
Euclidean inner product in Rn. Note that since x2

i = xi for xi ∈ {0, 1}, one could assume
in problem (1) that there is no linear term, i.e., that c = 0. Applying this transformation,
however, changes the diagonal elements of A. Since this paper is concerned with special
cases of the QP01 which result from specially structured matrices, we prefer to work with
the representation (1). Problem QP01 has been investigated in numerous papers and has
many applications, see e.g. Boros and Hammer (1991) and the references cited therein.

It is well-known that QP01 is strongly NP-hard; for example, it is equivalent to the
maximum cut problem (MC) which is well-known to belong to the class of strongly NP-
hard problems (for the equivalence see Boros and Hammer (1991), for the complexity of
the MC problem see Garey and Johnson (1979)).

The topic of this paper is the constant rank unconstrained quadratic 0-1 programming
problem, CR-QP01 for short, which arises as special case of the QP01 by restricting the
matrix A to the class of matrices with constant rank r. This restriction remains NP-hard
even for the special case of rank 1 matrices (for details, see Section 2).

Related results. In the literature mainly two types of special cases of the QP01 have
been investigated. The first type typically results from putting restrictions on the graph
G(A) obtained by introducing an edge {i, j} for aij 6= 0. There is a close relationship
between this class of special cases of the QP01 and special cases of the maximum cut
problem for special graph classes. An example of this first type of special cases is the case
which results from graphs G(A) with bounded treewidth. This special case can be solved
in polynomial time (see Crama, Hansen and Jaumard (1990) for a treatment in the more
general setting of pseudo-Boolean programs), and subsumes the special cases where the
graph G(A) is series-parallel (Barahona, 1986) or where G(A) is a binary tree (Pardalos
and Jha, 1991). There exist quite a number of other polynomially solvable special cases
of the QP01 which result from restrictions on the graph G(A). As this paper deals with a
different class of special cases, we refrain from giving further details.

The second class of special cases arises from putting restrictions on the matrix A = (aij).
The best known example of this type is the case of nonpositive matrices A, i.e., more
precisely, aij ≤ 0 for i, j = 1, . . . , n, i 6= j. This case can be solved by reduction to a
maximum flow problem in a network with O(n2) nodes (see Picard and Ratcliff, 1975).
The CR-QP01 belongs to this second class of special cases. The following special cases of
the CR-QP01 have been treated in the literature.
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• A is of rank r = 1 and there is no linear term, i.e., c = 0. This case can be solved in
a straightforward way by inspection.

• A has at most one positive and at most one negative eigenvalue and the rank of the
matrix (A, c) is equal to the number of nonzero eigenvalues of A. In this case, the
objective function f in (1) can be written as product of two linear functions. This
special case of the CR-QP01 is still NP-hard, see Hammer et al. (2002). In Hammer et
al. (2002) an O(n log n) algorithm is proposed for solving the continuous relaxation,
and then cases are characterized where the optimal solution of the relaxation is 0-1,
i.e., constitutes an optimal solution of the CR-QP01.

• A is negative semidefinite and there is no linear term, i.e., c = 0. For this case,
Allemand, Fukuda, Liebling and Steiner (2001) proposed an algorithm of complexity
O(nr−1) for r ≥ 3 and O(n2) for r = 2. At the end of this paper we will show that
their algorithm actually solves a broader class of problems, namely all quadratic 0-1
problems with a matrix of rank r that have the property that all optimal solutions
of the continuous relaxation are integral.

Our results. Our main result is the identification of the following two new classes of
polynomially solvable cases of the CR-QP01:

(C1) This class results from a hypergraph H = (V (H), E(H)) with bounded edge size.
We require that

∑
i,j∈F aij < 0 holds for all edges F ∈ E(H) and that the stable sets

of H can be enumerated in polynomial time (for details see Section 4).

(C2) This class results from an undirected loop-free graph G = (V (G), E(G)). We require
that aii + ajj − 2|aij | < 0 holds for all edges {i, j} ∈ E(G) and that the stable sets
of G can be enumerated in polynomial time (for details see Section 5).

Note that when H is a loop-free graph, the class C2 subsumes the class C1.

Note also that the class (C2) can also be defined in terms of the complement G′ = G

of the graph G:

(C2’) This class results from an undirected loop-free graph G′ = (V (G′), E(G′)). We
require that

aii + ajj − 2|aij | ≥ 0 ⇒ {i, j} ∈ E(G′) for all {i, j} ∈ V (G′) × V (G′), i 6= j

and that the cliques of G′ can be enumerated in polynomial time.

A class of graphs that has recently attracted a lot of attention and for which the cliques can
be enumerated in polynomial time is the class of bounded treewidth graphs. Indeed a char-
acterization of graphs with treewidth at most k is the following: a graph G has treewidth
at most k if and only if G is a subgraph of a chordal graph that has maximum clique size
at most k, see Bodlaender (1998). Obviously the size of a maximum clique in G is also
bounded by k, hence the number of cliques in G is O

(
nk
)
. Since there exist algorithms

that enumerate the (maximal) cliques in time polynomial in the total size of the cliques,
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see, e.g., Tsukiyama, Ide, Aviyoshi and Shirakawa (1977), the cliques can be enumerated
in polynomial time in graphs with bounded treewidth (although this is probably not the
most efficient way to do: exploiting the tree decomposition of those graphs is likely to yield
more efficient algorithms). A well-known subclass of the class of bounded treewidth graph
is the class of series parallel graphs, which itself contains the trees. Another class of graphs
having a polynomial number of cliques is the class of planar graphs, and more generally
the class of graphs with bounded thickness. The thickness of a graph G is defined as the
minimum number of planar graphs whose union gives G. The size of a maximum clique in
a graph with thickness t is ≤ 6t− 2, see Beineke (1997).
By considering the complementary classes of these classes, we get classes of graphs for
which the stable sets can be enumerated in polynomial time. Unfortunately, we are not
aware of any non-trivial classes of hypergraphs for which all stable sets can be enumerated
in polynomial time. Trivial classes of hypergraphs with this property include the sub-
classes of graphs we mentioned above (any graph is a special hypergraph) and complete
p-hypergraphs (i.e., the hypergraph with all possible edges of size p) for a fixed number p
since this class has O (np) stable sets (namely all possible subsets of the vertex set with
size ≤ p− 1).

Organization of the paper. The paper is organized as follows. In Section 2, we
discuss the complexity of problem CR-QP01 and present a pseudopolynomial algorithm
for its solution. In Section 3, we present the general framework of our approach. Section 4
deals with the special case C1 and Section 5 deals with the special case C2. In Section 6,
we compare our approach with the approach of Allemand, Fukuda, Liebling and Steiner
(2001). In particular, we show that the range of applicability of the approach of (Allemand,
Fukuda, Liebling and Steiner, 2001) can be extended. We furthermore provide examples
which show that neither of the two approaches dominates the other in terms of the classes
of instances of the CR-QP01 that can be solved in polynomial time. The paper is closed
with a short conclusion in Section 7.

2 Complexity aspects of the CR-QP01

In this section, we are going to investigate the complexity of the CR-QP01 in some more
detail. In particular, we will present a pseudopolynomial time algorithm for CR-QP01.
This shows that, in contrast to the general QP01, the special case CR-QP01 with a matrix
A of constant rank is not NP-hard in the strong sense.

For the rest of the paper we will make use of the following alternative representation of
problem CR-QP01:

min
x∈{0,1}n

f(x) = 〈c̃, x〉 +
d∑

ℓ=1

λℓ

(
βℓ + 〈uℓ, x〉

)2
(2)

where d is a constant, c̃ and u1, . . . , ud are given vectors in Rn, and λ1, . . . , λd, β1, . . . , βd
are given reals. Note that we could always set βℓ = 0 for ℓ = 1, . . . , d, because all linear
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terms can be collected in the term 〈c̃, x〉 and additive constants do not play a role in the
minimization of f . The reason why we, nevertheless, use the more general formulation
is that the choice of the vector c̃ and of the numbers βℓ might have an influence on the
running times of our algorithms (for further details see the comments below).

From linear algebra it is known that any quadratic function can be always represented
in the form (2). One method to arrive at such a representation is to determine a spectral
decomposition of A, i.e., to use the non-zero eigenvalues of A as values λj and the corre-
sponding eigenvectors as vectors uj , j = 1, . . . , d, where d = r (recall that r denotes the
rank of A). Moreover, all βℓ are set to zero. This approach has the disadvantage that
it might lead to irrational numbers in the representation (2), even in the case where all
entries of A and c are rational. If a rational representation is needed, one can compute a
so-called LDU decomposition of A which leads in the symmetric case to a decomposition
of A as product LDLT where L is a lower triangular matrix and D is a diagonal matrix
with rank d = r (see textbooks on linear algebra, e.g. Gantmacher (1959), for details).

Since the representation of a quadratic function in the form (2) is not unique, this
poses the question of finding the best such representation. Different representations can
have different values for d and c̃, which will influence the running time of our algorithms.
For example, by choosing the numbers βℓ in a clever way, it might be possible to arrive
at c̃ = 0, which, as we will see later, leads to algorithms with a faster running time for
the classes considered in this paper. Similarly, a clever choice of c̃ might allow to arrive
at a quadratic part with rank d < r. We will not deal with the question of finding the
representation which results in the smallest running times of our algorithms in this paper.
This is a problem in its own right.

It is well-known and easy to see that problem CR-QP01 is NP-hard already for matrices
of rank 1. If the representation (2) is used, one can even moreover assume that c̃ = 0. To see
this, consider the well-known subset sum problem, see Garey and Johnson (1979), which,
given nonnegative integers s1, . . . , sn and an integral target value B, asks for the existence
of a subset I ⊆ {1, . . . , n} such that

∑
i∈I si = B. This question has the answer yes if and

only if the optimal value of the instance of the CR-QP01 given by min
x∈{0,1}n

(
∑n

i=1 sixi −B)2

is 0.

The following result shows that problem CR-QP01 can be solved in pseudo-polynomial
time for rational data.

Proposition 1 Let an instance of problem (2) be given with u1, . . . , ud ∈ Zn, β1, . . . , βd ∈
Z, c̃ ∈ Qn and λ1, . . . , λd ∈ Q. Let U = 2maxi=1,...,n;ℓ=1,...,d{|u

ℓ
i |, |c̃i|}. Then the given

instance can be solved in O
(
dU2d+2n2d+3

)
time.

To prove Proposition 1, we need the following lemma.
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Lemma 1 Let K = {kij} be a m×n integral matrix, and b an integer vector of dimension
m. The problem of deciding whether there exists a vector x ∈ {0, 1}n such that Kx = b

can be solved in O
(
mnm+1κm

)
time where κ = 2 max

i=1,...,m,j=1,...,n
{|kij |}.

Proof. The proof of this lemma is based on a modification of the dynamic programming
approach of Papadimitriou (1981) for the integer linear feasibility problem. Let k(i) denote
the i-th column of the matrix K, i = 1, . . . , n. At the j-th stage of the dynamic program,

we compute the set Wj of vectors w that can be written as w =
j∑
i=1

xik
(i) with xi ∈ {0, 1},

i = 1, . . . , j. The cardinality of the set Wj is bounded from above by (jκ+ 1)m. Hence

the set Wn can be computed in O
(
m
∑n−1

j=1 (jκ + 1)m
)

= O
(
mnm+1κm

)
time. To answer

the feasibility question, it suffices to check if the set Wn contains the vector b, which can
also be done in O

(
mnm+1κm

)
time. �

Proof of Proposition 1. For notational convenience, set u0 = c̃. Due to the def-
inition of U we have, −nU

2 ≤ 〈uℓ, x〉 ≤ nU
2 for all ℓ = 0, . . . , d and x ∈ {0, 1}n. Let

v = (v0, . . . , vd) be an integral vector in the box
[
−nU

2 ,
nU
2

]d+1
. We associate with v the

following parametrized minimization problem

min gv0,...,vd
(x) = v0 +

d∑

ℓ=1

λℓ (βℓ + vℓ)
2 (3)

s.t.

{
〈uℓ, x〉 = vℓ ℓ = 0, . . . , d
xi ∈ {0, 1} i = 1, . . . , n.

For each choice of v, the set of constraints of the corresponding problem (3) defines a
feasibility problem which can be solved in O

(
dnd+2Ud+1

)
time applying the approach from

Lemma 1. The optimal value of problem (2) is the minimum of v0+
d∑
ℓ=1

λℓ (βℓ + vℓ)
2 over all

vectors v = (v0, . . . , vd) which correspond to a feasible problem. There are (nU + 1)d+1 =
O
(
(nU)d+1

)
vectors (v0, . . . , vd) to test, hence the claimed result follows. �

3 General algorithmic framework

In this section we present the general framework of our approach. In the two subsequent
sections we will discuss how polynomial time algorithms can be obtained for the special
cases C1 and C2 introduced in the introduction.

In Section 3.1 we introduce some key notations for the generic algorithmic approach
which will be sketched in Section 3.2. The generic algorithm consists of three steps. We
propose two variants for performing the first step, which are presented in Sections 3.3 and
3.4, respectively. The second and third steps of the algorithm are addressed in Sections 3.5
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and 3.6, respectively. In Section 3.7, we introduce some graph theoretical definitions that
will be needed in the remainder of this paper.

3.1 Neighborhoods and local minima

A key notion needed in this section is the notion of a neighborhood. The function N
which maps x ∈ {0, 1}n to the set N (x) ⊆ {0, 1}n \ {x} is called a neighborhood function,
or neighborhood for short. The members of the set N (x) are called neighbors of x. Note
that we allow N (x) = ∅, i.e., x has no neighbors.

x̃ ∈ {0, 1}n is said to be a local minimum of (2) with respect to the neighborhood
function N if f(x̃) ≤ f(x) holds for all x ∈ N (x̃). x̃ ∈ {0, 1}n is said to be a global
minimum of (2) if f(x̃) ≤ f(x) holds for all x ∈ {0, 1}n.

In the sequel it will be more convenient to use the following alternative representation
of neighborhood functions: For x ∈ {0, 1}n and a subset F of {1, . . . , n}, let xF denote the
vector which results from x by flipping the values of the components of x corresponding to
indices in F , i.e.,

xFi =

{
1 − xi if i ∈ F

xi if i 6∈ F
i = 1, . . . , n.

Clearly, to each neighborhood function N , we can associate a set function F such that
N (x) = {xF : F ∈ F(x)} holds for all x ∈ {0, 1}n. By a slight abuse of notation, we will
in the following also refer to F as a neighborhood function. We denote by G the union of
the sets F(x) over all x ∈ {0, 1}n, i.e., G =

⋃
x∈{0,1}n F(x). We assume that the sets in G

are ordered in some arbitrary way, say G = {F1, F2, . . . , Fg} where g = |G|.

Both specific neighborhood functions which will be used in this paper (in Sections 4 and
5, respectively) are symmetric, i.e., fulfill the property x ∈ N (x′) ⇔ x′ ∈ N (x). Moreover
we assume that there exists a constant p such that |F | ≤ p for all F ∈ G. This assumption
will be fulfilled in all cases considered in this paper.

We are now going to characterize local minima with respect to a given neighborhood
function F .

Proposition 2 x is a local minimum with respect to the neighborhood function F if and
only if the following property holds for all F ∈ F(x):

∑

j∈F

(2xj − 1)

(
c̃j + 2

d∑

ℓ=1

λℓu
ℓ
j(βℓ + 〈uℓ, x〉)

)
−
∑

i,j∈F

(2xi − 1)(2xj − 1)aij ≤ 0. (4)

Proof. Compute the difference ∆ = f(x) − f(xF ) and note that
d∑
ℓ=1

λℓu
ℓ
iu
ℓ
j = aij for all

i, j = 1, . . . , n. It is then easy to see that the condition ∆ ≤ 0 is equivalent to the condition
(4). �
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We are now going to reformulate the condition (4). Our goal is to arrive at a polyhedral
description. For each set F ∈ G we choose a value δF such that

∑

i,j∈F

(2xi − 1)(2xj − 1)aij ≤ δF for all x ∈ {0, 1}n. (5)

Let δ = (δF1
, δF2

, . . . , δFg ). To each x ∈ {0, 1}n we associate a polyhedron Px,δ ⊆ Rd which

contains all y ∈ Rd such that

2
d∑

ℓ=1

λℓ



∑

j∈F

(2xj − 1)uℓj


 yℓ ≤ δF −

∑

j∈F

(2xj − 1)c̃j for all F ∈ F(x). (6)

Proposition 2 implies that for all local minima x with the property F(x) 6= ∅ (i.e. x has at
least one neighbor) the polyhedron Px,δ ⊆ Rd is nonempty (to see that, set yℓ := βℓ+〈uℓ, x〉
for ℓ = 1, . . . , d). In order to write the inequalities defining the polyhedron Px,δ in a more
succinct way, we introduce the terms rj(y) defined by

rj(y) = c̃j + 2

d∑

ℓ=1

λℓu
ℓ
jyℓ j = 1, . . . , n. (7)

Then Px,δ can be defined as the set of all y ∈ Rd such that for all F ∈ F(x) we have

∑

j∈F

(2xj − 1)rj(y) ≤ δF . (8)

3.2 A generic algorithm

In this section we are going to propose a high-level description of a generic algorithm A
to solve the CR-QP01, stated in the form (2). In subsequent parts of Section 3 we will
give more details on how the different steps of the generic algorithm A can be performed.
Further specializations result from the choice of specific neighborhood functions F in Sec-
tions 4 and 5, where the special cases C1 and C2 are treated. We note that algorithm
A is inefficient for the general case of CR-QP01. In Sections 4 and 5, respectively, we
will show how A turns into a polynomial time algorithm for the special cases C1 and C2,
respectively.

Generic algorithm A

1. Construct a set Y with the property that Y contains at least one point y ∈ Px,δ for
all local minima x with F(x) 6= ∅.

2. For each y ∈ Y , construct a set X(y) such that X(y) ⊇ {x ∈ {0, 1}n : y ∈ Px,δ}.
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3. Compute f(x) for all x ∈ X(Y ) =
⋃
y∈Y X(y) and for all x ∈ {0, 1}n such that

F(x) = ∅. Let x∗ be a point with minimal objective function value among the tested
points. Then x∗ constitutes an optimal solution of problem CR-QP01.

Clearly the choice of δ has a strong influence on the effectiveness of algorithm A. If δ
is badly chosen, then the cardinality of the sets X(y) will be too large to allow an efficient
algorithm (recall that in the final step of A an exhaustive search is done over the union
of all sets X(y) for y ∈ Y ). Observe that

∑
j∈F (2xj − 1)rj(y) = −

∑
j∈F (2xFj − 1)rj(y)

holds for F ∈ F(x). This motivates to choose δF such that, if possible, not both x and its
corresponding neighbor xF fulfill the inequality (8). This will help in achieving our goal
to keep the cardinalities of the sets X(y) sufficiently small. In the following we will make
use of the following two different strategies to reach this goal:

S1 Choose δF < 0 for all F ∈ G.

S2 In the case c̃ = 0, there exists the following alternative choice: Set δF = 0 for all
F ∈ G. This choice leads to an algorithm with improved running time as we will see
later on, but it makes only sense to apply it when

∑
j∈F (2xj − 1)rj(y) 6= 0 holds for

a sufficiently large number of sets F ∈ G (for details see Section 3.4).

In Section 3.3, we show how to construct the set Y when strategy S1 is used. In Section 3.4,
we show how to perturb the problem so that

∑
j∈F (2xj−1)rj(y) 6= 0 holds for all x ∈ {0, 1}n

and a sufficiently large number of sets F ∈ G. This enables the use of strategy S2. The
construction of the set X(y) is discussed in Section 3.5.

3.3 Construction of the set Y using strategy S1 to choose δ

In this section, strategy S1 will be applied to choose δ. Let Γ be the set of all constraints
of type (8). Note that a constraint in (8) is defined by a subset F ∈ G and a choice for
the values xj, j ∈ F . Thus, we have |Γ| ≤

∑p
j=1

(
n
j

)
2j = O(np) (recall that we assume

throughout that |F | ≤ p for all F ∈ G). Suppose that the constraints in Γ are ordered, i.e.,
Γ = {γ1, γ2, . . . , γ|Γ|}.

We now construct a tree T as follows: A node of T at level h is characterized by
h linearly independent constraints of type (8), say γi1 , . . . , γih where i1 < i2 < . . . <

ih. The root of the tree (level 0) corresponds to an empty set of constraints. Given a
node N(γi1 , . . . , γih) at level h, its sons are the nodes N(γi1 , . . . , γih , γi) for all possible
choices of i such that the following three properties are fulfilled: (i) i > ih, (ii) the h + 1
constraints γi1 , . . . , γih , γi are linearly independent and (iii) constraint γi is compatible
with the constraints γi1 , . . . , γih with respect to the choice of the values of the variables
xj involved in these constraints. Clearly the maximal depth of the tree T is d. For each
leaf of the tree, we compute a point of the system of equations associated to the leaf
(these equations result if we require that the inequalities characterizing the leaf are all
fulfilled with equality). Note that, if a leaf is at level d, this system of equations has
a unique solution, which is not the case if the leaf is at a level < d. In the latter case
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we simply choose one solution of the system of equations corresponding to the leaf under
consideration. The points computed in this way constitute the set Y .

It remains to be argued that the set Y constructed above contains at least one point
of each polyhedron Px,δ. Let x be fixed and consider a face f of the polyhedron Px,δ with
smallest dimension d − k (if Px,δ has extreme points, f will be an extreme point). This
face f is characterized by k linearly independent constraints of type (8) which are satisfied
at equality, say, γj1, . . . , γjk with j1 < j2 < · · · < jk. By definition, the tree T contains the
node N(γj1 , . . . , γjk). If N(γj1 , . . . , γjk) is a leaf, then by construction of the algorithm,
a point of the face f has been computed. If N(γj1 , . . . , γjk) is not a leaf, then it has a
descendent N(γj1 , . . . , γjk , γjk+1

, . . . , γjt) which is a leaf: the point that was computed for
this leaf is a point of our face f .

The number of leaves in the tree, and hence the cardinality of Y , is bounded by
(|Γ|
d

)
(ob-

serve that the number of leaves is largest if there are no leaves at levels < d). The amount of
work that has to be done at each node (i.e., either checking that the inequalities of that node
are linearly independent, or finding a point of the system) can be bounded by O(d3), hence

the time complexity of computing Y is given by O

(
d∑
ℓ=1

(|Γ|
ℓ

)
d3

)
= O(|Γ|dd3) = O(d3npd).

3.4 Implicit construction of the set Y using strategy S2 to choose δ

Strategy S2 will be applied when c̃ = 0. Recall that this means that we set δF = 0 for all
F ∈ G. In that case Px,δ is a polyhedral cone with origin Ω = (0, . . . , 0) for all x ∈ {0, 1}n.
Note that the point Ω itself is not a useful point for inclusion into the set Y because it
belongs to all Px,δ. (Ω ∈ Y would result in X(Y ) = {0, 1}n, i.e., in an exhaustive search
over all feasible solutions of CR-QP01). Instead we consider points that are close to Ω.
These points are on extreme rays (or faces of greater dimension, if no extreme rays exist).

Since these faces are of dimension ≥ 1, their number is O(|Γ|d−1) = O(np(d−1)). This allows
us to decrease the time complexity of the procedure for computing Y in comparison to the
case of strategy S1 where O(|Γ|d) points had to be investigated. The price we have to pay
for this improvement is that we have to cope with problems which result from degeneracy.

Each point y ∈ Y results from a set of constraints of type (8) which have to be fulfilled
at equality. If for a point y and for sets F ∈ G that were not used to define y, we have∑

j∈F (2xj − 1)rj(y) = 0, the point y might not be much more useful than Ω. This means
that we have to take care of degeneracy. To that end, a symbolic perturbation method,
which is described next, will be applied.

3.4.1 A perturbation method

The perturbation method which we are going to propose is inspired by an approach de-
scribed in the book by Edelsbrunner (1987, p. 185–191). Let q be the first prime greater
than d+ 1 and set ψ(j, ℓ) = qd(j+1)−ℓ. Consider the perturbed vectors ûℓ defined by

ûℓj = uℓj + εψ(j,ℓ) ℓ = 1, . . . , d, j = 1, . . . , n
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where ε is a small positive number. Note that this perturbation also affects the problem
in (2). We are actually solving a perturbed version which is obtained by replacing the

vectors uℓ by their perturbed versions ûℓ, ℓ = 1, . . . , d. Let P̂x,0 be the perturbed version

of Px,0. The polyhedron P̂x,0 contains all y ∈ Rd which fulfill

∑

j∈F

(2xj − 1)r̂j(y) ≤ 0 for all F ∈ F(x) (9)

where r̂j(y) = 2
∑d

ℓ=1 λℓû
ℓ
jyℓ for j = 1, . . . , n.

If we had to give a specific value to ε, this value would probably have to be exponentially
small, which would threaten the polynomiality of our algorithm. It turns out, however,
that we can perform Step 1 of algorithm A in a modified way such that it is not necessary
to explicitly compute the candidate points y ∈ Y . This allows us to refrain from choosing
a specific value for ε. The key observation is that it suffices to be able to determine the
sign of the expressions on the left hand side of the inequalities (9) defining the perturbed

polyhedron P̂x,0. In Section 3.4.2, we explain how to construct the systems defining the
candidate points y ∈ Y . In Section 3.4.3, we characterize the sets F ∈ G for which the
expressions

∑
j∈F (2xj − 1)r̂j(y) are non-zero. Section 3.4.4 explains how to determine the

sign of the expressions
∑

j∈F (2xj − 1)r̂j(y). Section 3.4.5 discusses when the perturbation
method should be used.

3.4.2 Implicit construction of the set Y

Consider again the tree T introduced in Section 3.3. In the rest of Section 3 we will work
with the perturbed problem. A given node of tree T at level h is thus characterized by a
system of equations

∑

j∈Ftµ

(2xj − 1)r̂j(y) = 0 µ = 1, . . . , h (10)

where Ftµ ∈ G for µ = 1, . . . , h and the values xj , j ∈
⋃
µ=1,...,h Ftµ , are given.

Recall that in the process of constructing the tree T described in Section 3.3 we repeat-
edly need to test a given set of inequalities of type (8) for linear independence. Moreover,
the explicit construction of the set Y requires that a system of equations is solved. This
approach cannot be followed if perturbation is used and no specific value of ε is chosen. In
the following we will demonstrate how these difficulties can be circumvented.

Suppose we are given the system of equations (10). We associate with this system the
following simplified system of equations in the new variables zj :

∑

j∈Ftµ

zj = 0 µ = 1, . . . , h. (11)
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Obviously, the linear dependency of these equations implies the linear dependency of the
equations (10). We are going to show that for ε sufficiently small, the converse also holds.
We first show this result for the case h = d − 1, i.e., for the greatest possible value of h.
The general result will be dealt with in Corollary 1.

We start with discussing the case of a leaf at level h = d−1. We augment the system (11)
by a normalization constraint of the form

∑

j∈Ft0

αjzj = 1 (12)

where the set Ft0 ⊆ {1, . . . , n} and the coefficients αj, j ∈ Ft0 are chosen such that the
equations given by (11)–(12) are linearly independent (Ft0 does not need to belong to G;
a possible choice is Ft0 = {j0} where j0 6∈

⋃
µ=1,...,h Ftµ and αj0 = 1, although this has the

disadvantage to require the fixation of an additional variable xj0). Consider the system
in the variables yℓ obtained by replacing zj by (2xj − 1)r̂j(y). We show now that for ε
sufficiently small, this system has always a unique solution.

Proposition 3 Assume that the d equations in the variables zj given by (11)–(12) are
linearly independent. Then for any choice of the values xj , j ∈

⋃
µ=0,...,d−1

Ftµ , and for ε

sufficiently small, the system in the variables yℓ given by

∑

j∈Ftµ

(2xj − 1)r̂j(y) = 0 µ = 1, . . . , d− 1

∑

j∈Ft0

αj(2xj − 1)r̂j(y) = 1

has a unique solution.

Proof. Since the equations given by (11)–(12) in the variables zj are linearly independent,
this system of equations can be put in a triangular form, i.e., there exist numbers νik for
i = 1, . . . , d, and k = 1, . . . , n, satisfying νii = 1 for i = 1, . . . , d and numbers bi, i = 1, . . . , d,
such that the system (11)–(12) is equivalent to

∑n
k=i νikzjk = bi for i = 1, . . . , d. The

corresponding system in the variables yℓ has then the following form:

2
d∑

ℓ=1

λℓ

(
n∑

k=i

νik(2xjk − 1)
(
uℓjk + εψ(jk ,ℓ)

))
yℓ = bi, i = 1, . . . , d.

Clearly the determinant of the coefficient matrix of this system is a polynomial in ε. This

polynomial contains the term 2d
(

d∏
i=1

λiνii(2xji − 1)

)
ε

d
P

i=1

ψ(ji,i)
(observe that a cancellation

of this term is not possible since due to the construction of the perturbation there cannot
be another term with the same power of ε). Hence the polynomial contains at least one
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non-zero term. Consequently, the determinant will be non-zero for ε sufficiently small,
which implies the claim about the unique solvability. �

The case where the level of the leaf under consideration is h < d − 1 is reduced to
the case h = d − 1 by adding d − 1 − h additional equations of the form (10) such that
the equations

∑
j∈Ftµ

zj = 0, µ = 1, . . . , d − 1 are linearly independent.(The sets Ftµ ,

µ = h + 1, . . . , d − 1, corresponding to the newly added equations are not required to be
members of the set G.)

Corollary 1 For ε sufficiently small, Equations (10) are linearly independent if and only
if Equations (11) are linearly independent.

Proof. As observed above, the linear independence of (10) clearly implies the linear
independence of (11). The converse is a consequence of Proposition 3. �

We are now prepared to summarize the procedure to construct the set Y implicitly. We
again build up the tree T described in Section 3.3, but there are two essential differences.
The first one relates to the fact that instead of computing the members of the set Y
explicitly, we will work with systems of equations which define implicitly the points in
Y . The second difference concerns the fact that the leaves of the tree have a depth of
≤ d − 1 (in contrast to ≤ d in Section 3.3). In the following we distinguish two cases:
leaves at level d − 1 and leaves at level < d − 1. We start with the first case. A leaf at
level d− 1 is characterized by d− 1 equalities of type (10). These equalities define a line L
passing through the origin Ω, where Ω partitions L into two halflines. The addition of the
normalization constraint

∑
j∈Ft0

αj(2xj − 1)r̂j(y) = 1 has the effect of selecting a point yL1
lying on one of these two halflines. A point yL2 on the other halfline is obtained by using
the normalization constraint

∑
j∈Ft0

αj(2xj − 1)r̂j(y) = −1. We add both points yL1 and

yL2 , defined implicitly by their system of equations, to the set Y .
The second case concerns leaves at level h < d− 1. In such a case, we first add d − 1 − h

artificial constraints as explained above. We end up with d−1 equations which are linearly
independent. These equations again define a line L through the origin, but in that case we
only need to include in Y one point, for example yL1 .

It remains to be argued that the set Y constructed above contains at least one point

y of each polyhedral cone P̂x,0. Let x be fixed and consider a face f of the polyhedron

P̂x,0 with smallest dimension d − k (if Ω is an extreme point of P̂x,0, then f = Ω). This
face f is characterized by k linearly independent constraints of type (9) which are satisfied
at equality, say, γj1, . . . , γjk with j1 < j2 < . . . jk. We distinguish two cases, depending
on whether k = d or k ≤ d − 1. Consider first the case k = d. By definition, the

tree T contains the leaf N(γj1 , . . . , γjk−1
). A point on the halfline of P̂x,0 defined by the

equations γj1, . . . , γjk−1
was included to the set Y (as well as a point on the other side of

the supporting line with respect to Ω). Consider now the case k ≤ d − 1. By definition,
the tree T contains the node N(γj1, . . . , γjk). If N(γj1 , . . . , γjk) is a leaf, then at least one
point of the face f was computed (two points if k = d− 1). If N(γj1 , . . . , γjk) is not a leaf,
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then it has a descendent N(γj1, . . . , γjk , γjk+1
, . . . , γjt) which is a leaf: again at least one

point of the face f was computed.

From the discussion above, it follows that the set Y , with which we end up, will indeed
have cardinality O(|Γ|d−1), in contrast to O(|Γ|d) in the case handled in Section 3.3. Recall,
however, that the points of Y are defined implicitly. Now in Step 2 of algorithm A, we need

to determine for each point y ∈ Y whether or not it belongs to P̂x,0, i.e., whether or not
(9) is satisfied. To that end, we need to be able to determine the sign of

∑
j∈F

(2xj − 1)r̂j(y)

without computing explicitly the point y. We propose a method in Section 3.4.4, but
first we will characterize the cases for which the sign is defined, i.e., for which

∑
j∈F

(2xj −

1)r̂j(y) 6= 0.

3.4.3 Characterizations of sets F with
∑

j∈F(2xj − 1)r̂j(y) 6= 0

In this section we show that the proposed perturbation method eliminates the problems
caused by degeneracy. Specifically, the perturbation guarantees that the number of sets
F ∈ G for which

∑
j∈F (2xj − 1)r̂j(y) = 0 holds is sufficiently small. (Recall that this

property is required to end up with a set X(Y ) of manageable size.)

The following two results characterize the sets F with the desired property
∑

j∈F (2xj−
1)r̂j(y) 6= 0.

Proposition 4 Let ỹ be a point of Y which is implicitly defined by the system of equations∑
j∈Ftµ

(2xj − 1)r̂j(y) = 0 for µ = 1, . . . , d − 1 augmented by a normalization constraint

which is not listed here. Let Ftd ⊆ {1, . . . , n} (not necessarily in G). If the equations∑
j∈Ftµ

zj = 0, µ = 1, . . . , d, are linearly independent, then we have
∑
j∈Ftd

(2xj−1)r̂j(ỹ) 6= 0.

Proof. The proof is similar to that of Proposition 3. We first write the system
∑

j∈Ftµ
zj =

0, µ = 1, . . . , d, as a triangular system, then replace the variables zj by 2(2xj − 1)
∑d

ℓ=1 λℓ(
uℓj + εψ(j,ℓ)

)
yℓ and consider the determinant of the resulting system in the variables yℓ.

This determinant is again a polynomial in ε with at least one non-zero term, hence the
determinant is non-zero for ε sufficiently small. Therefore the only solution of the system
of d equations is the point Ω = (0, . . . , 0). Since ỹ is not equal to Ω and satisfies the first
d−1 equations, ỹ cannot satisfy the last equation given by

∑
j∈Ftd

(2xj−1)r̂j(ỹ) = 0 which

proves the claim. �

Recall that when determining a point y, we had to fix the values of some of the xj.
Denote by Jy the set of indices j ∈ {1, . . . , n} with the property that the values xj have
not been used to define y.

Corollary 2 For all F ⊆ Jy and all x ∈ {0, 1}n, we have
∑

j∈F (2xj − 1)r̂j(y) 6= 0.
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Proof. The assumption F ⊆ Jy implies that the equation
∑

j∈F zj = 0 only involves
variables zj with indices j which are not appearing in the equations used to determine y.
Consequently Proposition 4 can be applied, which yields the desired result. �

3.4.4 Determination of the sign of
∑

j∈F(2xj − 1)r̂j(y)

Assume that the point y ∈ Y is implicitly defined by the system

d∑

ℓ=1

λℓ



∑

j∈Ftµ

(2xj − 1)
(
uℓj + εψ(j,ℓ)

)

 yℓ = 0 µ = 1, . . . , d− 1 (13)

d∑

ℓ=1

λℓ



∑

j∈Ft0

αj(2xj − 1)
(
uℓj + εψ(j,ℓ)

)

 yℓ = 1. (14)

Let F ⊆ Jy. We now explain how to determine the sign of
∑

j∈F (2xj − 1)r̂j(y).

To simplify the notation, we set Ftd = F (recall, however, that F does not necessarily

belong to G). By Cramer’s Rule, we have yℓ = detMℓ(ε)
detM(ε) for ℓ = 1, . . . , d, where M(ε)

denotes the coefficient matrix of the system of equations given by (13)–(14) and Mℓ(ε)
denotes the matrix obtained from M(ε) by replacing the ℓ-th column of M(ε) by the
column vector (0, . . . , 0, 1)t. Note that detM(ε) is non-zero by Proposition 3. Let η′kℓ =

2λℓ

(∑
j∈Ftk

(2xj − 1)
(
uℓj + εψ(j,ℓ)

))
for k = 0, . . . , d and ℓ = 1, . . . , d.

We are interested in the sign of the expression
∑

j∈Ftd
(2xj − 1)r̂j(y). This expression

is equal to

Ψ =
∑

j∈Ftd

(2xj − 1)r̂j(y) =

d∑

ℓ=1

η′dℓyℓ =

d∑

ℓ=1

η′dℓ
detMℓ(ε)

detM(ε)
.

We now develop the determinant of the matrix Mℓ(ε) with respect to its ℓ-th column. This
leads to detMℓ(ε) = (−1)d+ℓ detM ′′

ℓ (ε) where M ′′
ℓ (ε) is the matrix obtained from Mℓ(ε)

by deleting the ℓ-th column and the last row. Hence

Ψ =

d∑

ℓ=1

(−1)d+ℓη′dℓ
detM ′′

ℓ (ε)

detM(ε)
=

detM ′′(ε)

detM(ε)

where M ′′(ε) is the matrix with elements η′kℓ, k, ℓ = 1, . . . , d. Proceeding in a similar
way as in the proof of Proposition 3, it can be shown that detM ′′(ε) is non-zero for ε
sufficiently small. Since both detM(ε) and detM ′′(ε) are polynomials in ε, their sign is
determined by the sign of their first non-zero coefficient, starting with the terms of smallest
exponent. We explain in the following how to determine the sign of detM ′′(ε). The case
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of detM(ε) is handled analogously. The exponents of ε in detM ′′(ε) are of the form
∑

(j,ℓ)∈S ψ(j, ℓ) =
∑

(j,ℓ)∈S q
jd+d−ℓ for all subsets S of

(⋃
µ=1,...,d Ftµ

)
× {1, . . . , d} with

cardinality ≤ d. Since p is an upper bound on |F | for all F ∈ G, it follows that j can take
at most pd distinct values which implies that the expression φ(j, ℓ) = (j+1)d−ℓ, (j, ℓ) ∈ S,
can take at most pd2 distinct values. The number of possible values for the exponents of

ε is therefore bounded by
∑d

k=1

(
pd2

k

)
. For each possible exponent ω of ε, the coefficient of

εω is the sum of at most d subdeterminants of M ′′(ε), and can thus be computed in O(d4)
time. Since d is a constant, the sign of

∑
j∈F (2xj − 1)r̂j(y) can therefore be computed in

O(1) time (note, however, that the constants hidden in this asymptotic notation increase
rapidly with d and p).

3.4.5 Applicability of the perturbation method

In order to be able to apply the perturbation method, we must have

∑

i,j∈F

âij ≤ 0 for all F ∈ G (15)

for ε sufficiently small, where Â is the perturbed matrix defined by âij =
∑d

ℓ=1 λℓû
ℓ
i û
ℓ
j

for all i, j. (Note that if an inequality in (15) were violated, it would not be possible to
choose δ = 0.) The condition (15) is guaranteed to hold for small values of ε, only when∑

i,j∈F aij < 0 holds for all F ∈ G.

We close the discussion of the perturbation approach by the remark that in principle
this approach can also be applied in the general case, i.e., for c̃ 6= 0. The candidate set
Y can be computed in O(|Γ|d−1) time for the case in which c̃ 6= 0 and the number of
indices i such that c̃i 6= 0 is bounded by a constant. In that case, we distinguish between
polyhedra Px,δ that are polyhedral cones vertexed at Ω, and polyhedra that contain at least
one extreme point different from Ω. For polyhedral cones, we compute (implicitly) points
on faces of dimension ≥ 1. For polyhedra with at least one extreme point different from
Ω, we compute candidate extreme points that satisfy at equality at least one inequality
corresponding to a set F containing an index i such that c̃i 6= 0. Since the number of
these inequalities is bounded by a constant, these candidate extreme points can also be
computed in O(|Γ|d−1) time.

Although the perturbation method can also be applied in the case c̃ 6= 0, it is not
recommendable to apply it for at least 3 reasons: removing the degeneracy results in an
increase of the cardinality of Y ; the hidden constants in the complexity bound increase
when perturbation is used; and finally, perturbation may destroy a possible symmetry in
the objective function, implying that algorithm A cannot any longer be used to obtain the
set of all optimal solutions.

In the remaining part of this paper, we generally assume that the perturbation method
is used if and only if c̃ = 0.
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3.5 Construction of the set X(y)

In order to be able to handle the cases with and without application of the perturbation
method in a unified way, we introduce the expressions ρj(y) for j = 1, . . . , n and y ∈ Y ,
where ρj(y) equals r̂j(y) if perturbation is used and equals rj(y) otherwise.

Let y ∈ Y be given explicitly or implicitly (by its set of defining equations). In order
to construct the set X(y) we need to compute the set of all x ∈ {0, 1}n such that y ∈ Px,δ

(or its perturbed version P̂x,0). This task amounts to finding all points x ∈ {0, 1}n which
satisfy

∑

j∈F

(2xj − 1)ρj(y) ≤ δF for all F ∈ F(x)

where δF = 0 for all F ∈ G in the perturbed case.

Our method for solving this task is largely dependent on the choice of the neighborhood
function F . We therefore postpone the further discussion of the computation of the sets
X(y) to Sections 4 and 5, where specific neighborhood functions for the cases C1 and C2
will be introduced.

3.6 Construction of the set of optimal solutions

Let X(Y ) =

(
⋃
y∈Y

X(y)

)
and X = X(Y ) ∪ {x : F(x) = ∅}: the optimal solutions to

problem (2) are obtained by evaluating the objective function f for all points of X, and
keeping the points of smallest value. The complexity of this phase is O(|X|nd).

Note that we can also construct the set of all local minima for the neighborhood function
F under consideration by testing all points in X and listing those which are local minima.
The running time of this approach is |X| times the time needed to check if a given point
is a local minimum with respect to F .

A word of caution is in order when perturbations are used. We then have no guarantee
to obtain all global optima, or all local minima, and will in general have to be satisfied
with a single global optimum.

3.7 Some graph theoretical definitions

The following definitions will be needed in the remainder of the paper (for further details
see e.g. Berge, 1976).

A hypergraph H = (V (H), E(H)) is defined by a set V (H) of vertices and a collec-
tion E(H) of subsets of V (H) called edges. For notational convenience assume V (H) =
{1, . . . , n}. The size of an edge F ∈ E(H) is the cardinality of F , i.e., |F |. An edge of size
1 is called a loop. Observe that a hypergraph H becomes a graph if all edges are of size 1
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or 2. A hypergraph is said to be of bounded edge size if there exists a constant k such that
|F | ≤ k for all F ∈ E(H).

Let H = (V (H), E(H)) be a hypergraph and let W ⊆ V (H). The set W induces
a subhypergraph of H, the so-called induced subhypergraph H[W ] = (W,E(H[W ])) with
vertex set W and edge set E(H[W ]) which only contains those edges F ∈ E(H) which
are subsets of W . As a special case the notion of a induced subgraph arises: let G =
(V (G), E(G)) be an undirected graph and W ⊆ V (G), then G[W ] = (W,E(G[W ])) with
E(G[W ]) = {{i, j} ∈ E(G) : i, j ∈ W} is called the subgraph of G induced by the vertex
set W .

A stable set or independent set of H = (V (H), E(H)) is a subset W of V (H) such that
no subset of W belongs to E(H). Note that a subset of a stable set is still a stable set.

4 A polynomial time algorithm for special case C1

In this section, we consider the special case C1 of problem CR-QP01 (cf. Section 1). This
case arises for matrices A of rank d which additionally satisfy the following property

∑

i,j∈F

aij < 0 for all F ∈ E(H) (16)

where H = (V (H), E(H)) is a hypergraph with |V (H)| = n. Our main result is the
following:

Theorem 1 Let H be a class of hypergraphs satisfying the following conditions: for any
H ∈ H,

(a) H is a hypergraph of bounded edge size.

(b) The largest stable set in H is of size O(log n).

(c) The number of maximal stable sets in H is polynomial in n.

Then the CR-QP01 stated in the form (2) can be solved in polynomial time when restricted
to the class of matrices fulfilling property (16) with H ∈ H.

Theorem 1 will be proved in the course of this section.

4.1 Definition of the neighborhood function used for case C1

For dealing with case C1, we need a neighborhood function F . To define F we proceed as
follows. Let H = (V (H), E(H)) be a hypergraph and let x ∈ {0, 1}n. Let Hx

0 = H[V x
0 ]

and Hx
1 = H[V x

1 ], respectively, denote the subhypergraphs of H which are induced by the
vertex sets V x

0 and V x
1 , respectively, where V x

0 = {i ∈ V (H) : xi = 0} and V x
1 = {i ∈

V (H) : xi = 1}. To each x ∈ {0, 1}n we associate the set F(x) which defines the neighbors
of x by taking F(x) to be the union of the edges of the subhypergraphs Hx

0 and Hx
1 . In
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other words, x′ ∈ {0, 1}n is a neighbor of x if it can be obtained from x by selecting an
edge F ∈ E(H) such that the components xi, i ∈ F , have the same value and then flipping
the value of these components. Observe that G =

⋃
x∈{0,1}n F(x) = E(H).

Let δ be chosen either according to strategy S1, i.e., such that
∑

i,j∈F aij ≤ δF < 0 holds

for all F ∈ G, or according to strategy S2, i.e., δF = 0 for all F ∈ G (this strategy is applied
for c̃ = 0).

Using the neighborhood function F introduced above, the defining inequalities (8) of
the polyhedron Px,δ (or the inequalities (9) defining its perturbed version) simplify to

∑

j∈F

ρj(y) ≤ δF for all F ∈ F(x) such that xi = 1 for all i ∈ F (17)

−
∑

j∈F

ρj(y) ≤ δF for all F ∈ F(x) such that xi = 0 for all i ∈ F (18)

where again ρj(y) equals r̂j(y) or rj(y) depending on whether or not perturbation has been
applied (cf. Section 3.5).

4.2 Construction of the set X(y) for case C1

We assume that the set Y has already been computed (either explicitly or implicitly, see
Sections 3.3 and 3.4 respectively). In order to compute the set X(y) for a given y ∈ Y , we
need to consider all points x ∈ {0, 1}n such that y ∈ Px,δ (cf. Section 3.2), which in our
case means the set of all x ∈ {0, 1}n such that the system of inequalities given by (17)–(18)
is satisfied. Recall that in the course of computing y, the values of some xj have already
been fixed to either 0 or 1. Let Jy again denote the set of the indices j ∈ {1, . . . , n} for
which the value of xj has not yet been fixed. For j ∈ {1, . . . , n} \ Jy, let xyj denote the
already fixed value of the j-th component of x. Clearly, we do not have any freedom in
choosing the values xyj . Thus the task of computing the set X(y) amounts to finding all
possibilities for choosing the values of xj for j ∈ Jy such that y belongs to Px,δ.

Let H[Jy] denote the subhypergraph ofH which is induced by the vertex set Jy ⊆ V (H).
If x ∈ {0, 1}n satisfies the system of inequalities (17)–(18), then it also satisfies the following
set of conditions

∑

i∈F

ρi(y) ≤ 0 for all F ∈ E(H[Jy ]) such that xi = 1 for all i ∈ F (19)

∑

i∈F

ρi(y) > 0 for all F ∈ E(H[Jy ]) such that xi = 0 for all i ∈ F. (20)

To prove this claim, we distinguish two cases depending on which strategy has been used
to choose δ. If S1 has been applied, we have δF < 0 for all F ∈ G, so the claim follows
directly from (17)–(18). If S2 has been applied, the strict inequality in (20) follows from
Corollary 2.
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Consequently, we reduce the task to compute X(y) to the search for all partitions
(Oy, Zy) of the set Jy such that

∑

i∈F

ρi(y) ≤ 0 for all F ∈ E(H[Oy ]) and
∑

i∈F

ρi(y) > 0 for all F ∈ E(H[Zy]). (21)

Such partitions will be called feasible partitions of Jy. Each feasible partition leads to a
point x ∈ {0, 1}n in the following way:

xj =





0 for j ∈ Zy
1 for j ∈ Oy
x
y
j for j ∈ {1, . . . , n} \ Jy.

(22)

(The names Oy and Zy have been chosen to reflect that xj is set to one for j ∈ Oy, and to
zero for j ∈ Zy.)

It is easy to see that the set of feasible partitions is nonempty since the partition (Õy, Z̃y)

with Õy = {i ∈ Jy : ρi(y) ≤ 0} and Z̃y = {i ∈ Jy : ρi(y) > 0} is clearly feasible (note that if
perturbation is used, we have to use the technique described in Section 3.4.4 to determine
the sign of ρi(y)).

Our problem now is to find all feasible partitions of Jy. The following lemma turns out
to be helpful in solving this problem.

Lemma 2 Let (Õy, Z̃y) be the initial feasible partition defined above and let (Oy, Zy) be
an arbitrary partition of Jy. Then for (Oy, Zy) to be a feasible partition, the following two
conditions have to be fulfilled

(i) U0→1
y = Z̃y ∩Oy is a stable set in the induced hypergraph H[Z̃y].

(ii) U1→0
y = Õy ∩ Zy is a stable set in the induced hypergraph H[Õy].

Proof. We prove the statement in (i). The statement in (ii) is proved analogously. Assume

that U0→1
y is not a stable set in H[Z̃y], i.e., it contains an edge F of the hypergraph H[Z̃y].

Then by the feasibility of (Õy, Z̃y) it follows that
∑

i∈F ρi(y) > 0. Therefore, we cannot
have

∑
i∈F ρi(y) ≤ 0, which shows that (Oy, Zy) cannot be a feasible partition since the

first condition in (21) would be violated (note that U0→1
y ⊆ Oy). We thus arrived at a

contradiction which implies the claim (i). �

Lemma 2 and the discussion above motivate the following approach for computing a
set X(y) containing the set of x ∈ {0, 1}n such that y ∈ Px,δ:

Algorithm B to compute X(y) :

1. Compute the initial feasible partition (Õy, Z̃y). Compute the point x̃ associated with

(Õy, Z̃y) according to (22). Add x̃ to X(y).
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2. Enumerate the sets S(H[Z̃y]) and S(H[Õy]) which denote the sets of all stable sets

in the induced hypergraphs H[Z̃y] and H[Õy] respectively. (Note that S(H[Z̃y]) and

S(H[Õy]) are subsets of the set of all stable sets of the hypergraph H.)

3. With each (S0, S1) ∈ S(H[Z̃y]) × S(H[Õy]), we associate the new partition (Oy, Zy)

with Oy = Õy ∪ (S0 \ S1) and Zy = Z̃y ∪ (S1 \ S0). Compute the point x associated
with (Oy, Zy) according to (22). Add x to X(y).

Note that the running time of algorithm B depends heavily on the time needed by the
second step in which all stable sets of two subhypergraphs of H need to be enumerated.
When H is a graph, a large number of papers are available which present algorithms for
listing all its maximal stable sets in time polynomial in the size of the output, see, e.g.,
Bron and Kerbosch, 1973; Chiba and Nishizeki, 1985; Dahlhaus and Karpinski, 1988;
Johnson, Yannakakis and Papadimitriou, 1988; Mulligan and Corneil, 1972; Tsukiyama,
Ide, Ariyoshi and Shirakawa, 1977. For the general case of a hyperplane of bounded edge
size, Eiter and Gottlob (1995) have proposed an algorithm which lists all maximal stable
sets in time polynomial in the size of the output (the existence of such an algorithm for
general hypergraphs is an open question; see Boros et al. (2004) for some step in this
direction). The approach of Eiter and Gottlob (1995) can be applied in our case, but in
order to arrive at a polynomial overall running time for the procedure for computing X(y),
we need to make sure that the size of the output depends polynomially on the size of the
input. This leads to the following sufficient condition for the polynomiality of algorithm B.

Condition 1 The sum of the cardinality of all stable sets of H is polynomial in n.

We now show how this condition relates to the conditions of Theorem 1. Since the sum
of the cardinalities of all subsets of a stable set of cardinality m is given by

∑m
k=1

(
m
k

)
k =

m2m−1, the sum of the cardinalities of all stable sets is bounded by σ(N,m) = Nm2m−1,
where N denotes the number of maximal stable sets and m denotes the size of the largest
maximal stable set. The number σ(N,m) is bounded from above by a polynomial in n

provided that N is a polynomial in n and m = O(log n). This shows that Condition 1 is
implied by the conditions of Theorem 1.

4.3 Enumeration of the points of empty neighborhood for class C1

Now the proof of Theorem 1 is almost completed. We have already argued in Sections 3.3
and 3.4 that the computation of the set Y , i.e., the first step of the generic algorithm A
presented in Section 3.2, can be implemented to run in polynomial time. In Section 4.2, we
showed that the second step of algorithm A can also be implemented in polynomial time.
It remains to discuss the complexity of the third and last step of algorithm A. To arrive at
an overall polynomial time algorithm we need to make sure that the set of points x such
that F(x) = ∅ can be constructed in polynomial time. Observe that F(x) = ∅ for some
x ∈ {0, 1}n if and only if V (H), the vertex set of H can be partitioned into two stable
sets. Moreover, each such pair of stable sets gives rise to two points x such that F(x) = ∅.



Les Cahiers du GERAD G–2006–36 21

Consequently Condition 1 also ensures that the set of points x such that F(x) = ∅ can be
constructed in polynomial time.

5 A polynomial time algorithm for special case C2

In this section we are going to deal with the special case C2 of problem CR-QP01 (cf.
Section 1). Recall that the special case C2 arises for matrices A of rank d which additionally
satisfy the following conditions:

aii + ajj − 2|aij | < 0 for all {i, j} ∈ E(G) (23)

where G = (V (G), E(G)) is an undirected graph with n vertices and without loops.

The main result of this section is the following:

Theorem 2 Let G be a class of graphs satisfying the condition that the number of stable
sets in the graph G is polynomial in n for all G ∈ G. Then the CR-QP01 stated in the
form (2) can be solved in polynomial time when restricted to the class of matrices fulfilling
property (23) for G ∈ G.

We rewrite condition (23) as follows:

aii + ajj − 2aij < 0 for all {i, j} ∈ E+(G) (24)

aii + ajj + 2aij < 0 for all {i, j} ∈ E−(G) (25)

for a partition E+(G) ∪ E−(G) of E(G) such that E+(G) ⊇ {{i, j} ∈ E(G) : aij > 0} and
E−(G) ⊇ {{i, j} ∈ E(G) : aij < 0}.

5.1 Definition of the neighborhood function used for case C2

The neighborhood function F associated with class C2 is implicitly defined as follows.
x′ ∈ {0, 1}n is a neighbor of x ∈ {0, 1}n if x and x′ differ in exactly two components i and
j, with {i, j} ∈ E(G) and xi and xj satisfying the following condition: if {i, j} ∈ E+(G)
then xi = 1− xj (= 1− x′i = x′j); if {i, j} ∈ E−(G) then xi = xj (= 1− x′i = 1− x′j). Note

that G =
⋃
x∈{0,1}n F(x) = E(G).

Let δF for F = {i, j} ∈ G be such that

0 > δF ≥

{
aii + ajj − 2aij if {i, j} ∈ E+(G)
aii + ajj + 2aij if {i, j} ∈ E−(G).

When c̃ = 0, we also allow the choice δF = 0 for all F = {i, j} ∈ G.

Using the neighborhood function F introduced above, the defining inequalities (8) of

the polyhedron Px,δ (or the inequalities (9) defining its perturbed version P̂x,0) simplify to

ρi(y) + ρj(y) ≤ δF for all F = {i, j} ∈ E−(G) such that xi = xj = 1 (26)

−ρi(y) − ρj(y) ≤ δF for all F = {i, j} ∈ E−(G) such that xi = xj = 0 (27)

ρi(y) − ρj(y) ≤ δF for all F = {i, j} ∈ E+(G) such that xi = 1, xj = 0. (28)
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5.2 Construction of the set X(y) for case C2

Assume that Y has already been computed and let y ∈ Y . To compute the set X(y), we
need to consider all points x ∈ {0, 1}n such that y ∈ Px,δ. From the definition of Px,δ by
the inequalities (26)–(28), it follows that the set {x ∈ {0, 1}n : y ∈ Px,δ} is equal to the set
of points x ∈ {0, 1}n satisfying

xi + xj ≤ 1 for all F = {i, j} ∈ E−(G) : ρi(y) + ρj(y) > δF (29)

xi + xj ≥ 1 for all F = {i, j} ∈ E−(G) : ρi(y) + ρj(y) < −δF (30)

xi ≤ xj for all F = {i, j} ∈ E+(G) : ρi(y) − ρj(y) > δF . (31)

Recall that the values of some components of x were fixed when computing y. Using
the inequalities (29)–(31), the value of some other components may be determined. If a
contradiction occurs, X(y) = ∅; otherwise let Jy denote the set of the indices j ∈ {1, . . . , n}
for which the value of xj has not been fixed. For j ∈ {1, . . . , n} \ Jy, let xyj denote the

already fixed value of the j-th component of x. We define the set X(y) as the set of points
x ∈ {0, 1}n satisfying

xi + xj ≤ 1 for all {i, j} ∈ E−(G[Jy ]) : ρi(y) + ρj(y) ≥ 0 (32)

xi + xj ≥ 1 for all {i, j} ∈ E−(G[Jy ]) : ρi(y) + ρj(y) ≤ 0 (33)

xi ≤ xj for all {i, j} ∈ E+(G[Jy ]) : ρi(y) ≥ ρj(y) (34)

xj = x
y
j for all j ∈ {1, . . . , n} \ Jy. (35)

The inclusion {x ∈ {0, 1}n : y ∈ Px,δ} ⊆ X(y) is obvious if δF < 0 for all F ∈ G. In the case
δF = 0 for all F ∈ G, we additionally need to observe that ρi(y) + ρj(y) 6= 0 holds for all
{i, j} ∈ E−(G[Jy ]) and that ρi(y) 6= ρj(y) holds for all {i, j} ∈ E+(G[Jy ]) by Corollary 2.
The following observation turns out to be helpful to compute the set X(y).

Observation 1 Let U be a subset of Jy. Let a (respectively b) be the vertex of U with
minimum value ρa(y) (respectively maximum value ρb(y)).
If ρa(y) + ρb(y) ≤ 0, fixing xa to 0 forces the value of all xi, i ∈ U , such that {i, a} ∈
E(G[Jy ]).
If ρa(y) + ρb(y) > 0, fixing xb to 1 forces the value of all xi, i ∈ U , such that {i, b} ∈
E(G[Jy ]).

Indeed, assume that ρa(y) + ρb(y) ≤ 0. Then by definition of a and b, for all j ∈ U we
have ρa(y) + ρj(y) ≤ 0 and ρa(y) ≤ ρj(y). By (33), we therefore conclude that xj = 1 for
all j ∈ U such that {a, j} ∈ E−(G[Jy ]) and by (34) we conclude that xj = 0 for all j ∈ U

such that {a, j} ∈ E+(G[Jy ]). Similarly if ρa(y) + ρb(y) > 0, fixing xb to 1 results in the
fixation of xi to 0 for all i ∈ U such that {i, b} ∈ E−(G[Jy ]) and in the fixation of xi to 1
for all i ∈ U such that {i, b} ∈ E+(G[Jy ]).

Using Observation 1, the set X(y) can be computed by calling the recursive procedure
enumStable, described below, with parameters (x, Jy , ∅). We will use the notion partial
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binary vector for a vector whose components have three possible entries: 0, 1 or “not yet
defined”. Recall that for the vector x in the initial call all entries xj with j ∈ Jy are equal
to “not yet defined”, while we have xj = x

y
j for j ∈ {1, 2, . . . , n} \ Jy.

Moreover, we assume that the components of x are renumbered in such a way that
the corresponding values of ρi(y) are ordered non-decreasingly, i.e., ρ1(y) ≤ ρ2(y) ≤ . . . ≤
ρn(y).

enumStable (x̄, L, S)
{x̄: a partial binary vector }
{L: set of nonfixed components in x̄ }
{S: this parameter is not necessary; it will be useful when analyzing the complexity }

1. If L = ∅
2. add x̄ to X(y)
3. Else

a = arg min
i∈L

ρi(y); b = arg max
i∈L

ρi(y)

4. if ρa(y) + ρb(y) ≤ 0, choose v = a; otherwise choose v = b

x̄′ = x̄; if v = a, set x̄′v to 0; otherwise set x̄′v to 1
determine x̄′w for w ∈ L such that {v,w} ∈ E(G[Jy ])
according to Observation 1

5. enumStable (x̄′, (L \ {v}) \ {w ∈ L : {v,w} ∈ E(G[Jy ])}, S ∪ {v})
x̄′ = x̄; if v = a, set x̄′v to 1; otherwise set x̄′v to 0

6. enumStable (x̄′, L \ {v}, S)
7. End If.

In line 4, a not yet fixed component v is selected to be fixed. The two possible values
for this component are considered. For one of these values, Observation 1 allows to fix all
nonfixed components corresponding to a vertex that is connected to v by an edge in the
graph G. The procedure enumStable is then recursively called to select and fix a new
component. When all components have been fixed (line 1), x is a completely defined binary
vector that is added to the set X(y) in line 2. The correctness of the computation of the
set X(y) should be obvious. Let us now evaluate its complexity. Notice that if we remove
all unnumbered lines of the procedure enumStable and if we print the set S at line 2, we
will get the list of all stable sets, maximal or not, of the graph G[Jy ], and by consequence,
a sublist of all stable sets of the graph G. For each stable set listed at line 2, we have at
most n calls to procedure enumStable, and each call to enumStable requires O(n) time
due to the computation of the second parameter in the recursive call to enumStable at
line 5 if we assume that the graph G is given by an adjacency matrix. Hence the overall
complexity of the computation of the set X(y) is O

(
n2 · ind(G)

)
where ind(G) denotes

the number of independent sets (or stable sets) in the graph G.
It follows that the set X(y) can be computed in polynomial time if the conditions (24)–(25)
are satisfied.
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5.3 Enumeration of the points of empty neighborhood for class C2

In order to complete the proof of Theorem 2, it remains to be shown that the set of points
x ∈ {0, 1}n such that F(x) = ∅ can be computed in polynomial time. From the definition
of the neighborhood function F , it follows that F(x) = ∅ if and only if the following
equalities are satisfied:

xi = xj for all {i, j} ∈ E+(G) (36)

xi = 1 − xj for all {i, j} ∈ E−(G). (37)

It follows from (36)–(37) that for each connected component CC of G, if suffices to fix the
value xi0 for some i0 ∈ CC to determine all other xj, j ∈ CC. If for some CC a contra-
diction occurs, we conclude that there exists no point with an empty neighborhood. We
assume from now on that the system (36)–(37) is feasible. Since for each connected com-
ponent CC, there correspond 2 sets of values for the corresponding xj , j ∈ CC the number

of points with an empty neighborhood is 2k(G) where k(G) is the number of connected
components in the graph G. Now by selecting one vertex of each connected component,
we get a stable set S of G of cardinality k(G). Since each subset of S is itself a stable set
of G, we have

ind(G) ≥ 2k(G)

where ind(G) is the total number of stable sets in the graph G. By the assumption of
Theorem 2, ind(G) is bounded from above by a polynomial in n, hence this is also the case
for the number of 0-1 points with an empty neighborhood. Therefore the points of empty
neighborhood can be found in polynomial time, which concludes the proof of Theorem 2.

The condition on the polynomial number of stable sets of G in Theorem 2 can be replaced
by the following weaker condition which is easier to check.

Condition 2 The degree of any vertex in G is at least n− c log n, where c is a constant.

Indeed the number of stable sets containing the vertex i ∈ V (G) is bounded by 2c logn = nc

which implies that the total number of stable sets is bounded by n · nc = nc+1.

6 Comparison with the algorithm of Allemand, Fukuda,

Liebling, and Steiner

In their paper, Allemand, Fukuda, Liebling and Steiner (2001) propose a polynomial al-
gorithm for solving problem (2) when there is no linear term (i.e., c = 0) and the matrix
A is negative semidefinite (i.e., λℓ < 0 for ℓ = 1, . . . , d if a spectral decomposition of A is
used, see the explanation in Section 1 for further details).

The algorithm of Allemand et al. (2001) involves the enumeration of the extreme
points of a special polytope, called zonotope. The reader interested into the practical
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implementation of the method of Allemand et al. is recommended to read the recent paper
of Ferrez, Fukuda and Liebling (2004) where an improved method for enumerating the
extreme points of the zonotope is proposed.

6.1 Method of Allemand, Fukuda, Liebling, and Steiner

In this section we briefly describe the method of Allemand et al (2001) in a slightly more
general framework. We are going to consider the problem:

min
x∈{0,1}n

f(x) = β0 + 〈u0, x〉 +

d∑

ℓ=1

λℓ

(
βℓ + 〈uℓ, x〉

)2
.

The case treated by Allemand et al. arises by setting u0 = 0 and βℓ = 0 for all ℓ = 0, . . . , d.

Consider the mapping T from Rn to Rd+1 that transforms a point x into the point
T (x) = (β0 + 〈u0, x〉, . . . , βd + 〈ud, x〉). The image of the hypercube [0, 1]n is a special
polytopeQz of Rd+1, called zonotope. The crucial observation is thatQz has O(nd) extreme
points, which can be computed in O(nd) time (see Allemand et al., 2001); note that in the
special case treated in Allemand et al. (2001) the zonotope is d-dimensional rather than
(d + 1)-dimensional). The algorithm in Allemand et al. (2001) evaluates the expression

z0 +
∑d

ℓ=1 λℓ (zℓ)
2 for each extreme point z = (z0, . . . , zd) of Qz and keeps the points of

smallest value. Observe that, while each extreme point of Qz is the image of some point
x ∈ {0, 1}n, not all points in {0, 1}n are transformed into an extreme point ofQz. Therefore,
the algorithm works correctly only if the optimal solution can be shown to be among the
points x ∈ {0, 1}n corresponding to an extreme point of Qz. Allemand et al. observed
that this property is true when the matrix A is negative semidefinite by exploiting the
concavity of the objective function. The next lemma shows that the approach of Allemand
et al. works for a larger class of instances of the CR-QP01.

Proposition 5 Let I be an instance of the problem CR-QP01 with the property that all
optimal solutions of the continuous relaxation of instance I are integral. Then the algorithm
of Allemand et al. solves the instance I to optimality.

Proof. We are going to show that if the algorithm of Allemand et al. fails, then there
exists an optimal solution of the continuous relaxation that is fractional, contradicting the
assumption of the proposition.

Let x∗ be an optimal solution of problem CR-QP01 that is not found by the algorithm
of Allemand et al. It follows that the image z∗ = T (x∗) of x∗ under the mapping T is not
an extreme point of the zonotope Qz. Therefore, z∗ can be written as a convex combination
of t ≥ 2 extreme points of Qz, say z(1), . . . , z(t). Let ξ(j) ∈ {0, 1}n be such that z(j) is the
image of ξ(j) under T , i.e., z(j) = T (ξ(j)) for j = 1, . . . , t. Hence, there exists a real vector
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ν = (ν1, . . . , νt) ≥ 0 with
∑t

j=1 νj = 1 such that

z∗ℓ =
t∑

j=1

νjz
(j)
ℓ =

t∑

j=1

νj

(
βℓ + 〈uℓ, ξ(j)〉

)

= βℓ +

〈
uℓ,

t∑

j=1

νjξ
(j)

〉
ℓ = 0, . . . , d.

But then
∑t

j=1 νjξ
(j) is a feasible solution of the continuous relaxation with the same

objective function value than x∗. It follows that the continuous relaxation has at least one
optimal solution that is fractional. �

A large class of instances of the CR-QP01 to which Proposition 5 applies, results from
the class N of all n × n matrices A of constant rank with strictly negative entries on
the main diagonal. Indeed, suppose the contrary. Let I ′ be an instance resulting from a
matrix A′ ∈ N . Let x∗ = (x∗1, . . . , x

∗
n) be an optimal solution of the continuous relaxation

of I ′, and assume that x∗j is fractional for some j. Then x∗j is the optimal solution of a
one-dimensional quadratic optimization problem of the form

min
0≤xj≤1

{
a′jjx

2
j +B(x∗1, . . . , x

∗
j−1, x

∗
j+1, . . . , x

∗
n)xj +C(x∗1, . . . , x

∗
j−1, x

∗
j+1, . . . , x

∗
n)

}

for some quadratic functions B and C. Since a′jj < 0, the optimum cannot be attained at
a fractional value, contradicting the assumption.

Note that the class of instances resulting from matrices A ∈ N is a special case of the
class C1 considered in Section 4. This special case is obtained by using the hypergraph
H = (V (H), E(H)) where E(H) contains only edges of size 1 (i.e. H is a graph all of whose
edges are loops). It is not difficult to verify that the conditions of Theorem 1 are satisfied
for H.

Finally observe that the class of instances resulting from the class of negative semidefi-
nite matrices with constant rank (for which the algorithm of Allemand et al. was proposed)
can also be solved in polynomial time by our approach. Indeed, it follows from the defini-
tion of negative semidefiniteness, that any negative semidefinite matrix A satisfies aii ≤ 0
for i = 1, . . . , n. Moreover if aii = 0 for some i, then aij = 0 for any j = 1, . . . , n. In this
later case, the optimal value of xi can be easily determined by looking to the sign of its
coefficient in the linear term. Hence the problem is reduced to one with matrices in N ,
which, as noted earlier, can be solved in polynomial time by our first algorithm. It is to
be pointed out, however, that the complexity of the algorithm of Allemand et al. is better
by an order n than the complexity of our approach, for this class of problems.
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6.2 Non-dominance

We now compare our approach with the approach of Allemand et al. We show that none
of the two approaches dominates the other with respect to the class of instances of the
CR-QP01 which can be solved in polynomial time.

We first present an instance I1 of the CR-QP01 which is solvable by our approach, but
not by the approach of Allemand et al. Consider the quadratic function

f(x) = (n2x1 + x2)
2 −

(
x1 + 2n2x2 +

n∑

i=3

(2n2 + i)xi

)2

.

It is easy to check that the matrix A corresponding to the quadratic part of f satisfies the
condition aii + ajj + 2|aij | < 0 for 1 ≤ i < j ≤ n. The resulting class of instances belongs
to both C1 and C2, and can hence be solved in polynomial time by our algorithms.

We are now going to argue that the approach of Allemand et al. fails. Since the variables
xi, i = 3, . . . , n, appear only in the second term, they must take the value 1 in an optimal
solution of the continuous relaxation. Solving the 2-dimensional problem in the remaining
variables x1 and x2 shows that the unique minimum is attained for x = (λ, 1, . . . , 1) with

λ =
n2+(n−2)(2n2+ n+3

2 )
n4−1 (see the appendix for more details). Therefore the instance I1

cannot be solved by the method of Allemand et al.

Next we give an example of an instance I2 which can be solved by the approach of
Allemand et al., but not by our approach. Consider the quadratic function given by

f(x) =

(
n∑

i=1

(i+ 1)xi + 1

)2

−

(
n∑

i=1

xi

i

)2

.

This instance results from the matrix A with entries aij = (i+ 1)(j + 1)− 1
ij

. It is easy to

see that A does neither belong to class C1 nor to class C2 (note that aii+ajj−2|aij | ≥ 0 for
all i, j). Consequently our methods do not apply. On the other hand, f(x) is positive for
all x ∈ [0, 1]n, therefore the optimal solution of the continuous relaxation must be integral
(see Hammer, Hansen, Pardalos and Rader, 2002), and hence this problem can be solved
in polynomial time by the method of Allemand et al. (and also by the method of Hammer
et al.).

7 Conclusions

In this paper, we derived two new polynomially solvable special cases of the CR-QP01.
Our generic algorithm works by enumerating a superset of the set of local minima of the
objective function f with respect to a suitably chosen neighborhood.

Due to the high running time of our algorithms, our results are mainly of theoretical
interest. Although it is possible to reduce the running times for special cases by exploiting
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the special structure of the underlying hypergraph (case C1) or graph (case C2), it is
unlikely that the reductions are large enough to result in running times which are acceptable
for practical applications. It is, however, conceivable that heuristics obtained from the
general idea of our approach lead to promising results. For example, one could think of
developing local search heuristics based on the neighborhoods used in this paper. Another
way to arrive at a heuristic is to refrain from computing the full set Y (recall that the
running times of the proposed algorithms depend on the cardinality of the set Y ) and be
instead satisfied with a set Y ′ of randomly selected points of Rd. Instead of searching for
the best solution in X(Y ), we then search for the best solution in X(Y ′).

Finally note that the classes presented in this paper are special cases of the more general
class defined by:

∑

i,j∈F1

aij +
∑

i,j∈F2

aij − 2
∑

i∈F1

∑

j∈F2

aij < 0 for all (F1, F2) ∈ E(HH)

where HH = (V (HH), E(HH)) is a “hyperhypergraph” whose edges are pairs {F1, F2} of
subsets of V (HH) (a hypergraph can then be considered as the special case of a hyperhy-
pergraph with all edges of the form {F, ∅} where F is a subset of V (HH)). In particular,
the class considered in Section 4 corresponds to the hyperhypergraphs with edges {F1, F2}
satisfying |F2| = 0 and the class considered in Section 5 corresponds to the hyperhyper-
graphs with edges {F1, F2} satisfying |F1|+ |F2| = 2. This suggests the following question:
What conditions on HH ensure that the associated instances of the CR-QP01 can be
solved in polynomial time?

Appendix

In this appendix we provide more details on the solution of the continuous relaxation of
the instance I1 of the CR-QP01 which has been investigated in Section 6.2. The resulting
quadratic programming problem QP is given by:

min
x∈[0,1]n

f(x) = (n2x1 + x2)
2 −

(
x1 + 2n2x2 +

n∑

i=3

(2n2 + i)xi

)2

.

Set h1(x) = n2x1 + x2 and h2(x) = x1 + 2n2x2 +
n∑
i=3

(2n2 + i)xi. Hence we can write

f(x) = (h1(x))
2 − (h2(x))

2. Since the variables xi, i = 3, . . . , n only appear in the second
term and since h2(x) ≥ 0, we will have xi = 1, i = 3, . . . , n in any optimal solution.
Consequently we are left with a function in 2 variables:

g(x1, x2) = (n2x1 + x2)
2 −

(
x1 + 2n2x2 + (n− 2)

(
2n2 +

n+ 3

2

))2

.
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Assume for a moment that the value of the function h2(x) at the optimum is known, and
let this value be denoted by h∗2. Then the optimal solution x∗ of the QP can be obtained
as solution of the following continuous knapsack problem (see Hammer et al., 2002):

min n2x1 + x2

s.t.

{
x1 + 2n2x2 = h∗2 − (n− 2)

(
2n2 + n+3

2

)

x1, x2 ∈ [0, 1].

Since n2

1 > 1
2n2 , it is well known that the optimum solution is either of the form (x1, x2) =

(0, λ) or (x1, x2) = (λ, 1) with 0 ≤ λ ≤ 1. The minimum of

g(0, λ) = λ2 −

(
2n2λ+ (n− 2)

(
2n2 +

n+ 3

2

))2

on [0, 1] is attained for λ = 1 (observe, for example, that the derivative of g(0, λ) with
respect to λ is negative).

On the other hand, we have

g(λ, 1) = (n2λ+ 1)2 −

(
λ+ 2n2 + (n− 2)

(
2n2 +

n+ 3

2

))2

.

By setting the derivative of h(λ) = g(λ, 1) equal to 0, we obtain that the minimum of g is
attained for

λ̃ =
n2 + (n− 2)

(
2n2 + n+3

2

)

n4 − 1
.

Note that 0 < λ̃ < 1 for n ≥ 2. Observing that g(λ̃, 1) < g(0, 1), we conclude that the

minimum of f over [0, 1]n is obtained for x = (λ̃, 1, . . . , 1), as claimed in Section 6.2.
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