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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
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Abstract

Winter road maintenance planning involves a variety of decision-making problems
related to the routing of vehicles for spreading chemicals and abrasives, for plowing
roadways and sidewalks, for loading snow into trucks, and for transporting snow to
disposal sites. In this paper, we present a model and two heuristic solution approaches
based on mathematical optimization for the routing of vehicles for snow plowing oper-
ations in urban areas. Given a district and a single depot where a number of vehicles
are based, the problem is to determine a set of routes, each performed by a single
vehicle that starts and ends at the district’s depot, such that all road segments are ser-
viced while satisfying a set of operational constraints and minimizing a time objective.
The formulation models general precedence relation constraints with no assumption
on class connectivity, different service and deadhead speed possibilities, separate pass
requirements for multi-lane road segments, class upgrading possibilities, and vehicle-
road segment dependencies. Several extensions, such as turn restrictions, load bal-
ancing constraints, and tandem service requirements, which are required in a real-life
application, are also discussed. Two objectives are considered: a hierarchical objec-
tive and a makespan objective. The resulting model is based on a multi-commodity
network flow structure to impose the connectivity of the route performed by each vehi-
cle. The two solution strategies were tested on data from the City of Dieppe in Canada.

Key Words: Winter road maintenance; Snow removal; Arc routing; Chinese post-
man problem; Operations research.
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Résumé

La planification de l’entretien hivernal des réseaux routiers implique une variété de
problèmes reliés au routage des véhicules pour l’épandage de fondants et d’abrasifs,
pour le déneigement des rues et des trottoirs, pour le chargement de la neige dans des
camions et pour le transport de la neige vers des sites de déversement. Dans cet article,
nous présentons un modèle d’optimisation et deux méthodes de résolution approxima-
tives pour le routage des véhicules pour les opérations de déblaiement en milieu ur-
bain. Étant donné un district, un dépôt et une flotte de véhicules, le problème consiste
à déterminer un ensemble de tournées partant et revenant au dépôt tel que chaque
segment de rue est desservi par un seul véhicule, tout en respectant plusieurs con-
traintes opérationnelles. La formulation inclut des contraintes générales de préséance,
des vitesses de service et de passages à vide différentes, des passages répétés obligatoires
pour les rues à voies multiples, la possibilité d’augmenter l’ordre de préséance des rues
non prioritaires, et des restrictions sur les rues qui peuvent être desservies ou traversées
par chaque type de véhicules. Plusieurs extensions, telles que des pénalités pour lim-
iter l’utilisation de certains types de virages, des contraintes d’équilibre de durée des
tournées et la possibilité de desservir certaines artères en tandem, sont également
discutées. Deux objectifs différents sont considérés: un objectif hiérarchique et un
objectif de temps d’achèvement des opérations. Le modèle est basé sur un ensem-
ble de problèmes de flot dans un réseau pour imposer les contraintes de connectivité
de chaque tournée de véhicule.Les deux méthodes de résolution sont testées avec les
données fournies par la ville de Dieppe au Canada.

Mots clés : Entretien hivernal; réseaux routiers, déneigement; tournées sur les arcs;
problème du postier chinois; recherche opérationnelle.



Les Cahiers du GERAD G–2006–33 1

Introduction

Snow plowing operations are usually performed in almost all urban regions with frozen pre-
cipitation or significant snowfall. Though each storm is unique in duration, intensity, and
composition, vehicle routes for plowing operations are generally fixed at the beginning of
the winter season. To facilitate the management of the plowing operations, the geographi-
cal region (or network) is usually partitioned into non-overlapping subareas (subnetworks),
called districts, each including one depot at which a number of vehicles are based. The
traditional approach for the design of districts in the context of winter road maintenance
consists in partitioning the road network into districts by assigning road segments to their
closest depot. Kandula and Wright (1995, 1997) and Muyldermans et al. (2002, 2003)
used this approach for designing districts for plowing and spreading operations. A similar
approach for designing small clusters of streets in the context of snow disposal operations
was developed by Labelle et al. (2002). For a recent survey of optimization models and
algorithms for the design of districts for winter road maintenance, the reader is referred to
the work of Perrier et al. (2006b,c).

In this paper, we address the problem of vehicle routing within each district borders
for snow plowing operations. For each district, the vehicle routing problem consists of
determining a set of routes, each served by a single vehicle that starts and ends at the
district’s depot location, such that all road segments are serviced, all the operational
constraints are satisfied, and a time objective is minimized. In addition, the configuration
of routes needs to conform to existing district boundaries. Routes crossing these boundaries
must be avoided from an administrative standpoint. In rural regions, only a subset of all
road segments requires service, whereas most urban areas assume that all road segments
of the district network must be serviced. Most naturally, each road segment is usually
associated with two traversal times, which are possibly dependent on the vehicle type: the
time required to plow the road segment and the time of deadheading the road segment.
Deadheading occurs when a plow must traverse a road segment without servicing it. In
general, a shorter time is associated with deadheading. Traversal times for servicing and
deadheading a road segment have already been considered by Haghani and Qiao (2001)
and Benson et al. (1998).

Different operational constraints can be imposed on the snow plow routes. For example,
since agencies have finite resources that generally do not allow the highest level of service
on all road segments, they must then prioritize their response efforts. The most common
criterion for prioritizing response efforts is traffic volume. Typically, the road segments of
a district network are partitioned into classes based on traffic volume and must be serviced
while respecting a hierarchy, or precedence relation, between classes. Each subgraph in-
duced by a class can be connected or not depending on the topology of the district network
and on the level of service policies involved. One type of hierarchy constraint, called linear
precedence relation, requires a unique ordering relation between classes in a route. This
is the case where all roads carrying the heaviest traffic must be serviced first, followed by
those that carry medium traffic volume, and so on. Another type of hierarchy constraint,
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called general precedence relation, imposes a weak partial ordering relation between classes
in a route. This is the situation where all roads having a large traffic volume must be
serviced before those having a low traffic volume in a route, but medium-volume roads can
be serviced either before or after some high-volume and low-volume roads. However, some
agencies allow class upgrading, the possibility of servicing road segments of a class in any
of the classes of higher priority, in order to reduce the service completion time of this class
and/or the total completion time. Class upgrading is also necessary when deadheading
unserviced road segments (i.e., traversing road segments without servicing them), gets ex-
tremely difficult if not simply impossible. If so, plows must service each road segment the
first time they traverse it while disregarding the hierarchy constraint.

Also, each vehicle type can have a restriction on the road segments that it can service
and road segments that it can traverse. This constraint for each vehicle type is called
vehicle-road segment dependency. In plowing operations, the vehicle fleet may consist of
a collection of vehicles with varying size, service speed, and shape. Vehicles from the
larger vehicle type cannot traverse small alleys. Vehicles from the slower vehicle type
cannot service roads having a large traffic volume (for example, rotary plows). Some road
segments allow vehicles from a vehicle type to traverse but not service the road segment
because the road segment is too narrow to conduct service (for example, displacement
plows mounted on the front, side, or beneath their truck carriers).

Finally, since plowing operations are usually limited to one lane at a time, multi-lane
road segments necessitate multiple separate passes. This contrasts with materials spreading
operations where materials are spread onto the road through a spinner which can be
adjusted so that more than one lane of a road segment can be treated in a single pass.

The time objective considered for the routing of vehicles for plowing operations is to
minimize the completion time of the first priority class, then the time of the second class,
etc. This objective is called the hierarchical or lexicographic objective, as opposed to the
makespan objective which minimizes the time at which all vehicles return to the depot, i.e.,
the shortest time required to service all road segments plus the shortest travel time from
the last serviced road segment to the depot. The hierarchical criterion is well suited for
snow plowing operations where road segments of higher priority classes must be serviced
as soon as possible even if this requires a longer overall time. Moreover, the hierarchical
objective is particularly appropriate when class upgrading possibilities are allowed since
the vehicle routing problem with makespan objective and class upgrading possibilities
is equivalent to the vehicle routing problem with makespan objective and no hierarchy
constraint. The hierarchical objective has previously been considered by Cabral et al.
(2004) and Korteweg and Volgenant (2006). Perrier et al. (2006a) studied a vehicle routing
problem with makespan objective and class upgrading possibilities, but they impose a
tolerance level on the total distance of lower-class road segments that can be serviced prior
to higher-class road segments.

In a previous paper (Perrier et al., 2006a), we proposed a two-phase constructive method
for the problem of vehicle routing for urban snow plowing operations. The method was de-
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veloped by focusing on the specific needs of a particular city and incorporates a wide range
of constraints and possibilities such as linear precedence relations with no assumption on
class connectivity, separate passes or tandem plow patterns for multi-lane road segments
(two vehicles plowing at the same time almost side by side), vehicle-road segment dependen-
cies, left turn restrictions, load balancing across routes, and class upgrading possibilities.
However, the method supposes that every arc and every vehicle type is associated with
a single traversal time no matter if the arc is traversed by the vehicle while servicing or
deadheading. The first phase determines a partition of the arcs into clusters, each having
approximately the same workload, with an adaptation of the technique proposed by Be-
navent et al. (1990) for the capacitated arc routing problem. A directed hierarchical rural
postman problem with makespan objective and class upgrading possibilities is then solved
heuristically on each cluster using an extension of a procedure introduced by Dror et al.
(1987) for the HCPP. Test results indicated that the method produced sets of routes that
dominate the existing set of routes of the city with respect to either makespan objective,
total duration of the routes, total distance travelled, or total duration unbalance occur-
ring between routes. However, to maintain or enhance service levels in many cities, the
emphasis should be placed on service completion time (hierarchical objective) as opposed
to the time at which the vehicles return to the depot (makespan objective). Moreover,
several cities choose to have a general precedence relation between classes in a route and
each vehicle type usually has different service and deadhead speeds.

In this paper, we propose a formulation and two solution approaches based on a more
general framework that can be adapted to the characteristics of several different cities.
The model incorporates the hierarchical objective, general precedence relation constraints
with no assumption on class connectivity, different service and deadhead speed possibili-
ties, separate pass requirements for multi-lane road segments, class upgrading possibilities,
and vehicle-road segment dependencies. Turn restrictions, load balancing constraints, and
tandem service requirements are also enforced. The model is based on a multi-commodity
network flow structure to impose the connectivity of the route performed by each vehicle
with supplementary variables and constraints to model the hierarchical objective and is
optimized with two constructive methods.

The rest of the paper is organized as follows. A brief review of literature is presented
in the next section. In Section 2, a mathematical formulation of the problem is presented.
Section 3 describes the two constructive methods. Computational experiments performed
using data from the City of Dieppe, New Brunswick, Canada, are reported in Section 4
and conclusions are given in the last section.

1 Literature review

The vehicle routing problem treated in the present paper can be viewed as a multiple
hierarchical Chinese postman problem (m-HCPP) with class upgrading possibilities and
vehicle-road segment dependencies. The m-HCPP generalizes the hierarchical Chinese
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postman problem (HCPP), calling for the determination of a single route starting and
ending at a depot and servicing all road segments of a network in such a way that the
service hierarchy is satisfied and a time objective (makespan or hierarchical) is minimized.
The HCPP is NP-hard (Dror et al., 1987), but can be solved in polynomial time if the
precedence relation is linear and all subgraphs induced by the classes are connected. Dror et
al. (1987), Ghiani and Improta (2000), and Korteweg and Volgenant (2006) have described
exact algorithms for this case. The more realistic case, where the subgraph induced by a
class is not connected, was first studied by Alfa and Liu (1988). The authors proposed a
heuristic that first solves a rural postman problem on each subgraph induced by a class
and then forms a giant tour satisfying the linear precedence relations. Later, Cabral et
al. (2004) showed that it is possible to solve the HCPP with linear precedence relations
and no assumption on class connectivity by transforming it into a rural postman problem.
Gélinas (1992) described a dynamic programming algorithm for the HCPP with general
precedence relations and class connectivity. Since the HCPP with no assumption on class
connectivity is a special case of the m-HCPP, it follows that the m-HCPP is NP-hard.
Hence, all algorithms developed for the solutions of m-HCPPs are heuristics.

One of the first heuristic algorithms developed for the solution of the vehicle routing
problem for snow plowing operations is due to Moss (1970) who proposed a cluster-first,
route-second approach to solve the vehicle routing problem for plowing and spreading op-
erations in Centre County, Pennsylvania. Road segments are first organized into balanced
sectors, and a vehicle route is obtained for each of them by solving a directed Chinese
postman problem. The cluster phase tries to ensure that the graph generated by the edges
of each sector is Eulerian to reduce deadheading in the routing phase.

Marks and Stricker (1971) presented two approaches for solving the problem of designing
a set of m plow routes such that each road segment is cleared within either two or four
passes, depending on its width, while minimizing the distance covered by deadheading
trips. All plows are identical and multiple pass requirements are taken into account by
duplicating each road segment as many times as the required number of passes on the road
segment. The problem is modeled as a m-vehicle undirected Chinese postman problem. In
the first approach, the transportation network is partitioned into m subnetworks by solving
a districting problem, and a Chinese postman problem is solved for each of them using a
decomposition heuristic. In the second approach, a unicursal graph is first derived from
the original network, and arbitrarily partitioned into m mutually exclusive, collectively
exhaustive subgraphs of approximately the same size so that an Eulerian cycle can be
defined for each of them without additional duplication of edges. For details, see Stricker
(1970). The authors also suggested three strategies to handle the hierarchy of the network
when class connectivity is satisfied. The first strategy tries to allow the highest level of
equipment usage on road segments of highest priority by multiplying the length of each road
segment by its priority (with 1 being the highest priority) and solving a Chinese postman
problem using these weighted lengths so as to favour the duplication of edges associated
with road segments of highest priority. The second strategy solves a Chinese postman
problem on each connected subgraph induced by the set of edges of a specific priority class
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and assigns exactly one vehicle to each postman tour. Finally, the last strategy generates
several Eulerian cycles while disregarding road priorities, and chooses the cycle which best
adheres to the hierarchy of the network.

The Bureau of Management Consulting, Transport Canada (1975), modeled a similar
plow routing problem, with a homogeneous fleet of plows and multiple pass requirements for
large road segments, as a m-vehicle undirected Chinese postman problem. Again, multiple
pass requirements are taken into account by duplicating each road segment the required
number of times. The problem is solved using a cluster first, route second heuristic, based
on earlier work by Stricker (1970). The cluster phase breaks the original graph into small
subgraphs according to several rules so as to enable routes with less deadheading. The
route phase then solves an undirected Chinese postman problem in each subgraph and
Fleury’s algorithm (Kaufmann, p. 309, 1967) is used for determining an Eulerian cycle in
the resulting Eulerian subgraph. The Bureau of Management Consulting also proposed to
handle the hierarchy of the network and the direction of the traffic flow directly within
Fleury’s algorithm by selecting, at each iteration, the next edge of highest priority whose
removal does not disconnect the Eulerian subgraph, while trying to respect the direction
of the traffic flow.

Chernak et al. (1990) studied the problem of designing routes for two plows to clear the
county roads in a district of Wicomico County, Maryland. The objective considered is to
minimize the distance covered by deadheading trips, in addition to minimizing the plowing
completion time. This problem is solved using a heuristic approach that constructs, for
each plow, a primary route servicing roads of highest priority and a second route servicing
the other roads.

A three-stage composite heuristic was proposed by Kandula and Wright (1997) for
routing plows and spreaders in the state of Indiana. The heuristic takes into account class
continuity and a maximum route duration for each class. Class continuity requires that
each route services road segments with the same priority classification. In addition, both
sides of a road segment must be serviced by the same vehicle. Given an undirected graph,
the first phase identifies a set of seed nodes in sufficient number to respect the time lim-
its, and then determines the maximum number of routes that can be constructed out of
each seed node by means of an adaptation of the node scanning lower bound procedure
introduced by Assad et al. (1997) for the capacitated Chinese postman problem. The
second phase then constructs routes one at a time out of each seed node using a greedy
optimality criterion. An improvement procedure that tries to reduce the distance covered
by deadheading trips and the number of kilometers violating the class continuity con-
straints without exceeding the time limits is used last. Comparisons with the tabu search
algorithm proposed by Wang and Wright (1994) for a vehicle routing problem for plowing
and spreading operations on five networks of Indiana showed that the heuristic obtained
the best solutions. However, it should be emphasized that the tabu search algorithm was
stopped after a given number of iterations.
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Finally, in a series of two papers, Salim et al. (2002a,b) proposed the SRAM (Snow
Removal Asset Management) system to solve the vehicle routing problem for plowing and
spreading operations in Black Hawk County, Iowa. The SRAM system can deal with service
hierarchy and maximum route service times. Although the system relies in large part on
decision rules drawn from interviews with experts, it also uses a simple constructive method
that builds feasible routes one at a time for each class of roads using a greedy optimality
criterion. Related field testing showed that the system reduced the total traversal time
(service and deadheading) by 1.9–9.7% (depending on snowfall conditions) over the solution
in use by the county.

While several models have been proposed for the m-HCPP in the context of snow
plowing operations, a recent survey of models and algorithms for vehicle routing and fleet
sizing for plowing and snow disposal (Perrier et al., 2005) indicates that very few have taken
into account class upgrading possibilities and/or vehicle-road segment dependencies. One
of the first efforts in this direction belongs to Haslam and Wright (1991) who developed
an interactive route generation procedure for the plow routing problem at the Indiana
Department of Transportation (INDOT), U.S. In this problem, routes of minimal total
length that start and end at a given depot are sought and class continuity as well as
maximum route length constraints must be satisfied. The route generation procedure
starts by calculating a lower bound Lr on the number of routes to construct. The user
then provides s seed nodes, s ≥ Lr, with associated classes out of which feasible routes are
constructed one at a time using a three-stage algorithm. Given a seed node and its class,
the first stage of the algorithm constructs a feasible route made of a path from the seed node
to the depot and another path in the reverse direction, without violating class continuity
and maximum route length constraints. In the second stage, pairs of non-covered arcs of
opposite direction are sequentially inserted into the route as long as class continuity and
maximum route length permit. Finally, in the last stage, if arcs have not been covered, then
the class continuity constraint is relaxed and the second stage is repeated by permitting
class upgrading.

Wang and Wright (1994) described an interactive decision support system, called
CASPER (Computer Aided System for Planning Efficient Routes), to assist planners at the
Indiana Department of Transportation (INDOT) in the design of vehicle routes for plowing
and spreading operations. The sectors are given and each of them contains exactly one
depot. The system, which can accommodate service time windows, class continuity, and
class upgrading, starts by calculating the number of routes to construct in a given sector
for each class of roadways. For every class, the system builds the required number of
vehicle routes starting and ending at the depot using a tabu search algorithm. An initial
solution is obtained by means of a route growth heuristic described in Wang (1992), which
is a refinement of the three-stage algorithm proposed by Haslam and Wright (1991). The
system was tested on data from four northern districts of Indiana (Wang et al., 1995). On
average, the system reduced the distance covered by deadheading trips and the number of
routes by more than 4% and 7%, respectively, over the routing plan in use by INDOT.
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Later, Campbell and Langevin (2000) described the commercially available vehicle rout-
ing software GeoRoute developed by the firm GIRO, based in Montreal, Canada, for postal
delivery, winter maintenance, meter reading, street cleaning and waste collection applica-
tions. The GeoRoute software allows three types of winter road maintenance operations:
plowing, spreading and snowblowing (for loading snow into trucks). The software can ac-
commodate service time windows, service frequency, vehicle capacities, spreading rates,
turn restrictions, vehicle-road segment dependencies, and both-sides service restrictions
(servicing both sides of a road segment in a single route). GeoRoute uses a two-phase
method similar to a cluster first, route second method, but constructs instead one route
at a time. GeoRoute has been implemented in Ottawa, Canada (Miner, 1996, 1997) for
snow plowing and in Suffolk County, United Kingdom (Guttridge, 2004) for salt spreading.
Campbell and Langevin (2000) also report three implementations in the cities of Laval,
Charlesbourg, and Nepean in Canada.

Very recently, Cabral et al. (2004) proposed a decomposition heuristic for the undi-
rected HCPP with linear precedence relations and no assumption on class connectivity and
hierarchical objective. The heuristic consists of sequentially solving the HCPP for each
class, starting with the highest class, considering all traversed edges in any of the classes
of lower priority as already serviced. As highlighted by Korteweg and Volgenant (2006),
declaring a deadheading edge as already serviced can not increase total completion time,
but may generate routes with a shorter time. Korteweg and Volgenant (2006) did not,
however, provide a model or an algorithm to handle class upgrading possibilities.

2 Mathematical model

Formally, the problem of vehicle routing for urban snow plowing operations is defined on a
strongly connected mixed graph G = (V , A∪E), where V = {v0, v1,. . . , vn} is the vertex
set, A = {(vi, vj) : vi, vj ∈ V and i 6= j} is the arc set, and E = {(vi, vj) : vi, vj ∈ V and
i < j} is the edge set. Vertices v1,. . . , vn correspond to the road intersections, whereas
vertex v0 correspond to the depot at which are based m vehicles. Let M = {1,. . . , m} be
the set of vehicles. Arcs and edges are used to represent one-way streets and multi-lane,
two-way streets (one lane or more each way), respectively. For every arc and edge (vi,
vj) ∈ A∪E, let aij , eij , and eji be the number of circulation lanes associated with arc (vi,
vj), edge (vi, vj) from vi to vj, and edge (vi, vj) from vj to vi, respectively. In plowing
operations, since each lane must be serviced separately, each arc (vi, vj) ∈ A is replaced
by aij copies and each edge (vi, vj) ∈ Eis replaced by eij arcs from vi to vj and by eji

arcs from vj to vi. The resulting multigraph G′ = (V , A’) is then directed. The arc set
A’ is partitioned into {A1, A2,. . . , AK} with A1∪ A2∪. . .∪AK = A′ and Ai ∩ Aj = ∅
for i 6= j, which induce the service hierarchy, i.e., all arcs of class Ai must be serviced
before those of class Ai+1. Classes 1,. . . , K − 1 represent road segments having a given
priority whereas class K represents road segments that can be serviced anywhere in the
sequence. For every class p = 1,. . . , K + 1, let TMAX p be a nonnegative real variable
representing the service completion time of class p. Class K + 1 is a fictitious class that
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allows to include the shortest travel path to the depot from the last serviced arc in class K

for each vehicle. The graph G′ is a multigraph, i.e., some arcs (vi, vj) may be replicated to
model multi-lane road sections requiring separate servicing on each lane and road section
widths requiring multiple servicing passes in addition to one-way streets requiring separate
servicing on each side. Some arcs can be serviced by all types of vehicles, while others
are restricted to certain types of vehicles only depending on the vehicle-road segment
dependency requirements. For every vehicle h ∈ M , let Ah ⊆ A’ be the subset of arcs in
G′ that can be serviced by vehicle h. With every vehicle h ∈ M and every arc (vi, vj) ∈ Ah

are associated two positive durations sh
ij and dh

ij for the service and deadheading of arc (vi,
vj) by vehicles h, respectively. For every vehicle h ∈ M , for every arc (vi, vj) ∈ Ah, and

for every class p = 1, . . . ,K, let x
ph
ij be a binary variable equal to 1 if and only if arc (vi,

vj) is serviced in class p by vehicle h.

The mathematical formulation of the problem is based on a multi-commodity network
flow problem to impose the connectivity of the route performed by each vehicle with
supplementary variables and constraints. In this model, each commodity corresponds to a
possible class-vehicle combination and shares the same directed graph G′′ = (V ∪{va}, A

′∪
A1 ∪ A2) constructed from G’ where va is an artificial vertex, A1 = {(va, vi) : vi ∈ V } and
A2 = {(vi, va) : vi ∈ V }. An example of the construction of graph G” from G is illustrated
in Figure 2.1. The arcs of A’ and A1∪A2 are represented by dashed lines and dotted lines,
respectively. The depot v0 and the artificial vertex va are shown as dark and pale circles,
respectively.

 

    a) Graph G          b) Graph G’’ 

    

    

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Construction of G′′ from G
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For every vehicle h ∈ M , for every arc (vi, vj) ∈ Ah ∪ A1 ∪ A2, and for every class

p = 1, . . . ,K + 1, let y
ph
ij be a nonnegative integer variable representing the number of

times arc (vi, vj) is traversed (while servicing or deadheading) in class p by vehicle h.
For every vehicle h ∈ M , for every arc (vi, vj) ∈ Ah ∪ A1 ∪ A2, and for every class p =

1,. . . , K + 1, let w
ph
ij be a nonnegative real variable representing the flow on arc (vi, vj)

associated with class p and vehicle h. Finally, for every class p = 1, . . . ,K +1 and for every
vehicle h ∈ M , let thp be a nonnegative real variable representing the service completion

time of class p on route h. We include the thp variables to clarify the formulation and the
interpretation of results. The basic model for the problem of vehicle routing for urban
snow plowing operations can be stated as follows:

Minimize

K+1
∑

p=1

Mp TMAXp (2.1)

subject to

TMAXp ≥ thp (p = 1, . . . , K + 1, h ∈ M) (2.2)

thp = thp−1 +
∑

(vi,vj)∈Ah

(sh
ijx

ph
ij + dh

ij(y
ph
ij − 1)) (p = 1, . . . , K + 1, h ∈ M) (2.3)

th0 = 0 (h ∈ M) (2.4)

∑

h∈M

(vi,vj)∈Ah

k
∑

p=1

x
ph
ij = 1 ((vi, vj) ∈ Ak, k = 1, . . . , K − 1) (2.5)

∑

h∈M

(vi,vj)∈Ah

K+1
∑

p=1

x
ph
ij = 1 ((vi, vj) ∈ AK) (2.6)

∑

(vi,vj)∈Ah∪A1∪A2

y
ph
ij =

∑

(vi,vj)∈Ah∪A1∪A2

y
ph
ji (vi ∈ V ∪ {va} , p = 1, . . . , K + 1, h ∈ M) (2.7)

y
ph
ij ≥ x

ph
ij ((vi, vj) ∈ Ah, p = 1, . . . , K, h ∈ M) (2.8)

∑

(vi,vj)∈A′∪A1∪A2

w
ph
ij =

∑

(vj ,vi)∈A′∪A1∪A2

w
ph
ji (vi ∈ V ∪ {va} , p = 1, . . . , K + 1, h ∈ M) (2.9)

y
ph
ij ≤ w

ph
ij ≤ |A′| yph

ij ((vi, vj) ∈ Ah ∪ A1,

p = 1, . . . , K + 1, h ∈ M) (2.10)

y
ph
ij ≤ w

ph
ia ((vi, vj) ∈ Ah, p = 1, . . . , K + 1, h ∈ M) (2.11)

∑

vi∈V

y
ph
ai = 1 (p = 1, . . . , K + 1, h ∈ M) (2.12)

∑

vi∈V

y
ph
ia = 1 (p = 1, . . . , K + 1, h ∈ M) (2.13)
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y
ph
ia = y

p+1,h
ai (vi ∈ V, p = 1, . . . , K, h ∈ M) (2.14)

y1h
a0 = 1 (h ∈ M) (2.15)

y
K+1,h
0a = 1 (h ∈ M) (2.16)

x
ph
ij ∈ {0, 1} ((vi, vj) ∈ Ah, p = 1, . . . , K, h ∈ M) (2.17)

y
ph
ij ≥ 0 and integer ((vi, vj) ∈ Ah ∪ A1 ∪ A2,

p = 1, . . . , K + 1, h ∈ M) (2.18)

w
ph
ij ≥ 0 ((vi, vj) ∈ Ah ∪ A1 ∪ A2,

p = 1, . . . , K + 1, h ∈ M) (2.19)

TMAXp ≥ 0 (p = 1, . . . , K + 1) (2.20)

thp ≥ 0 (p = 0, . . . , K + 1) (2.21)

where M1 >> M2 >> . . . >> MK+1 = 1. The objective function (2.1) minimizes the
service completion time of the first priority class, then the completion time of the second
class, and so on. As highlighted by Cabral et al. (2004), the notation “>>” means that
in any feasible solution, the relation

Mp TMAXp >

K+1
∑

k=p+1

Mk TMAXk

must be satisfied for p = 1,. . . , K. Constraints (2.2) state that the maximum service
completion time of a given class must be greater than or equal to the service completion
time of this class on any route. Constraints (2.3) and (2.4) define the service completion
time of each class on each route and the start time of each route, respectively. Constraints
(2.5) and (2.6) assure that each arc of a given priority class is serviced either in this class
or in any of the classes of higher priority by exactly one eligible vehicle and that all other
arcs are serviced by exactly one eligible vehicle, respectively. A vehicle is eligible for a
certain arc if it can service or deadhead this arc. Constraints (2.7) ensure route continuity
for each possible class-vehicle combination. Constraints (2.8) state that an arc is serviced
by an eligible vehicle in a given class only if it is traversed by the same vehicle in the same
class. Flow conservation at every node for each class and for each vehicle is imposed by
Constraints (2.9). Constraints (2.10) assure that the flow on every arc associated with a
class and an eligible vehicle is positive if and only if this arc is traversed (while servicing
or deadheading) in that class by that vehicle. Constraints (2.11) ensure that each partial
route associated with a class and a vehicle does not contain any disconnected subtours.
Constraints (2.12) and (2.13) require that each class-vehicle combination be associated
with exactly two vertices of G: one start location at which the route must start service,
called start vertex, and one end location at which the route must end service, called end
vertex, respectively. Constraints (2.14) assure that the end vertex associated with a class
and a vehicle corresponds to the start vertex associated with the next class and the same
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end1 endK–1 endK 

class 1 partial route class K partial route class K + 1 partial route 
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h tK–1

h tK+1
h t0

h = 0 tK
h 

Figure 2.2: Schematic representation of a feasible route h in G”

vehicle. Constraints (2.15) and (2.16) require that each route starts and ends at the depot
location, respectively. A schematic representation of a feasible route h in G” is illustrated
in Figure 2.2. Recall that the partial route associated with class K + 1 corresponds to the
shortest path from the last serviced arc by vehicle h in class K to the depot v0.

Finally, all y
ph
ij variables must assume nonnegative integer values and all w

ph
ij , thp , and

TMAX p variables must assume nonnegative values, while x
ph
ij variables are restricted to

be binary.

Proposition 1. A feasible solution to the model (2.1)–(2.21) does not contain any dis-
connected subtours.

Proof. We first show that the partial route associated with given vehicle h and class p does
not contain any disconnected subtours. First, observe that for a given arc (vi, vj) ∈ Ah∪

A1 serviced by vehicle h in class p, w
ph
ij must take on positive values if and only if y

ph
ij =

1. Thus, any arc (vi, vj) ∈ Ah serviced by vehicle h in class p must be connected to the

start vertex v
ph
start associated with vehicle h and class p (vph

start 6= vi, v
ph
start 6= vj) since

y
ph
ij = 1 ⇒ w

ph
i0 ≥ 1

and
∑

vk∈V

y
ph
ak = 1 ⇒ w

ph
ak ≥ 1, vk = v

ph
start and y

ph
ak = 0, vk 6= v

ph
start ⇒ w

ph
ai = 0

imply that the flow variables associated with class p and vehicle h must define a directed

path P from the start vertex v
ph
start to vi to satisfy flow conservation at vertex vi. This in

turn implies that all arcs on P must be serviced or deadheaded by vehicle h in class p.
Moreover, the partial route associated with vehicle h and class p must be connected to the
depot v0 since the partial route associated with vehicle h and every class p = 1,. . . , K + 1

does not contain any disconnected subtours and v1h
start = v0, v1h

end = v2h
start,. . . , v

p−1,h
end =
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v
ph
start, v

ph
end = v

p+1,h
start ,. . . , v

K+1,h
end = v0. Thus, the route h does not contain any disconnected

subtours. 2

The multi-commodity network flow structure can also be used to model the contiguity
constraints in a linear form for the design of sectors for snow disposal operations. Con-
tiguity constraints require that sectors do not include distinct parts separated by other
sectors. Non-contiguous sectors are undesirable from both administrative and operational
standpoints given that deadheading trips would be necessary between the disjoint collec-
tions of road segments of each non-contiguous sector. For details, the reader is referred to
the recent work of Perrier et al. (2006d).

The model (2.1)–(2.21) can be customized to deal with many additional situations.
First, the model assumes that all types of turns made at intersections are allowed. However,
in urban areas, vehicle routes must observe traffic rules such as the prohibition of making
certain turns, mostly left turns and U-turns. More generally, even if they are not forbidden,
the impact of undesirable turns, such as U-turns and turns across traffic lanes, is usually
greater in routing snow plows as compared to spreading operations. Since most plows are
designed to always cast the snow to the right side of the roadways, a left turn or a street
crossing at an intersection results in a trail of snow in the middle of the intersection. Thus,
the general guideline for constructing routes for snow plowing is that each plow should
remain on the right side of a roadway using a block pattern by accomplishing a series of
right turns to avoid compromising safety. To deal with these situations, a penalty can be
imposed to each turn depending on its type (e.g., left, right, U-turn, and go straight). In
snow plowing operations, right turns would be given the lowest penalty to provide safe
roads. For each pair of arcs (vi, vj), (vj , vk) ∈ A’, denote [(vi, vj), (vj , vk)] as the turn
made going from arc (vi, vj) to arc (vj , vk) in G’. Let T denote the set of allowed turns
in G’. For each turn [(vi, vj), (vj , vk)] ∈ T , for each class p = 1,. . . , K + 1, and for each

vehicle h ∈ M , let n
ph

[ijk] be a nonnegative integer variable representing the number of times

turn [(vi, vj), (vj , vk)] is executed in class p by vehicle h. Then, the constraints

∑

(vj ,vk)∈A′

n
ph

[ijk] = y
ph
ij ((vi, vj) ∈ A′, p = 1, . . . ,K, h ∈ M) (2.22)

∑

(vk ,vi)∈A′

n
ph

[kij] = y
ph
ij ((vi, vj) ∈ A′, p = 1, . . . ,K, h ∈ M) (2.23)

must be added to model (2.1)–(2.21) to impose turn penalties. Constraints (2.22) ensure
that the number of times a turn beginning with arc (vi, vj) is executed by a given vehicle
in a given class corresponds to the number of times this arc is traversed by the same vehicle
in that class. Constraints (2.23) serve the same purpose for turns that terminate with arc

(vi, vj). Turn penalties are imposed by adding the term
∑

h∈M

K
∑

p=1

∑

[(vi,vj),(vj ,vk)]∈T

p[ijk] n
ph

[ijk]

to the objective function (2.1), where p[ijk] is the penalty associated with turn [(vi, vj), (vj ,
vk)]. Examples of plow routing applications where turn penalties are explicitly taken into
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account are provided in Lemieux and Campagna (1984), Robinson et al. (1990), Gendreau
et al. (1997), and Campbell and Langevin (2000).

Next, load balancing constraints can be introduced easily. Balancing the workload
across routes means creating routes of approximately the same duration. If the minimum
and maximum route durations are denoted by l and u, respectively, then the following
constraints can be added to the original formulation:

l ≤
∑

(vi,vj)∈Ah

K+1
∑

p=1

(sh
ijx

ph
ij + dh

ij(y
ph
ij − 1)) ≤ u (h ∈ M) (2.24)

Finally, the last situation concerns the inclusion of tandem service constraints. Since
plowing operations are limited to one lane at a time, many agencies have developed tandem
plow patterns in echelon formations for multi-lane road segments. Generally, these road
segments must be serviced in any of the classes of higher priority. Let A1 be the set of arcs
that require tandem service. Given a set of pairs of vehicles to operate in parallel, the most
popular approach is thus to assign each pair of vehicles to a single class 1 partial route
starting at the depot and covering multi-lane road segments requiring tandem service. Let
Atandem = {(ir,is), (it,iu) ∈ A1: (ir,is) and (it,iu) necessitate tandem plow patterns} and
let Mtandem be the set of pairwise compatible vehicles to operate in parallel such that each
vehicle belongs to at most one pair. Then, adding the constraints

x1h1

rs = x1h2

tu

(

(ir, js) ∈ Atandem ∩ Ah1
, (it, ju) ∈ Atandem ∩ Ah2

, (h1, h2) ∈ Mtandem

)

(2.25)

ensures that pairs of arcs that necessitate tandem plow patterns are assigned to pairwise
compatible vehicles in Mtandem.

3 Solution approaches

Even for small instances of the problem, model (2.1)–(2.25) contains a very large number of
variables and constraints. We propose two constructive methods to solve this model. The
first method, called parallel algorithm, constructs several routes in parallel by sequentially
solving a multiple vehicle rural postman problem (m-RPP) with vehicle-road segment
dependencies, turn restrictions, and load balancing constraints for each class p = 1, . . . ,
K, considering all traversed arcs as already serviced. Recall that in the RPP, the arc
set is partitioned into required and non-required arcs. The m-RPP consists of designing
a set of m vehicle routes of least total cost, such that each route starts and ends at the
depot and each required arc appears in at least one route and is serviced by exactly one
vehicle. The second approach, called cluster first, route second algorithm, first determines
a partition of the arcs into clusters, each having approximately the same workload. A
hierarchical rural postman problem (HRPP) with class upgrading possibilities, vehicle-
road segment dependencies, and turn restrictions is then solved on each cluster. We first
present the parallel route constructive approach and then describe the cluster first, route
second method.
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3.1 Parallel algorithm

The parallel algorithm is based on a decomposition of the model into a set of K different
subproblems. For every class p = 1, . . . ,K, the subproblem determines the |M | best partial
class p routes for the given start times when the partial class p routes must start service and
for the given start locations at which the partial class p routes must start service through
the solution of a m-RPP with vehicle-road segment dependencies, turn restrictions, and
load balancing constraints, considering all arcs of class p traversed in any of the classes of
higher priority as non-required arcs to allow class upgrading. For every vehicle h ∈ M ,
the time required to return to the depot, i.e., thK plus the shortest travel time to the depot
from the last serviced arc in class K by vehicle h, is determined last. For every class
p = 1, . . . ,K, the m-RPP is of the following form:

Minimize
TMAXp +

∑

h∈M

∑

[(vi,vj),(vj ,vk)]∈T

p[ijk]n
ph

[ijk] (3.1)

subject to

TMAXp ≥ thp (h ∈ M) (3.2)

thp = sh
p +

∑

(vi,vj)∈Ah

(sh
ijx

ph
ij + dh

ij(y
ph
ij − 1)) (h ∈ M) (3.3)

∑

h∈M

(vi,vj)∈Ah

x
ph
ij = 1 ((vi, vj) ∈ Ap) (3.4)

∑

(vi,vj)∈Ah∪A1∪A2

y
ph
ij =

∑

(vi,vj)∈Ah∪A1∪A2

y
ph
ji (vi ∈ V ∪ {va} , h ∈ M) (3.5)

y
ph
ij ≥ x

ph
ij ((vi, vj) ∈ Ah, h ∈ M) (3.6)

∑

(vi,vj)∈A′∪A1∪A2

w
ph
ij =

∑

(vj ,vi)∈A′∪A1∪A2

w
ph
ji (vi ∈ V ∪ {va} , h ∈ M) (3.7)

y
ph
ij ≤ w

ph
ij ≤

∣

∣A′
∣

∣ y
ph
ij ((vi, vj) ∈ Ah ∪ A1, h ∈ M) (3.8)

y
ph
ij ≤ w

ph
ia ((vi, vj) ∈ Ah, h ∈ M) (3.9)

∑

vi∈V

y
ph
ai = 1 (h ∈ M) (3.10)

∑

vi∈V

y
ph
ia = 1 (h ∈ M) (3.11)

y
ph

a,starthp
= 1 (h ∈ M) (3.12)

∑

(vj ,vk)∈A′

n
ph

[ijk] = y
ph
ij ((vi, vj) ∈ A′, h ∈ M) (3.13)



Les Cahiers du GERAD G–2006–33 15

∑

(vk ,vi)∈A′

n
ph

[kij] = y
ph
ij ((vi, vj) ∈ A′, h ∈ M) (3.14)

l ≤
∑

(vi,vj)∈Ah

(sh
ijx

ph
ij + dh

ij(y
ph
ij − 1)) ≤ u (h ∈ M) (3.15)

x
ph
ij ∈ {0, 1} ((vi, vj) ∈ Ah, h ∈ M) (3.16)

y
ph
ij ≥ 0 and integer ((vi, vj) ∈ Ah ∪ A1 ∪ A2, h ∈ M) (3.17)

w
ph
ij ≥ 0 ((vi, vj) ∈ Ah ∪ A1 ∪ A2, h ∈ M) (3.18)

TMAXp ≥ 0 (3.19)

thp ≥ 0 (3.20)

For every class p = 1, . . . ,K, the objective function (3.1) minimizes the sum of the service
completion time of class p and the penalties associated with turns. For any given class,
constraint set (3.2) is identical to its counterpart (2.2) of the model (2.1)–(2.25). For
every class p = 1, . . . , K, constraints (3.3) define the service completion time of class p

on each route given the start time sh
p of class p on route h. For every class p = 1, . . . , K

constraints (3.4) assure that each arc of class p is serviced by exactly one eligible vehicle.
For any given class, constraint sets (3.5)–(3.11) are identical to their respective counterparts
(2.7)–(2.13) of the model (2.1)–(2.26). For every class p = 1, . . . , K and for every vehicle
h ∈ M , constraints (2.12) require that each partial class p, route h starts service at its
start location starth

p . For any given class, constraint sets (3.13)–(3.15) are identical to their
respective counterparts (2.22), (2.23), and (2.24) of the model (2.1)–(2.25). Finally, if p =
1, then the constraints (2.25) must be added to the model (3.1)–(3.20) to impose tandem
plow patterns.

For every class p = 1, . . . , K and for every vehicle h ∈ M , let endh
p represent the end

location at which the partial class p, route h ends service. Given two routes Rh
p = (starth

p ,

. . . , endh
p) and Rh

p+1 = (starth
p+1 = endh

p , . . . , endh
p+1) representing the partial class p,

route h and the partial class p + 1, route h in G, respectively, and having a common
endpoint endh

p in G, let Rh
p + Rh

p+1 = (starth
p , . . . , endh

p = starth
p+1, . . . , endh

p+1) denote
the union of the arcs of these two partial routes. For every vehicle h ∈ M , let Rh be
the (possibly partial) route h in G, let SPh

K be the shortest duration path from the last
serviced arc in class K by vehicle h to the depot, and let sph

K be its travel time. The
parallel algorithm can be described more precisely as follows.

1. Set p = 1. For every vehicle h ∈ M , set sh
p := 0, and starth

p := v0. For every vehicle

h ∈ M , set Rh := ∅.

2. If p = 1, add constraints (2.25) to model (3.1)–(3.20) and solve the resulting model.
Otherwise, solve model (3.1)–(3.20). Let Rh

p be the resulting partial class p, route h.

For every vehicle h ∈ M , declare all traversed arcs on Rh
p as already serviced and set

Rh := Rh + Rh
p . Set TMAX p = maxh∈M {thp}.
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3. If p = K, go to Step 4. Otherwise, set p = p + 1. For every vehicle h ∈ M , set sh
p :=

thp−1, starth
p := endh

p−1, and return to Step 2.

4. For every vehicle h ∈ M , set Rh := Rh + SPh
K and thK+1 = thK + sph

K . Stop.

3.2 Cluster first, route second algorithm

The cluster first, route second algorithm first determines a partition of the arcs to be ser-
viced into compact clusters, each having approximately the same workload. Since vehicles
plow at different speeds, the total workload is measured in time units (e.g., minutes). A
vehicle route is then constructed in each cluster through the solution of a HRPP with
class upgrading possibilities, vehicle-road segment dependencies, and turn restrictions. We
adapted a technique proposed by Benavent et al. (1990) for partitioning the arcs into
clusters. This technique determines the assignment of the arcs by solving a generalized
assignment problem (GAP). It is inspired by the Fisher and Jaikumar (1981) generalized-
assignment-based algorithm for the capacitated vehicle routing problem.

The algorithm starts by locating |M | geographically dispersed arcs of A’ to serve as
seed arcs s1 ∈ A1,. . . , sh ∈ Ah for the |M | vehicles. The criterion for widely dispersing
seed arcs over the graph G” is to maximize the product of the shortest paths among the
seed arcs and the depot v0. In particular, if seeds s1,. . . , sh have already been selected,
seed arc sh+1 is chosen to maximize

∏

k=0,...,h (spak + spka) over all arcs a. For every

vehicle h ∈ M and for every arc (vi, vj) ∈ Ah, let xh
ij be a binary variable equal to 1 if and

only if arc (vi, vj) is assigned to vehicle h, let dijh and dhij represent the lengths of the
shortest paths from arc (vi, vj) to arc sh and from sh to (vi, vj), respectively. Then the
problem of assigning each arc of A’ to exactly one of the |M | vehicles can be formulated
as a linear 0–1 integer program as follows.

Minimize
∑

h∈M

∑

(vi,vj)∈Ah

(dijh + dhij)x
h
ij (3.21)

subject to

∑

h∈M

(vivj)∈Ah

xh
ij = 1 ((vi, vj) ∈ A′) (3.22)

L ≤
∑

(vi,vj)∈Ah

sh
ijx

h
ij ≤ U (h ∈ M) (3.23)

xh1

rs = xh2

tu ((ir, js) ∈ Atandem ∩ Ah1
, (it, ju) ∈ Atandem ∩ Ah2

,

(h1, h2) ∈ Mtandem) (3.24)

xh
ij ∈ {0, 1} ((vi, vj) ∈ A′, h ∈ M) (3.25)
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where

L =

∑

(vivj)∈A′

(

P

k∈M

sh
ij

|M |

)

|M |
− α

∑

(vivj)∈A′

(

P

k∈M

sh
ij

|M |

)

|M |
,

U =

∑

(vivj)∈A′

(
P

k∈M

sh
ij

|M |

)

|M |
+ α

∑

(vivj)∈A′

(
P

k∈M

sh
ij

|M |

)

|M |

and 0 ≤ α ≤ 1.

The objective function (3.21) minimizes the sum of all lengths of the shortest paths
from the arcs in G” to the seed arcs and from the seed arcs to the arcs, so as to assess the
compactness of every cluster. Constraints (3.22) assure that each arc is assigned to exactly
one eligible vehicle. Constraints (3.23) impose a specified lower bound L and an upper
bound U on the total workload of each vehicle. Pairs of arcs that necessitate tandem plow
patterns by pairwise compatible vehicles are imposed by constraints (3.24).

Once the |M | clusters have been determined, a HRPP with class upgrading possibilities,
vehicle-road segment dependencies, and turn restrictions is then solved on each cluster.
Model (2.1)–(2.23) can be used to this end. However, the assignment constraint sets (2.5)
and (2.6) must be replaced with the constraints

∑

h∈M

(vi,vj)∈Sh

k
∑

p=1

x
ph
ij = 1 ((vi, vj) ∈ Ak, k = 1, . . . ,K − 1) (3.26)

∑

h∈M

(vi,vj)∈Sh

K+1
∑

p=1

x
ph
ij = 1 ((vi, vj) ∈ AK) (3.27)

where Sh is the subset of required arcs assigned to vehicle h in the solution to the linear
0–1 integer model. Hence, each vehicle is now required to service only a subset of arcs.
The route phase works by iteratively solving the resulting model for every vehicle h ∈ M ,
considering all traversed arcs on routes 1,. . . , h – 1 as already serviced in order to reduce
the total completion time. The cluster first, route second algorithm can be summarized as
follows.

1. Cluster phase

1. Determine a set {s1,. . . , s|M |} of |M | seed arcs, selecting for each vehicle h ∈ M

an arc sh such that the product of the sum of the shortest paths between sh

and the seed arcs s1,. . . , sh−1 and between sh and the depot v0 is maximum.
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2. Solve model (3.21)–(3.25) to determine the assignment of each arc of A’ to
exactly one of the |M | vehicles. For each vehicle h ∈ M , let Sh be the set of
arcs assigned to vehicle h in the solution to the linear 0–1 integer model. Set h

= 1.

2. Route phase

a) Solve model (2.1)–(2.24) with constraint sets (2.5) and (2.6) replaced by con-
straint sets (3.26) and (3.27), taking Sh as an input, to construct the h-th vehicle
route. Let Rh be the resulting route operated by vehicle h. Declare all traversed
arcs on route h as non-required.

b) If h = |M |, set TMAX p = maxh∈M {thp} for each class p = 1,. . . , K + 1 and
stop. Otherwise, set h := h + 1 and return to step 2a.

4 Computational experiments

To measure the performance of the proposed solution approaches, computational experi-
ments were performed using data from the City of Dieppe, New Brunswick, Canada. All
linear integer models were programmed using OPL studio 3.7 running with CPLEX 9.0
(after tuning the parameters) and the procedure to determine the set of seed arcs in the
cluster phase of the cluster first, route second algorithm was coded in VBA using Microsoft
Visual Basic 6.3. All experiments were performed on a Pentium 4 personal computer. A
maximum running time of 3600 seconds was imposed for each linear integer programming
problem. We first describe the data requirements and then give a summary of the results
obtained.

4.1 Data requirements

The Dieppe data were extracted from a digitalized map stored in an image format and the
current vehicle routes were obtained from Public Services of the City of Dieppe. We used
Forestry GIS (fGIS) to extract the topology of the transportation network and road segment
lengths from the graphical file. The road network of Dieppe involves 462 vertices and 1234
arcs partitioned into three classes A1, A2, and A3 representing arterial streets, collecting
streets, and local streets, respectively, with |A1| = 244, |A2| = 229, and |A3| = 761. The
subgraph induced by the set of arcs of class A1 is Eulerian while the subgraphs induced
by the set of arcs of classes A2 and A3 are not strongly connected. The City of Dieppe
currently uses eight vehicles of three different types: one grader, two plows, and five loaders.
The grader and the plows can clear 1,5 lanes in each pass, whereas the loaders can only
clear one lane at a time. Moreover, the latter are restricted to class 2 and 3 streets, while
the grader and the plows do not have any such restrictions. Each vehicle type has the
same service and deadhead speeds. Thus, sh

ij = dh
ij for every vehicle h ∈ M and every

arc (vi, vj) ∈ Ah. Plows travel at a speed of 25 km/h on class 1 and 2 streets and at 10
km/h on class 3 streets. The grader can travel at 20 km/h on class 1 and 2 streets and
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Figure 4.1: Replicating vertices and introducing artificial arcs

at 10 km/h on class 3 streets. The loaders travel at a speed of 10 km/h. The precedence
relation between classes in a route is linear, i.e. all arterial streets must be serviced before
collecting streets and all collecting streets must be serviced before local streets, and the
makespan objective is minimized. Linear precedence relations can be incorporated easily
to the formulation by setting AK = ∅.

The routes must also take into account forbidden left turns. These turns can be penal-
ized by assigning them a high positive penalty and accounting for it in the model. However,
as highlighted by Benavent and Soler (1999) and Corberán et al. (2002), a method that
takes into account turn penalties, but not turn prohibitions, and tries to avoid the forbid-
den turns by assigning them a high penalty cannot guarantee to produce routes that avoid
forbidden turns. A direct way of modelling forbidden turns is to transform the m-HCPP
with forbidden left turns as a m-HRPP by adding artificial arcs to graph G’. For this,
vertices have to be replicated. To illustrate, consider the street intersection vk shown in
Figure 4.1a, where the two left turns [(vi, vk), (vk, vl)] and [(vj , vk), (vk, vi)] are forbidden
and all other turns are allowed. Figure 3.2b illustrates the replication of vertex vk and the
introduction of nine non-required arcs shown as dashed lines to represent straight cross-
ings, right turns, left turns, and U-turns. The two forbidden left turns [(vi, vk), (vk, vl)]
and [(vj , vk), (vk, vi)] can thus be avoided by eliminating their corresponding non-required
arcs (k2, k6) and (k1, k3), respectively, in the augmented graph G’, and the remaining
non-required arcs have zero cost.



20 G–2006–33 Les Cahiers du GERAD

Finally, some class 1 multi-lane road segments necessitate tandem plow patterns in
echelon formations. The city requires that service in tandem should be accomplished by
the two plows.

4.2 Summary of results

Four scenarios were used in the experiments. In the first scenario, class upgrading possi-
bilities are forbidden and the hierarchical objective is minimized. In the second scenario,
the hierarchical objective is still used, but the possibility to service road segments of a
class in any of the classes of higher priority is now allowed. The third scenario considers
the makespan objective instead of the hierarchical objective and prohibits class upgrading
possibilities. Finally, the fourth scenario disregards the linear precedence relations between
classes in each route. Since the parallel algorithm constructs feasible routes for each class
independently, it cannot be employed for solving the hierarchy relaxation.

In Scenarios 1 and 3, class upgrading prohibitions are treated by replacing constraints
(2.5) and (2.6) with the constraints

∑

h∈M

(vi,vj)∈Ah

xkh
ij = 1 ((vi, vj) ∈ Ak, k = 1, . . . ,K − 1) (4.1)

∑

h∈M

(vi,vj)∈Ah

xKh
ij = 1 ((vi, vj) ∈ AK) (4.2)

respectively, and by not considering all traversed arcs as already serviced in steps 2 and
2a of the parallel and cluster first route second algorithms. If the makespan objective
is considered instead of the hierarchical objective, then TMAX may be a nonnegative
real variable representing the time required to service all arcs of A1 ∪ A2∪. . .∪AK−1 plus
the shortest travel time to the depot from the last serviced arc. One would then replace
the objective function (2.1) by (4.3) and constraints (2.2) and (2.20) by (4.4) and (4.5),
respectively.

TMAX (4.3)

TMAX ≥ thK+1 (h ∈ M) (4.4)

TMAX ≥ 0 (4.5)

We were unable to obtain a feasible solution to the subproblem (3.1)–(3.20) for class 3
within the prescribed time limit. For this class, the m-RPP was solved with the following
adaptation of the cluster first route second algorithm.

1. For every vehicle h ∈ M , let endh
2 be the seed vertex for vehicle h. Let R3 be the

set of non-serviced arcs of class 3. For every vehicle h ∈ M and for every arc (vi,
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vj) ∈ Ah ∩ R3, let xh
ij be a binary variable equal to 1 if and only if arc (vi, vj) is

assigned to vehicle h, and let dhij represent the length of the shortest path from seed
vertex endh

2 to arc (vi, vj). Solve the following linear 0–1 integer model to determine
the assignment of each arc of R3 to exactly one of the |M | vehicles.

Minimize
∑

h∈M

∑

(vi,vj)∈Ah∩R3

dhijx
h
ij (4.6)

subject to

∑

h∈M

(vivj)∈Ah

xh
ij = 1 ((vi, vj) ∈ R3) (4.7)

L ≤ th2 +
∑

(vi,vj)∈Ah∩R3

sh
ijx

h
ij ≤ U (h ∈ M) (4.8)

xh
ij ∈ {0, 1} ((vi, vj) ∈ R3, h ∈ M) (4.9)

whereL = t12 + r1 – α(t12 + r1) and U = t12 + r1 + α(t12 + r1), 0 ≤ α ≤ 1. For each
vehicle h ∈ M , the time rh for servicing all arcs of R3 by vehicle h is determined
such that the equations

th1

2 + rh1 = th2

2 + rh2 (h1, h2 ∈ M) (4.10)

∑

h∈M

rh =
∑

(vivj)∈R3







∑

h∈M

sh
ij

|M |






(4.11)

are satisfied. For each vehicle h ∈ M , let Sh be the set of arcs of class 3 assigned to
vehicle h in the solution to the linear 0–1 integer model. Set h = 1.

2. Set A3 = R3 and Ak = ∅, k = 1, 2, and solve model (2.1)–(2.24) with constraints
(2.4) and (2.15) replaced with the constraints

th0 = th2 (h ∈ M) (4.12)

y1h
a,endh

2

= 1 (h ∈ M) (4.13)

and constraints (2.5) and (2.6) replaced with the constraints (3.26) and (3.27), taking
Sh as an input. Let Rh

3 be the resulting partial class 3 route operated by vehicle h.
Declare all traversed arcs on route Rh

3 as already serviced and set Rh := Rh + Rh
3 .

3. If h = |M |, set TMAX 3 = maxh∈M{th3} and go to step 4 of the parallel algorithm.
Otherwise, set h := h + 1 and return to step 2.

Table 4.1 presents the service completion times obtained when solving the instance un-
der the first three scenarios with the parallel algorithm and the four scenarios with the
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Table 4.1: Completion times and percentage gaps

Scenario
1 2 3 4

Completion time (h)
Parallel algorithm

TMAX 1P 1.2 1.2 1.2 –
TMAX 2P 2.0 1.9 2.0 –
TMAX 3P 5.0 5.3 5.0 –
TMAX 4P 5.7 5.7 5.2 –

Cluster first route second algorithm
TMAX 1C 1.4 1.4 1.4 4.7
TMAX 2C 1.9 1.9 1.9 5.1
TMAX 3C 4.8 4.5 5.3 5.1
TMAX 4C 5.3 4.9 5.5 5.2

Percentage gap (%)
(TMAX 1P – TMAX 1C) / TMAX 1C –17.9 –15.3 –18.3 –
(TMAX 2P – TMAX 2C) / TMAX 2C 5.2 1.2 1.4 –
(TMAX 3P – TMAX 3C) / TMAX 3C 4.9 17.3 –5.7 –
(TMAX 4P – TMAX 4C) / TMAX 4C 8.9 15.6 –6.4 –

cluster first route second algorithm. The last four rows compare the completion times
of both solution approaches and contain the percentage difference in completion time be-
tween the parallel and the cluster first route second algorithms, based, respectively, on the
completion times of classes 1, 2, and 3, and on the total completion times (class 4). Some
gaps are negative because the service completion time produced by the cluster first route
second algorithm is sometimes longer than the service completion time produced by the
parallel algorithm.

When the hierarchical objective is minimized (Scenarios 1 and 2), we observe that for
classes 2, 3, and 4, the cluster first route second algorithm improve upon the parallel
algorithm. For classes 3 and 4, up to 17.3% and 15.6% can be saved in completion time,
respectively, by applying the cluster first route second algorithm. For class 2, the partial
routing can still be carried out with slightly less time with the cluster first route second
algorithm. However, for class 1, the partial routes constructed by the cluster first route
second algorithm incur at least 15.3% more time than those found by the parallel algorithm.
This performance is easily explained from the following observations: since the subgraph
induced by the set of arcs of class A1 is Eulerian, in the parallel algorithm, only the
deadheading travel time to the first serviced arc from the depot will make each partial
class 1 route more expensive. However, in the cluster first route second algorithm, if the
subgraph induced by the set of arcs of class 1 assigned to a vehicle is neither Eulerian nor
strongly connected, then a partial class 1 route with more deadheading will be created
during the route phase. Thus, the cluster phase should ensure that the graph generated
by the arcs of class 1 of each cluster is Eulerian to reduce deadheading in the routing
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Table 4.2: Percentage gaps: Dieppe’s method vs. parallel and cluster first route second
algorithms

Scenario
1 2 3 4

Percentage gap (%)
(TMAX 1D – TMAX 1P ) / TMAX 1P 137.5 131.7 137.5 –
(TMAX 2D – TMAX 2P ) / TMAX 2P 172.2 183.0 172.2 –
(TMAX 3D – TMAX 3P ) / TMAX 3P 2.2 –2.8 3.0 –
(TMAX 4D – TMAX 4P ) / TMAX 4P –2.8 –2.1 8.1 –
(TMAX 1D – TMAX 1C) / TMAX 1C 95.0 96.2 93.9 –40.6
(TMAX 2D – TMAX 2C) / TMAX 2C 186.3 186.3 176.1 6.3
(TMAX 3D – TMAX 3C) / TMAX 3C 7.2 14.0 –2.9 1.1
(TMAX 4D – TMAX 4C) / TMAX 4C 5.8 13.1 1.1 6.7

phase. When the makespan objective is minimized (Scenario 3), for all but one of the
priority classes the completion time produced by the parallel algorithm is lower than that
produced by the cluster first route second algorithm.

With respect to the computation times, we note that the cluster first route second al-
gorithm solves faster than the parallel algorithm. For each scenario, the parallel and the
cluster first route second algorithms require to solve 12 and 9 linear integer programming
problems, respectively. In most of the 60 linear integer programming problems, the maxi-
mum running time of 3600 seconds was not sufficient to reach and prove optimality. Thus,
the time it takes the cluster first route second algorithm to complete a single scenario is
about 9 hours. This computing time seems reasonable given that decisions related to the
routing of vehicles for plowing operations are generally updated every winter season.

Table 4.2 evaluates the quality of the solution produced by the City of Dieppe for winter
2004–2005 by comparison with the two solution approaches. We report the percentage
difference in the completion time for the four classes. The City of Dieppe produced the
following solution for winter 2004–2005: TMAX 1D = 2.8, TMAX 2D = 5.4, TMAX 3D =
5.2, and TMAX 4D = 5.6. The city’s completion time of class 3 is shorter than that of class
2 because the city allows the service of all arcs of class 3 in the higher class 2.

These results indicate that the two solution approaches can produce better routes than
the city’s method, in terms of service completion times. In fact, the parallel algorithm
with the makespan objective (Scenario 3) reduces the time to service all arcs of A1, A2,
and A3 and the time required to service all arcs and return to the depot by more than
137%, 172%, 3%, and 8%, respectively, over the routing plan in use by the city. Moreover,
the cluster first route second algorithm with the hierarchical objective and class upgrading
possibilities (Scenario 2) cuts the service completion time of classes 1, 2, and 3 and the total
completion time by more than 96%, 186%, 14%, and 13%, respectively, over the existing
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Table 4.3: Percentage gaps: Makespan objective vs. hierarchical objective

Percentage gap Parallel Cluster first route
(%) algorithm second algorithm
gap1 0.0 0.6
gap2 0.0 3.7
gap3 –0.8 10.4
gap4 –10.0 4.6

Table 4.4: Percentage gaps: No class upgrading vs. class upgrading

Percentage gap Parallel Cluster first route
(%) algorithm second algorithm
gap1 0.0 0.6
gap2 4.0 0.0
gap3 –4.9 6.3
gap4 0.7 6.9

plan. The large decreases in completion times of higher priority classes result mainly from
the parallel and cluster first route second routes better satisfying the hierarchy constraint.

We also analyzed the effects on service completion times of minimizing the hierarchical
objective, allowing class upgrading possibilities, and satisfying the linear precedence rela-
tions between classes in each route. Table 4.3 presents, for every class p = 1,. . . , 4, the
relative difference gappbetween the value of TMAX p produced by the parallel (cluster first
route second) algorithm with makespan objective (Scenario 3) and the value of TMAX p

produced by the parallel (cluster first route second) algorithm with hierarchical objective
(Scenario 1).

These results indicate that minimizing the hierarchical objective can reduce the service
completion time of higher priority classes or increase the total completion time. With
the parallel algorithm, the completion times of classes 1 and 2 remain the same because
the makespan objective cannot be considered for solving subproblem (3.1)–(3.20) for these
classes. Table 4.4 indicates, for every class p = 1,. . . , 4, the relative difference gappbetween
the value of TMAX p produced by the parallel (cluster first route second) algorithm with
hierarchical objective and no class upgrading possibilities (Scenario 1) and the value of
TMAX p produced by the parallel (cluster first route second) algorithm with hierarchical
objective and class upgrading possibilities (Scenario 2).

Clearly, permitting class upgrading possibilities can reduce both the service completion
time of higher priority classes and the total completion time. Table 4.5 illustrates the
benefits of imposing linear precedence relations between classes in each route. The gap
corresponds to the relative difference between the service completion time produced by the
cluster first route second algorithm when the hierarchy constraint is relaxed (Scenario 4)
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Table 4.5: Percentage gaps: No service hierarchy vs. service hierarchy

Percentage gap Scenario Scenario Scenario
(%) 1 2 3
gap1 228.1 230.0 226.3
gap2 169.3 169.3 159.7
gap3 6.1 12.8 –3.9
gap4 –0.8 6.0 –5.2

Table 4.6: Percentage gaps: Nine variants from (Perrier et al., 2006a) vs. cluster first route
second algorithm (Scenario 2)

Variant
Percentage gap (%) V1 V2 V3 V4 V5 V6 V7 V8 V9
gap1 30.0 –0.1 141.0 30.0 182.3 266.5 243.6 –0.1 –0.1
gap2 35.5 162.8 70.6 139.9 237.0 137.1 131.4 105.7 30.6
gap3 24.2 5.4 18.1 2.8 32.1 5.2 26.9 7.4 19.2
gap4 18.1 8.5 9.5 –1.5 42.9 5.3 20.6 1.5 10.6

and the service completion time produced by the cluster first route second algorithm with
service hierarchy (Scenario 1, 2, or 3).

These results show, not surprisingly, that the linear precedence relations have a very
positive influence on the service completion time of higher priority classes. In particular,
completion times are reduced considerably for the first two classes.

In our previous paper (Perrier et al., 2006a), we proposed a cluster first route second
method for the snow plow routing problem in the City of Dieppe. Nine variants were
considered by changing the lower and upper bounds L and U on the total workload of
each vehicle and the tolerance level on the total distance of class 3 road segments that
can be serviced prior to higher-class road segments. According to these results, the cluster
first route second algorithm with hierarchical objective and class upgrading possibilities
(Scenario 2) presented here can produce a set of routes that mostly dominate the sets
of routes produced by the other approach. Further comparisons with this method would
thus be pointless. Table 4.6 presents, for every class p = 1,. . . , 4, the relative difference
gapp between the value of TMAX p produced by a given variant and the value of TMAX p

produced by the cluster first route second algorithm with the hierarchical objective and
class upgrading possibilities (Scenario 2).

5 Conclusions

We have proposed a basic model and two solution approaches for the problem of vehi-
cle routing in the context of snow plowing operations. This problem can be viewed as
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a multiple hierarchical Chinese postman problem with class upgrading possibilities and
vehicle-road segment dependencies. The proposed model incorporates a wide variety of
operational constraints and can also be customized to deal with many additional situa-
tions. The two constructive methods can produce sets of routes that dominate the existing
routing plan of City of Dieppe with respect to service completion times in a few hours of
computing time. This performance is satisfactory given the fact that the model need only
be solved once every winter season. A faster solution approach would however be required
so that the model can be used in real-time to determine the changes to be made following
an equipment breakdown or weather change. Also, several extensions are still needed to
make the model more useful in practice. For example, each road segment should be asso-
ciated with three traversal times, which are possibly dependent on the vehicle type: the
time required to plow the road segment, the time of deadheading the road segment if it has
not yet been plowed, and the time of deadheading the road segment if it has already been
plowed. Other extensions concern the requirement to service only a subset of arcs, thus
leading to a multiple hierarchical rural postman problem, and the possibility of servicing
multi-lane road segments requiring tandem service anywhere in the sequence, in order to
reduce service completion times.
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