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Abstract

We develop a nonparametric Bayesian functional estimation method, using mono-
tone wavelet approximation, for hazard estimation from randomly right censored data.
The proposed methodology is compared with that of Arjas and Gasbarra (1994) and
Antoniadis et al. (1999) in a simulation study and with real data.

Key Words: Monotone wavelet approximation, Bayesian hierarchical model, gener-
alized linear model.

Résumé

Nous proposons une méthode d’estimation fonctionelle bayésienne non paramé-
trique pour la fonction de risque en utilisant une approximation par ondelettes mono-
tones pour à partir de données censurées à droite de façon aléatoire en utilisant une
approche non paramétrique. Une étude de simulation est faite pour comparer la
méthodologie présentée dans cet article à celles introduites dans Arjas et Gasbarra
(1994) et Antoniadis et al. (1999). Enfin, un exemple pratique est présenté.
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1 Introduction

For survival analysis in medical research, it is useful to have clear summaries of the data
for clinicians and, as advocated by Efron (1988), this can often be achieved by a graphical
presentation of the hazard function. The data may consist solely of observed survival times
or with each time there may be associated a vector of covariates. In the latter case the
hazard is often modeled as a product of a hazard function that depends only on time and
a function of the covariates which is presumed independent of the time. In analysing such
data the two components are often analaysed separately and such an analysis is called
semiparametric. For an excellent review of Bayesian semiparametric analysis for even
more complex models, we cite Sinha and Dey (1997). Here we prefer to concentrate on the
problem of estimating the hazard function without covariates, although indications will be
given on how the methodology can be extended to the semiparametric model.

Our purpose here is, threefold: (1) to give an overview of the relevant literature concern-
ing both Bayesian and frequentist nonparametric estimation of the hazard rate, mainly in
the case without covariates; (2) to introduce a new nonparametric Bayesian method using
monotone wavelets; (3) to compare our estimators with both a frequentist and a Bayesian
nonparametric estimator.

We first give a brief overview of frequentist approaches to this problem. Various authors
have used splines for estimating the survival function and the hazard rate in the random
right censoship model. We cite, in particular, Bloxom (1985), Klotz and Yu (1986), Whitte-
more and Keller (1986), Efron (1988), O’Sullivan (1988), Jarjoura (1988), Kooperberg and
Stone (1992), Kooperberg et al. (1995). Senthilselvan (1987) proposed penalized likelihood
methods and Loader (1999) used local likelihood methods for hazard rate estimation with
censored data. Kernel estimation of the hazard rate has also proved to be a useful method
(see Ramlau-Hansen, 1983; Roussas, 1989, 1990; Izenman and Tran, 1990; Hall et al.,
2001). For frequentist estimation of a monotone hazard rate with randomly right censored
data, we cite the original work of Grenander (1956) and that of Prakasa Rao (1970) for
uncensored data and for censored data that of Padgett and Wei (19), Huang and Wellner
(1992) and MacGibbon et al. (2002) which is based on least concave majorants (greatest
convex minorants).

Some researchers have previously used orthogonal series methods; in particular Patil
(1997) used orthogonal wavelet methods for hazard rate estimation in the uncensored
case and Antoniadis et al. (1999) in the random right censorship model. We also cite the
theoretical research on wavelet density and hazard estimation by Li (2002, 2006) and Liang
et al. (2005).

Early Bayesian research in survival analysis mainly concentrated on the estimation of
the survival function. Susarla and Van Ryzin (1978) used Dirichlet priors (cf. Ferguson,
1973) to estimate the survival function with censored data. Ferguson and Phadia (1979)
extended this work to include prior distributions that are neutral to the right, previously
studied by Doksum (1974). Kalbfleisch (1978) used a gamma process prior for survival
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function estimation. Kuo and Smith (1992) found Bayes estimators of the survival function
with censored data using the Gibbs sampler. We also cite other interesting Bayesian
research related to hazard rate estimation such as Arjas and Liu (1995) and Berger and
Sun (1996).

Among the first to estimate the hazard directly were Dykstra and Laud (1981) and
Broffitt (1984). Dykstra and Laud (1981) defined an appropriate prior stochastic process
called an extended gamma process whose sample paths are hazard rates, and obtained
the posterior distribution of the hazard rates for both exact and censored data. Bayesian
nonparametric hazard function estimation methodology in Dykstra and Laud (1981) was
generalized in different ways by Ammann (1985), who used conditional Laplace transforms
and Thompson and Thavaneswaran (1992). Hjort (1990) used beta process priors to esti-
mate the cumulative hazard rate process. Further generalizaitons by Lo and Weng (1989),
Ho and Lo (2001) and James (2003, 2005) culminated in the characterization given by Ho
(2006) of the posterior distribution of the mixture hazard model of a monotone hazard
rate via a finite mixture of S-paths.

One of the most interesting methods perhaps, for estimating the hazsard rate, influenced
by Dykstra and Laud (1981) is that proposed by Arjas and Gasbarra (1994). Using a
hierarchical model structure, they modelled the hazard rate nonparametrically as a jump
process having a martingale sturcture with respect to the prior distribution. They describe
an algorithm that generates sample paths from the posterior by a dynamic Gibbs sampler
and illustrate the method on simulated examples. We have chosen here to compare our
proposed method with theirs.

Angers and MacGibbon (2004) developed a Bayesian adaptation of the Antoniadis et al.
(1999) method by employing Bayesian nonparametric estimation techniques with Fourier
series methods in order to obtain a procedure that is easier to implement. Their method
did not perform as well as the method of Antoniadis et al. (1999) for the estimation of
the sub-density but in simulations, it was shown to be as good or superior to the method
of Antoniadis et al. (1999) for the estimation of the hazard rate. Here we propose the use
of monotone wavelet approximation introduced by Anastassiou and Yu (1992) to estimate
the sub-density and hazard function.

We proceed as in Antoniadis et al. (1999) to estimate the number of events and the sur-
vival functions separately. In order to describe our method here, we follow the description
as given by Antoniadis et al. (1999) in Section 1.1. For ease of presentation, Section 1.2
is devoted to recalling the Bayesian approach to linear models. In Section 2, the Bayesian
model using monotone wavelet approximation is introduced. In Section 3 we develop our
method of Bayesian functional estimation for the hazard rate problem with right censored
data. Section 4 contains a simulation study and the comparison of our results with those
of Antoniadis et al. (1999). Section 5 presents an application of our method as well as
those of Antoniadis et al. (1999) and Arjas and Gasbarra (1994) to a bone marrow trans-
plantation data set and to the Standford heart data. Section 6 consists of some concluding
remarks.
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1.1 The random right censorship model

Survival analysis is usually based on the study of a group of individuals of size n for
which we assume their failure times, the non-negative random variables T1, · · · , Tn, are
independent and identically distributed with distribution function F (t), survival function
S(t) = 1−F (t) and density f(t). However, one of the features that distinguishes the analy-
sis of survival data from classical statistical analysis is the possibility that the data may be
incomplete; that is, some individuals may not be observed until failure. For example, some
patients will survive to the end of a clinical trial and thus their failure times cannot be
observed. If this happens in a random fashion then this type of incompleteness is modeled
by assuming that there exist C1, · · · , Cn independent and identically distributed random
variables with distribution function G and density g representing the censoring mecha-
nism. Instead of observing the complete data T1, · · · , Tn, we observe Xi = min(Ti, Ci),
i = 1, · · · , n and an indicator function δi = 1 if Ti ≤ Ci and = 0 if not.

Since the density function of T exists, the hazard rate function can also be defined as

λ(t) =
f(t)

1− F (t)
F (t) < 1.

With Tj , Cj , δj defined as above, the observed random variables are then Xj and δj . Hence-
forth we assume that

(a) T1, T2, · · · , Tn are non-negative, independent and identically distributed with distri-
bution function F and density f ,

(b) C1, C2, · · · , Cn are non-negative, independent and identically distributed with distri-
bution function G and density g, and

(c) the T ’s and C’s are independent.

In the censored case, if G(t) < 1, we have

λ(t) =
f(t){1−G(t)}

{1− F (t)}{1−G(t)}
, F (t) < 1.

If we let L(t) = P (Xi ≤ t), then

1− L(t) = {1− F (t)}{1−G(t)}.

Letting
f∗(t) = f(t){1−G(t)},

be the sub-density of those observations that are still to fail, then clearly

λ(t) =
f∗(t)

1− L(t)
, L(t) < 1.
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1.2 The Bayesian model

The estimator for the hazard rate proposed in the next section is obtained by writing the
estimation problem using a Bayesian linear model. Hence, for ease of presentation, we first
recall the Bayesian linear model as found in Lindley and Smith (1972) and Robert (2001).
Let

Y = Xθ + ε,

where

Y is a n× 1 vector of observations,

X is a n× p known matrix,

θ is a p× 1 vector of regression coefficients,

ε ∼ Nn(0, σ2In).

Note that X is assumed to be of full rank but even if X is singular the theory holds.
Furthermore, σ2 might be known or unknown. If σ2 is unknown, it will also be considered
as a random variable.

Given this model, the likelihood function is given by

`(θ, σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
(Y −Xθ)′(Y −Xθ)

}
.

The loss function typically used is:

L(θ, θ̂) = (θ − θ̂)′Q(θ − θ̂), (1)

where Q is a positive definite matrix.

Let

θLS = (X ′X)−1X ′Y,

S = (Y −XθLS)′(Y −XθLS),

then the likelihood function can be rewritten as:

`(θ, σ2) ∝ 1
(σ2)n/2

exp
{
− 1

2σ2

[
(θ − θLS)′X ′X(θ − θLS) + S

]}
=

(
1

(σ2)p/2
exp

{
− 1

2σ2
(θ − θLS)′X ′X(θ − θLS)

})
×

(
1

(σ2)(n−p)/2
exp

{
− S

2σ2

})
=

[
θ | σ2, Y ∼ Np(θLS , σ2(X ′X)−1)

]
×

[
σ2 | Y ∼ IΓ((n− p− 2)/2, S/2)

]
,

(2)
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where Np(µ,Σ) denotes the multivariate normal density with mean µ and covariance matrix
Σ while IΓ(a, b) represents the inverse gamma density with shape parameter a and scale
parameter b. (Note that if λ ∼ IΓ(a, b)

π(λ) =

{
ba

Γ(a)λa+1 e−b/λ if λ > 0,

0 otherwise.

)

Now a conjugate prior for (θ, σ2) is given by:

θ | σ2 ∼ Np(η, σ2C), (3)

σ2 ∼ IΓ(α/2, γ/2), (4)

where η, C, α and γ are assumed to be known.

With the prior model given in equations (3) and (4) and the likelihood function given
in equation (2), the posterior density on (θ, σ2) and the marginal of the least squares
estimator θLS are:

θ | σ2, Y ∼ Np(θ∗, σ2C∗), (5)

σ2 | Y ∼ IΓ
(

n + α

2
,
γ∗
2

)
,

θLS ∼ Tp

(
n + α− p, θ0,

S + γ

n + α− p
A∗

)
,

where

θ∗ = θLS − C∗C
−1(θLS − η),

C∗ = (X ′X + C−1)−1 = C − C(C + (X ′X)−1)−1C,

γ∗ = S + γ + (θLS − η)′A−1
∗ (θLS − η),

A∗ = (X ′X)−1 + C.

Then, under the loss function given in equation (1), the Bayes estimator of θ is given by:

θ̂ = E[θ | Y ] = θLS − C∗C
−1(θLS − η).

Another intersting loss function is given by

L((θ, σ2), (θ̂, σ̂2)) = (θ − θ̂)′Q(θ − θ̂) + (σ2 − σ̂2)2,

The associated Bayes estimators of β and σ2 are given by:

θ̂ = θ∗ = θLS − (XtX + C−1)−1C−1(θLS − θ0),

σ̂2 =
γ∗

n + α− 2
=

S + γ + (θLS − θ0)′A−1
∗ (θLS − θ0)

n + α− 2
.
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Remark 1. If we use the reference prior π(θ, σ2) ∝ 1/σ2, the posterior densities become

θ | σ2, Y ∼ Np(θLS , σ2(X ′X)−1),

σ2 | Y ∼ IΓ
(

n

2
,
S

2

)
.

(The reference prior is the limit case of equations (3) and (4) with C−1 → 0, α → 0 and
γ → 0.)

2 Bayesian functional model using monotone wavelet ap-
proximation

We first consider the estimation of the cumulative distribution function L(t) and F ∗(t)
which are monotone functions. Let us consider the general case and assume that H(t)
is a monotone nondecreasing function. (H(t) stands for L(t) or F ∗(t) depending on the
observations considered.) Now, we can develop this Bayesian functional estimation model
using the Bayesian linear model described in the previous section as a basis. As many
authors including Antoniadis et al. (1999) have indicated, wavelet estimators are ideal for
estimating functions with inhomogeneous spatial smoothness. This is often the case with
hazard functions. Here we introduce the terminology from Anastassiou and Yu (1992).
Let ϕ(x) denote a bounded right-continuous function on R with compact support, that is
supp ϕ(x) ⊆ [−a, a] , 0 < a < +∞ and define:

ϕkj(x) := 2
k
2 ϕ(2kx− j) for k, j ∈ Z.

If H is continuous, then define

Bk(H)(x) :=
∑

j

H(2−kj)ϕkj(x) for k ∈ Z. (6)

Since ϕ(x) is compatly supported, for any fixed x ∈ R the summation in (6) only
involves a finite number of terms (see the appendix), so Bk(H)(x) is well-defined on R,
that is

Bk(H)(x) =
j1∑

j=j0

H(2−kj)ϕkj(x).

Theorem 6 of Anastasiou and Yu (1992) states that if ϕ(x) satisfies the conditions C.1
to C.4 given below and if H(x) ∈ C(R) is a non-decreasing function, then the linear wavelet
operator Bk(H)(x) given by equation (6), is also non-decreasing on R and satisfy

|Bk(H)(x)−H(x)| ≤ Cω2(H, 2−k+1a), for x ∈ R, k ∈ Z,
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where C is an absolute constant and

ω2(H, δ) = sup
h<δ

sup
x
|H(x + 2h)− 2H(x + h) + H(x)|.

The conditions on ϕ(x) are:

C.1:
∑

j∈Z ϕ(x− j) = 1 ∀x ∈ R,
C.2: there exist a number b such that ϕ(x) is non-decreasing if x ≤ b and is non-increasing

if x ≥ b,
C.3:

∫∞
−∞ ϕ(x)dx = 1,

C.4:
∑

j∈Z jϕ(x− j) = x ∀x ∈ R.

Note that if a = 1, the conditions C.1 and C.4 can be written as

C.1: {
ϕ(x) + ϕ(x + 1) = 1 if −1 ≤ x ≤ 0,

ϕ(x) + ϕ(x− 1) = 1 if 0 < x ≤ 1,

C.4: {
x + ϕ(x + 1) = 0 if −1 ≤ x ≤ 0,

x− ϕ(x− 1) = 0 if 0 < x ≤ 1.

It can be easily shown that the only function satisfying these two conditions is

ϕ(x) =

{
1 + x if −1 ≤ x ≤ 0,

1− x if 0 < x ≤ 1.
(7)

Since H(·) is unknown, we cannot compute H(2−kj) directly. Consequently, let {θj}j1
j=j0

be a sequence of real numbers. Hence, renumbering the θj , Bk(H) can be written as

Bk(H)(x) =
j1∑

j=j0

θjϕkj(x)

=
j1∑

j=j0

θj2k/2ϕ(2kx− j)

= 2k/2
j1−j0∑
l=0

θlϕ(2kx + j0 − l). (8)

However, since H(x) is a non-decreasing function, the θj ’s should also be non-decreasing.
Hence, given θ0, θl (l = 1, 2 . . . , j1 − j0) can be written as
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θ1 = θ0 + ζ1,

...

θl = θ0 + ζ1 + . . . , ζl

=
l∑

q=0

ζq,

where ζ0 = θ0 and ζl ≥ 0 for l = 1, 2, . . . , j1−j0. Consequently, equation (8) can be written
as

Bk(H)(x) = 2k/2
j1−j0∑
l=0

 l∑
q=0

ζq

ϕ(2kx + j0 − l)

= 2k/2
j1−j0∑
q=0

ζq

j1−j0∑
l=q

ϕ(2kx + j0 − l)


= 2k/2

j1−j0∑
q=0

ζqΦq(2kx + j0), (9)

where

Φq(2kx + j0) =
j1−j0∑
l=q

ϕ(2kx + j0 − l).

Using standard techniques, we can obtain a linear model as in equation (2) with

Y = (H(x1),H(x2), . . . ,H(xn))′,

(X)i,j = 2k/2Φj−1(2kxi) for i = 1, 2, . . . , n and j = 1, 2, . . . , j1 − j0 + 1,

ζ = (ζ0, ζ1, . . . , ζj1−j0)
′.

However, the prior on ζ is different from equation (3). To account for the non-negativity
of ζq for j = 1, 2, . . . , j1 − j0, the prior is then

ζ0 ∼ N(η0, σ
2/n0),

ζq ∼ N(ηq, σ
2/n0)I[0,∞)(ζq) for q = 1, 2, . . . , j1 − j0,

σ2 ∼ IΓ(α/2, γ/2),

where I[0,∞)(ζq) represents the indicator function of the set [0,∞). The posterior density of
ζ is similar to equation (5) but we have to account for the non-negativity of ζ1, ζ2, . . . , ζj1−j0 .
The Bayes estimator of ζ is then given by
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ζ̂ =
∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

∫ ∞

−∞
ζ × [ζ | σ2, Y ∼ Nj1−j0+1(ζ∗, σ2C∗)

j1−j0∏
q=1

I[0,∞)(ζq)]

×
[
σ2 | Y ∼ IΓ

(
n + α

2
,
γ∗
2

)]
dζ0dζ1 . . . dζj1−j0dσ2. (10)

3 Estimation of the sub-density f ∗

To obtain the estimator of f∗(t), we start by estimating the cumulative distribution func-
tion (cdf) F ∗ using equation (10) based only on the uncensored observations (values of i
such that δi = 1). The vector Y , described at the beginning of Section 1.2, will then be
based on the empirical cdf of the uncensored observations; that is,

Y =
1

no + 1
(1, 2, . . . , no − 1, no)t,

where no represent the number of uncensored observations. Referring to equation (9), it is
clear that the estimator of Y is also an estimator of the sub-distribution which we denote
as F̂ ∗(x) given by

F̂ ∗(x) = 2k/2
j1−j0∑
q=0

ζ̂qΦq(2kx + j0),

where ζ̂ is defined by equation (10). To obtain the estimator of f∗(t), we proceed as follows
:

f̂∗(x) =
∂

∂x
F̂ ∗(x)

= 23k/2
j1−j0∑
q=0

ζ̂qΦ′q(2
kx + j0).

To estimate L(x) = P (Xi ≤ x), we proceed as for F ∗(x) in order to obtain L̂(x), but
this time all the observations (censored and uncensored) are used. The estimator of the
hazard function is then given by

λ̂(x) =
f̂∗(x)

1− L̂(x)
.

Remark 2. This method is easy to adapt to hazard estimation in more general models
such as the Cox proportional risk model:

λ(t) = λ0(t) exp{−βe · xe},
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where xe is a vector of covariates, βe a vector of parameters and λ0(t) is the baseline hazard
function and the usual assumption of non-informative censoring ( cf. Fleming and Har-
rington, 1991) is made. We proceed with the usual semiparametric Bayesian approach to
find an estimator β̂e of βe . The vector Y , described in Section 2, will now be based on the
empirical cumulative hazard function given by

Λ̂(t) =
∑
ti≤t

di

/ ∑
k∈R(ti)

exp{−
p∑

m=1

β̂mxkm},

where ti represent the observed “event” times and di, the observed number of events oc-
curring at time ti and R(ti), the risk set associated with ti ( cf. Klein and Moeschberger,
1997).

Again, referring to equation (9), the estimator of Y is also an estimator Λ̂ of the
cumulative hazard function Λ and the survival function is estimated by exp{−Λ̂(t)} and
an estimator of the density function is found by differentiation. Proceeding in a manner
analogous to the above, we obtain an estimator of the baseline hazard function λ̂0(t) and
consequently of λ(t).
Remark 3. We conjecture that in an analogous way, the methodology presented here can
be extended to include more general situations such as some of those mentioned in Sinha
and Dey (1997). In particular, we feel that our methodology can be extended to such models
as a Cox model with informataive censoring or one with a cure fraction as in Ibrahim et
al. (2001).

4 Simulations

We consider here the first simulation study proposed by Antoniadis et al. (1999). Samples
of size n, Ti, 1 ≤ i ≤ n, from the gamma distribution with shape parameter 5 and scale
parameter 1, denoted by f1 and an independent sample Ci, 1 ≤ i ≤ n, from the exponential
distribution with mean 6 (the mean was chosen to yield about 50% censoring) were gen-
erated. The performance measure used to compare the different estimators is the average
mean-squared error obtained by averaging the mean-squared errors given by :

ASE(f∗) = n−1
∗

n∗∑
i=1

[f̂∗(xi)− f∗(xi)]2,

ASE(λ) = n−1
∗

n∗∑
i=1

[λ̂(xi)− λ(xi)]2,

where n∗ represents the number of observations with xi ≤ 6 Two values of n are considered,
that is, n = 200 and n = 500.

The simulation results are given in Table 1. The true function along with the proposed
estimator and the one given in Antoniadis et al. (1999) are given in Figure 1. Because
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Figure 1: Estimate of the sub-density f̂∗1 and the hazard λ1
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Table 1: Average mean-squared errors (×10−5 for the sub-density and ×10−3 for the hazard
function) in the first simulation set-up of Antoniadis et al. (1999) based on 200 repetitions.

f∗1 λ1

n = 200 n = 500 n = 200 n = 500
Antoniadis [14.6; 20.5 ] [5.2; 13.6] [2.5; 5.8] [1.6; 5.9]

Bayes 50.1 38.6 11.6 7.0
Linear Bayes 33.4 21.9 3.9 2.0

ϕ′(x) is a step function (see equation (7)), the estimator of the sub-density is also a step
function. Hence, we did a linear interpolation based on the center of each interval to
smooth f̂∗. In Table 1, the results for this interpolation is denoted by linear Bayes, that
is, “Lin-Bayes” in the different figures.

From the table, it can be seen that our proposed estimators are not as efficient as the one
proposed in Antoniadis et al. (1999) for the sub-density. However, the linear interpolation
performs as well as the Antoniadis estimator for the hazard function.

5 Examples

In this section, two real data sets are considered and the sub-densities along with the
corresponding hazard functions are estimated using the monotone wavelet estimator de-
scribed here as well as the estimators proposed by Antoniadis et al. (1999) and Arjas and
Gasberra (1994).

We have chosen to illustrate our method on a data set consisting of a follow-up study
of acute leukaemia patients after allogenic bone marrow transplantion. The survival times
are given in months. The data set consist of 162 patients (including 63 deaths) For a more
complete description of this data, see Brochstein et al. (1987).

Various subsets of this data have been previously used by Mueller and Wang (1990)
and Antoniadis et al. (2000) to illustrate different change points methods. Here as a
preliminary step in a more complete data analysis to be pursued elsewhere we have chosen
to use the complete data set with death due to any cause as the end point and leukaemic
relapse or end of study as the censoring mechanism.

Figure 2 illustrates our estimate of the sub-density along with the estimator proposed in
Antioniadis et al. (1999). (This estimator has been computed using Rice Wavelet Toolbox,
version 2.4. with 64 bins and hard thresholding. The resolution was set at k = 6. The
threshold level was chosen to yield the smoother graph of f∗ (threshold level at 0.0032)
and λ (0.023).) Figure 3 gives our estimate of the actual hazard rate for this example, the
one using wavelets proposed by Antioniadis et al. (1999) and the Bayesian one of Arjas
and Gasberra (1994).
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Figure 2: Estimate of the sub-density f̂∗ for the bone marrow transplantation example
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Figure 3: Estimate of the hazard rate function λ̂ for the bone marrow transplantation
example



14 G–2006–24 – Revised Les Cahiers du GERAD

From Figure 2 it can be seen that the linearized Bayesian estimator is similar to the one
obtained using the Antoniadis et al. (1999) approach, althougth theirs gives more weight
to smaller survival times. However, there is much less data manipulation required in order
to obtain our estimator. From Figure 3, all estimators of the hazard function except the
one from Arjas and Gasberra (1994), are similar for x ≤ 50. Starting from this point, the
direct Bayes estimator is similar to that of Antoniadis et al. (1999) while the linearized
version yields a smaller hazard.

The second data set that we consider here is the February 1980 version of the Stanford
heart transplant data, published in Cox and Oakes (1984). This data set has previously
been analysed by many authors including Loader (1991) and Antoniadis et al. (2000) who
considered a change point model for it. Here Figure 4 shows the graphs of the sub-density
functions given by our methods (Bayes and linear Bayes) and that of Antoniadis et al.
(1999). It should be noted that the sub-density function of Antoniadis et al. (1999) is
negative over a small interval and then increases dramatically after that. The linear Bayes
graph seems a more reasonable representation of a sub-density. Figure 5 compares the four
different hazard function estimators: those of Arjas and Gasberra (1994), Antoniadis et al.
(1999) and our Bayes and linear Bayes estimators. Up until t = 2400 the four estimators are
similar with the Bayes and the linear Bayes representing a compromise between Antoniadis
et al. (1999) and Arjas and Gasberra (1994). The estimator of Antoniadis et al. (1999)
does have the disadvantage of being negative for large survival times while ours have a
sharp peak between 2500 and 3000. The estimator of Arjas and Gasberra (1994) is the
most stable.

6 Concluding remarks

Our objective here, as well as to review some of the relevant literature on frequentist
and Bayesian nonparametric hazard estimation, was to use Bayesian functional estimation
techniques combined with the monotone wavelet approximation methods of Anastassiou
and Yu (1992) to estimate the hazard rate with randomly right censored data by a relatively
easy method to implement. This has been accomplished.

Although our model is not as effective in the simulation study as the frequentist method
of Antoniadis et al. (1999) for the sub-density estimation, the performance of the linear
Bayes estimator for the hazard function is comparable and ours is much easier to implement
and extremely flexible. Because of the monotonicity of the wavelet approximation, our
estimators of the sub-density are theoretically always positive. This is not the case for the
estimator of Antoniadis et al. (1999). In fact, in one of the real data examples (see Figure
4) it is negative.

We have also chosen the Bayesian nonparametric method of Arjas and Gasbarra (1994)
for purposes of comparison. Arjas and Gasbarra (1994) have an excellent Bayesian non-
parametric method which performs very well on the examples here. It is more stable than
ours or that of Antoniadis et al. (1999). However, it does not provide an estimate of
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Figure 4: Estimate of the sub-density f̂∗ for the Standford heart transplant example
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Figure 5: Estimate of the hazard rate function λ̂ for the Standford heart transplant example
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the sub-density, which we consider an interesting function in its own right. We, therefore
conclude that ours, that is, the linear Bayes one, is a good compromise method between
the fully frequentist wavelet one and that of Arjas and Gasberra (1994). It is our hope,
however, to somehow combine ours with the latter and have a fully Bayesian nonparametric
method which combines the good qualities of both.

Appendix : Choice of the resolution level

In this appendix, we will discuss the choice of k and the bounds j0 and j1. Suppose that
the observed times are 0 < x1 ≤ x2 ≤ ... ≤ xn < T . Since the support of ϕ is [−a; a], then,
for a fixed k,

ϕk,j(t) = 0 ⇔ 2k/2ϕ(2kx− j) = 0

⇔ 2kx− j < −a or 2kx− j > a

⇔ 2kx + a < j or j < 2kx− a.

Since x ∈ [0, T ], then

ϕk,j(t) = 0 ⇒ j 6∈ [2kx− a, 2kx + a]

⇒ j 6∈ [−a, 2kT + a].

Hence j0 = −a and j1 = 2kT + a.

To choose k, we proceed as follows. For each value of j, we want a series of m observa-
tions such that ϕk,j(xi) > 0, ϕk,j(xi+1) > 0, . . . , ϕk,j(xi+m−1) > 0. Since the support of ϕ
is [−a; a], k should be such that

j − a

2k
≤ xi ≤ xi+1 ≤ xi+m−1 ≤

j + a

2k
.

Let ∆m = maxi(xi+m−1 − xi). This condition is satisfied if

∆m ≤ j + a

2k
− j − a

2k

⇒ ∆m ≤ a

2k−1

⇒ 2k−1 ≤ a

∆m

⇒ k ≤ 1 +
log (a/∆m)

log(2)

⇒ k ≤ 1 + log2

(
a

∆m

)
.
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