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Abstract

This paper deals with the problem of determining optimal reservoir daily operat-
ing policy over a one-year period. This problem is stochastic since the daily reservoir
inflows are random and cannot be predicted far in advance. The aim of the paper is
to show that optimal reservoir operating policy changes with the way the problem is
solved and the information that is taken into account. The paper first shows that the
operating policy determined using Stochastic Dynamic Programming greatly improves
when the multi-lag autocorrelation of the inflows is included. Next, it shows that the
operating policy improves with the number of days that the inflows are assumed to
be known in advance. Finally, the paper shows that a better operating policy may be
obtained by solving the optimization problem with Sampling Dynamic Programming.
Numerical results are presented, compared and analyzed.

Résumé

Cet article porte sur la détermination de la règle optimale de gestion journalière
d’un réservoir sur un horizon d’une année. Le problème est stochastique puisque les
apports au réservoir sont aléatoires et ne sont généralement connus qu’une ou quelques
journées à l’avance. Le but de l’article est de montrer que la règle optimale de ges-
tion du réservoir change avec la façon de modéliser le problème et de prendre en
compte l’information. Le problème est tout d’abord solutionné sans tenir compte de
la corrélation temporelle des apports. Puis il est solutionné en prenant en compte la
corrélation entre les apports d’un jour donné et ceux des 1, 2, . . . , n jours précédents.
L’article montre que la règle de gestion s’améliore avec la valeur de n. Le problème
d’optimisation stochastique journalier est solutionné par la suite en supposant que
les apports sont connus 1, 2, . . . , m jours d’avance. Les résultats montrent que la
règle optimale de gestion s’améliore aussi avec la valeur de m. Finalement, l’article
montre qu’une meilleure solution peut, dans certains cas, être obtenue en utilisant le
Sampling Dynamic Programming pour résoudre le problème. Des résultats numériques
sont présentés, comparés et analysés.

Acknowledgments: The financial support provided by Hydro-Québec and the
Natural Sciences and Engineering Research Council of Canada through the Industrial
Chair on river system management is gratefully acknowledged.
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Introduction

The first application of Dynamic Programming (DP) to the reservoir management problem
dates back more than sixty years, when the first paper on the subject was published by
Massé in 1946. The paper was in fact published six years before the first paper by Bellman
(1952) on DP, so that the first DP application probably involved a reservoir management
problem. Since Massé (1946), several papers have been published on the subject. In the
survey by Yakowitz (1982) on DP application to water resources, 45 papers dealing with
reservoir management are reviewed. About the same number of papers are cited by Yeh
(1985) in this state-of-the-art review. Labadie (2004) lists 27 papers published since 1980.

The paper’s contribution is not to show how to determine the optimal reservoir oper-
ating policy using DP since this was done a long time ago. Rather, it consists in showing
that the optimal operating policy changes with the way the problem is solved and the
information that is taken into consideration. For instance, the daily inflow can be assumed
to be an independent random variable when solving the DP problem. However, if the
inflow is not independent but correlated to the previous day’s inflow, a better operating
policy will be obtained if this correlation is taken into account. The inflow on day t may
be correlated not only to the inflow of the preceding day but to those of several previous
days. The paper shows that the solution improves when the multi-lag autocorrelation is
taken into consideration.

When the reservoir’s operating policy is determined on a daily time basis, it is usually
assumed that the inflow of day t is known at the beginning of that day and, hence, when
the reservoir’s operating policy is set for that day. The possibility that the inflow of day
t+1 may also be known at the beginning of day t is never considered. This inflow is always
supposed to be known in probability only at the beginning of day t. In practice, however,
the inflows are often known many days in advance. In fact, there are continuous improve-
ments in weather forecasting, with forecasts now made for periods of four to ten days. If
the inflow is known for more than one day in advance, a better operating policy will be ob-
tained if this is taken into account. This paper shows that the results improve significantly
with the number of days that the inflows are known in advance. Finally, the paper shows
that a better operating policy may be obtained by solving the problem with Sampling
Dynamic Programming (Kelman 1990) instead of Stochastic Dynamic Programming.

Problem formulation

The problem consists in determining the optimal operating policy of a reservoir supplying
a hydroelectric powerplant. The problem is solved on a daily time basis for a period of
one year. The problem is stochastic since the reservoir inflows are random and cannot be
predicted long in advance.
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The objective of the problem is to maximize the expected revenues from the sale of the
hydroelectric energy produced by the powerplant, and more specifically to:

maximize E

{

T
∑

t=1

υt · η (St, St+1) · gt (Rt)

}

+ Φ (ST+1) (1)

where E {} represents the mathematical expectation, St the reservoir content in hm3 at
the beginning of day t, Rt the reservoir release in m3

/

s in day t, υt the value of the MWh
produced by the powerplant in day t, and where T = 365. The function gt (Rt) gives the
energy generated by the powerplant in day t as a function of Rt and with the water head
equal to Href m. The function η (St, St+1) corrects the generation when the water head is
different from Href .

η (St, St+1) =
h ([St + St+1]/2)

Href
, (2)

where h () denotes the water head in m as a function of the reservoir content. Equation
(2) supposes that the generation increases linearly with the water head, which is almost
true. The function Φ (ST+1) in (1) represents the expected value of the water stored in the
reservoir at the end of the year.

The function gt (Rt) used in this paper is piecewise linear, concave and non-decreasing,
like the one shown in Figure 1 for a powerplant consisting of four generating units. Point
1 in this figure corresponds to the optimal generation of the most efficient generating unit,
point 2 to the optimal generation of the two most efficient units, point 3 to the optimal
generation of the three most efficient units, and point 4 to the optimal generation of the
four units. The generation is said to be optimal when the generating units operate at
maximum efficiency. The generation is smaller, however, than the capacity of the four
units, which explains why there are three intersection points beyond point 4 in Figure 1.
These three points give the maximum generation values obtained with outflows equal to
u5, u6 and u7 m3

/

s. The powerplant generation is not really a piecewise linear function.
Between points 0 and 1, for instance, the generation increases nonlinearly, first in a convex
way and afterward in a concave way. The real curve is in fact S-shaped. Straight lines
are still used between intersection points in Figure 1 because they simplify the problem
and give good results. The discharges determined with the optimization model generally
correspond to the intersection points of the piecewise linear function, which is very similar
to the solutions found by Linear Programming for piecewise linear problems. The reason
may be that problem (1)–(5) is almost a piecewise linear problem and would in fact be one
without function η (St, St+1) in (1). The solution for problem (1)–(5) with the piecewise
linear function gt (Rt) is excellent since it generally adjusts the reservoir discharge to u1,
u2, u3, . . . , u7 m3

/

s, and hence to the most productive discharges.

The curve in Figure 1 may change throughout the year since the number of available
generating units may not always be the same because of maintenance. The powerplant’s
maximal outflow, denoted by Rturb

t , may therefore change with time. When the reservoir
release Rt is greater than Rturb

t , spillage occurs and less energy is generated because St+1

and η (St, St+1) diminish.
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Figure 1: Generation vs outflow

The optimal reservoir operating policy is the policy that maximizes the expected rev-
enues while respecting the following constraints:

St+1 = St + (Qt − Rt) · c ; t = 1, 2, . . . , T (3)

Smin
t+1 ≤ St+1 ≤ Smax

t+1 ; t = 1, 2, . . . , T (4)

Rmin
t ≤ Rt ≤ Rmax

t ; t = 1, 2, . . . , T (5)

where c = 0.0864. This factor converts the m3
/

s for one day into hm3. The variable
Qt represents the reservoir inflow on day t. There are lower and upper bounds in (4)
and (5) on variables St+1 and Rt because there are usually environmental, recreational
or economic constraints to satisfy. For instance, the reservoir may have to be maintained
above a certain level during the summer to allow for boating and recreational activities,
but not too high because flooding might occur. The reservoir discharge may also have to
be maintained above a certain level during certain periods of the year for environmental
or economic reasons.

Stochastic Dynamic Programming

The stochastic optimization problem defined in the preceding section may not be solvable
because there is a probability that constraints (4) and (5) could be violated. The prob-
lem can easily be made solvable, however, by changing the deterministic constraints for
probabilistic constraints or by replacing constraints (4) and (5) with a penalty function in
the objective function. This second approach is used in this paper and problem (1)–(5) is
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rewritten as:

maximize E

{

T
∑

t=1

υt · η (St, St+1) · gt (Rt) − Lt (St+1, Rt)

}

+ Φ (ST+1) (6)

subject to constraint (3) and the two following inequalities:

0 ≤ St+1 ≤ Scap (7)

Rt ≥ 0 (8)

where Lt (St+1, Rt) is the penalty function,

Lt (St+1, Rt) = e1,t · max
(

0, Smin
t+1 − St+1

)

+ e2,t · max
(

0, St+1 − Smax
t+1

)

+

e3,t · max
(

0, Rmin
t − Rt

)

+ e4,t · max (0, Rt − Rmax
t ) . (9)

Constraints (7) and (8) imply that all the surplus water is spilled when the reservoir
becomes full, and more specifically when St+1 = Scap. The value of max (0, ω) in (9)
is equal to ω when ω > 0 and to 0 otherwise. The value of Lt (St+1, Rt) is therefore
equal to zero when constraints (4) and (5) are satisfied and increases linearly when the
constraints are violated. The only difficulty with penalty function (9) is to correctly adjust
the parameters ei,t, i = 1, . . . , 4, t = 1, . . . , T .

To simplify the presentation, let:

Bt (St, St+1, Rt) = υt · η (St, St+1) · gt (Rt) − Lt (St+1, Rt) (10)

The optimization problem can then be rewritten as:

maximize E

{

T
∑

t=1

Bt (St, St+1, Rt)

}

+ Φ (ST+1) (11)

subject to constraints (3), (7) and (8). This optimization problem can be solved with DP,
and more specifically with the following recursive equation:

Ft (St) = E
Qt

{

max
Rt

[

Bt (St, St+1, Rt) + Ft+1 (St+1)
]

}

. (12)

Equation (12) must be solved backwards in time, beginning on day T with FT+1 (ST+1) =
Φ (ST+1). The solution must, of course, respect constraints (3), (7) and (8). When the
function Φ (ST+1) is not known, one may proceed as follows: set Φ (ST+1) = 0 ∀ST+1

and solve equation (12) backwards in time for a period of a year. Next, fix Φ (ST+1) =
F1 (ST+1) ∀ST+1, and solve the recursive equation again for a year. Repeat the procedure
until the marginal value of Φ (ST+1) is the same in two consecutive iterations. The optimal
operating policy determined with (12) is a function of St and Qt since Qt is assumed to be
known when Rt is fixed.
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The inflow Qt is usually correlated with the inflow of the preceding day. This correlation
varies throughout the year and can be very high at certain time, such as during Canadian
winters. When this correlation is included in the optimization model, the variance of the
random variables becomes smaller and better results are obtained. The recursive equation
then becomes:

Ft (St, Qt−1) = E
Qt|Qt−1

{

max
Rt

[

Bt (St, St+1, Rt) + Ft+1 (St+1, Qt)
]

}

(13)

The variable Qt−1 is considered to be a state variable in equation (13) because Qt is a
function of this variable. This function is usually assumed to be as follows:

Qt = b0,t + b1,t · Qt−1 + b2,t · ζt (14)

where b0,t, b1,t and b2,t are parameters and ζt is a random variable with the mean equal to
zero. When the variables Qt and Qt−1 are normally distributed, the variable b2,t · ζt is also
normally distributed with a mean equal to zero and a standard deviation equal to:

b2,t = σt

√

(

1 − ρ2
t,t−1

)

(15)

The symbol σt in (15) denotes the standard deviation of Qt, and ρt,t−1 the correlation
coefficient between Qt and Qt−1 . The variance of the random variable is therefore equal
to σ2

t in equation (12) and to σ2
t ·

(

1 − ρ2
t,t−1

)

in equation (13). If ρt,t−1 = 0.90 , as is often
the case in winter, the variance of the random variable in problem (13) is only equal to
19% of the variance in problem (12), which may have an important effect on the operating
policy.

The inflow Qt may be correlated not only to Qt−1, but to Qt−2, Qt−3, . . . ,Qt−n, where
n may be as large as 15. The relation between Qt and the inflows of the n preceding days
is usually assumed to be linear and equal to:

Qt = b0,t + b1,t · Qt−1 + b2,t · Qt−2 + . . . + bn,t · Qt−n + bn+1,t · ζt (16)

When the variables Qt−1, Qt−2, Qt−3, . . . ,Qt−n are all normally distributed, the variable
bn+1,t · ζt is also normally distributed with a mean of zero and a standard deviation equal
to:

bn+1,t = σt

√

(

1 − Υ2
t

)

(17)

where Υ2
t is the coefficient of determination (Fiering and Jackson 1971). Υ2

t is equal to
ρ2

t,t−1 when n = 1 and increases with the value of n, at least for a while. The idea is

to increase n as long as Υ2
t increases and this improves the reservoir’s operating policy

determined with the following equation:
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Ft (St, Qt−1, . . . , Qt−n) = E
Qt|Qt−1,...,Qt−n

{

max
Rt

[

Bt(St, St+1, Rt) + Ft+1(St+1, Qt, . . . , Qt−n+1)
]

}

(18)

It is well known that a recursive equation like (18) cannot be solved in a reasonable time
when the number of state variables exceeds four. Turgeon (2005) has recently shown that
the problem can be solved approximately for any value of n with two state variables only,
St and Mt, where:

Mt = b1,t · Qt−1 + b2,t · Qt−2 + . . . + bn,t · Qt−n (19)

Substituting (19) into (16) gives:

Qt = b0,t + Mt + bn+1,t · ζt (20)

Recursive equation (18) can then be approximated by the following equation:

Ft (St,Mt) = E
Qt|Mt

[

E
Mt+1[Mt,Qt

{

max
Rt

[

Bt (St, St+1, Rt) + Ft+1 (St+1,Mt+1)
]

}

]

(21)

Turgeon’s paper shows how to determine the conditional distribution of Qt in terms of Mt

and that of Mt+1 in terms of Mt and Qt.

Sampling Dynamic Programming

The reservoir’s optimal operating policy was determined in the preceding section based on
the probability distributions or the conditional daily inflow probability distributions. In
this section, it is determined from the historical inflow scenarios or the scenarios generated
by autoregressive equation (16). Let N be the number of available scenarios and Qn

t the
inflow on day t corresponding to scenario n. If one disregards the serial correlation of the
inflows, the reservoir’s optimal operating policy can be determined by solving one of the
following two recursive equations:

Ft (St, n) = max
Rt

[

Bt (St, St+1, Rt) +

N
∑

m=1

Ft+1 (St+1,m) · pt(m)

]

(22)

Ft (St, n) = max
Rt

[

Bt (St, St+1, Rt) +
1

N

N
∑

m=1

Ft+1 (St+1,m)

]

(23)

The function Ft (St, n) represents the expected profit between the beginning of day t and
the end of the horizon when reservoir storage at the beginning of day t is equal to St, the
forecasted inflow for day t corresponds to that of scenario n, and the optimal operating
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policy is applied every day. The function pt(m) in (22) represents the probability that the
inflow on day t corresponds to that of scenario m. This probability can be determined
with a histogram when there are sufficient data. Otherwise, it must be determined from
the probability distribution that best fits the inflow data of day t. In (23), the problem is
simplified since the same probability 1/N is assigned to each of the N scenarios. However,
this approach should only be used when N is large and historical scenarios are used. There
is no advantage to using (23) for synthetic inflows with known probability distributions.

There is very little difference between recursive equations (22) and (12) given that (12)
can also be written as follows:

Ft (St, Qt) = max
Rt

[

Bt (St, St+1, Rt) + E
Qt+1

{Ft+1 (St+1, Qt+1)}

]

(24)

To solve (24) in a reasonable period of time, the variables St, St+1, Qt and Qt+1 must
be discretized. Let qt+1,1, qt+1,2, . . . , qt+1,J be the J values of Qt+1 used to solve (24).
The only difference between (22) and (24) is therefore that (22) is solved for Qt+1 equal
to Q1

t+1, Q2
t+1, . . . , QN

t+1 and (24) for Qt+1 equal to qt+1,1, qt+1,2, . . . , qt+1,J . Although
these values are different, the result will be approximately the same since the probability
distribution of Qt+1 is the same for the two problems. Consequently, there is no advantage
to using (22) instead of (12) to determine the reservoir’s operating policy.

The correlation between the inflows of days t and t − 1 can be taken into account with
the scenarios by solving the following recursive equation instead of (22):

Ft (St, n) =

N
∑

m=1

{

max
Rt

[Bt (St, St+1, Rt) + Ft+1 (St+1,m)]

}

· pt (m|n) (25)

where pt (m|n) is the probability that the inflow on day t corresponds to that of scenario
m given that the inflow on day t − 1 was equal to that of scenario n.

Mixed Dynamic Programming

The word “mixed” here means a mixture of deterministic and stochastic dynamic program-
ming to solve the reservoir’s management problem. This method is used when the inflows
are known for more than a day in advance and, more specifically, for j days in advance
where j may vary throughout the year. In this case, the optimal reservoir’s operating pol-
icy, without autocorrelation, can be determined by solving the following recursive equation
for t = 1, j + 1, 2j + 1, 3j + 1, . . . , etc.:

Ft (St, n) = max

[

j−1
∑

i=0

Bt+i (St+i, St+i+1, Rt+i) +
N

∑

m=1

Ft+j (St+j ,m) · pt(m)

]

(26)

Solving equation (26) can be shown to be equivalent to solving one of the two following
equations, according to the value of t:
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Ft (St, n) = max
Rt

[

Bt (St, St+1, Rt) +
N

∑

m=1

Ft+1 (St+1,m) · pt(m)

]

; if t = k · j (27a)

Ft (St, n) = max
Rt

[Bt (St, St+1, Rt) + Ft+1 (St+1, n)] ; otherwise (27b)

where k is a positive integer. A mixture of stochastic and deterministic DP is used here
since (27a) is stochastic whereas (27b) is deterministic and solved with the inflows of
scenario n. The lag-one inflow autocorrelation can be taken into account by replacing
(27a) by (25). The problem can also be solved by taking into account the correlation
between the average inflow of the next j days with that of the past j days. For j = 7,
for instance, this would be equivalent to taking into account the correlation between the
average inflows of weeks k and k− 1. Let p̃k (m|n) denote the probability that the average
inflow in period k is equal to that of scenario m given that it was equal to that of scenario
n in period k − 1. This autocorrelation can be taken into account by simply replacing
equation (27a) with the following equation:

Ft (St, n) =
N

∑

m=1

{

max
Rt

[

Bt (St, St+1, Rt) + Ft+1 (St+1,m)
]

}

· p̃k (m|n) (28)

Numerical results

It was shown in the preceding sections that the optimal reservoir operating policy can
be determined with nine different recursive equations, and more precisely with equations
(12), (13), (18), (21), (22), (23), (25), (27) and (28). These recursive equations are all
easy to program and, except for (18), can be solved in a few minutes by a computer. If
the objective is to find the best reservoir operating policy, these recursive equations should
all be programmed and their results compared. This is what this section does: compare
the operating policies determined by the recursive equations for a 107-MW hydroelectric
powerplant fed by a 537.5-hm3 reservoir.

A set of one hundred inflow scenarios was used to solve the optimization problems.
Figure 2 gives the minimum, average and maximum inflows in this set for each day of
the year. The average annual inflow and standard deviation are 75 m3/s and 44 m3/s
respectively. The Figure 3 correlograms show that the inflows are autocorrelated, which is
usually the case when the problem is solved on a daily basis. According to these correlo-
grams, the daily inflow may not only be correlated to the inflow of the preceding day but
to the inflows of many previous days. The inflow data probability distributions are skew in
each day of the year, meaning that the inflows are not normally distributed. The skewness
coefficients vary throughout the year from 0.20 to 6.97, the average being 1.73. Since it
is recommended that the variables in autoregressive equations (14) and (16) be normally
distributed, the inflow data were normalized, i.e. transformed into data that are normally
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Figure 2: Minimum, mean and maximum daily inflows
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Figure 3: Correlograms of six different days

distributed. The transformations were done using the logarithmic and gamma functions.
The normalized data are represented by the variable Yt below, where Yt = Nt (Qt).

The powerplant’s daily generation is supposed to be a piecewise linear function of the
outflow, like the one shown in Figure 1. The values of the outflow and the generation at
the six intersection points of this function are given in Table 1. The generation corresponds
to a water head of 118.6 m, which ranges from 111 to 122 m depending on the reservoir
content.
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Table 1: Generation vs outflow

Intersection Outflow Generation
points m3/s MWh

1 33.5 35.06
2 67.0 67.96
3 100.2 98.55
4 105.3 102.22
5 110.4 105.08
6 115.5 106.97

The objective of the optimization problem is the same as that of problem (6)–(9). The
value of the MWh generated on day t, represented by υt in (6), was set to 1.30 for the
days in January and February, 1.20 for the days in March and December, 1.10 for the
days in April and November, and to 1.0 for the other months of the year. There is no
constraint regarding the maximum reservoir level other than St ≤ Scap ∀t, so that e2,t was
set to zero in equation (9). However, there are constraints on the minimum and maximum
reservoir discharges and minimum reservoir level in the summer. These constraints require
that 50 ≤ Rt ≤ 450 ∀t and St ≥ 433 for 166 ≤ t ≤ 258. They are taken into account by
penalty function Lt (St+1, Rt). The coefficient e1,t in Lt (St+1, Rt) was set equal to 12 for
166 ≤ t ≤ 258 and to zero for the rest of the year. The coefficients e3t and e4,t were set to
10 and 20 for all t values.

The variables St and Qt in recursive equation (12) were discretized so as to solve the
problem in a reasonable amount of time. The equation was in fact solved for 15 different
values of Qt and 35 equidistant values of St in the interval [0, Scap]. The values of Qt were
set equal to N−1

t (Yt) for Yt equal to:

(the mean of Yt) + λi·(the standard deviation of Yt),

with λi = -2.5, -2.0, -1.5, -1.25, -1.0, -0.75, -0.35, 0, 0.35, 0.75, 1.0, 1.25, 1.5, 2.0 and 2.5.
Tests made with a greater number of values of λt, and hence of Qt, have not produced
much better results, as Table 2 shows. The results presented in this table were obtained
by simulating the reservoir’s operating policy found by (12) over a period of one hundred
years. The simulations were done with the inflows of the 100 scenarios. Columns 2, 3, and
4 in Table 2 give the mean annual values of the energy produced, the penalty cost and the
profit. Columns 5, 6 and 7 give the number of years and days for which the constraints
on the maximum and minimum discharge and on the minimum reservoir level were not
respected. A flood is supposed to occur when the reservoir discharge exceeds Rmax

t .

The results presented in Table 2 do not take into account the serial inflow correlation.
When this correlation is taken into account, the results improve considerably, as Table 3
shows. The first column in this table gives the number η of preceding days to which the
inflow of day t is correlated. When η is increased from 0 to 1, the profit increases by
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Table 2: Results for different numbers of λt

Number Revenue Penalty Profit Number of years
of λt generated cost (days)

Rmax
t Rmin

t Smin
t

15 680164 72007 608157 5 (26) 36 (412) 27 (325)
23 680283 71883 608400 5 (26) 35 (406) 27 (325)
35 680284 71871 608413 5 (26) 35 (405) 27 (325)
51 680225 71711 608514 5 (26) 35 (403) 27 (325)

Table 3: Results for different numbers of lags

Number Revenue Penalty Profit Number of years
of lags η generated cost (days)

Rmax
t Rmin

t Smin
t

0 680164 72007 608157 5 (26) 36 (412) 27 (325)
1 658421 33558 624863 5 (25) 8 (68) 6 (27)
2 665082 34620 630462 5 (25) 8 (89) 7 (42)
4 665941 34529 631412 5 (25) 8 (98) 7 (43)
6 666373 33815 632558 5 (24) 9 (97) 7 (42)
7 666297 33060 633237 5 (24) 8 (96) 8 (40)
10 666380 33113 633267 5 (24) 8 (93) 8 (40)
13 666178 32388 633790 5 (24) 8 (88) 8 (40)

2.7%, which is not negligible. The most interesting result, however, is that the numbers of
days where violations of the constraints occur diminish drastically in columns (6) and (7).
The profit increases very little afterwards with the value of η. However, considering that
computing time increases very little also, the value of η should be increased as long as the
profit increases. The results in Table 3 were also obtained by simulating the reservoir’s
operating policy over a period of 100 years with the inflow scenarios. The operating policy
was determined with recursive equation (13) for η = 1 and with equation (21) for η > 1.
The fact that the number of days in columns 6 and 7 are smaller for η = 1 than for η > 1
may look strange, but it is not so. The objective of the problem is not to minimize the
number of violations but to maximize the profits, which increase with the value of η in
Table 3. Furthermore, the penalty cost in column 3 is not only a function of the number of
violations but also of the severity, so that a severe violation in one day may be more costly
than small violations over several days. This explains why the penalty cost is smaller for
η = 13 than for η = 1, even though the number of days of violation is greater.

Table 4 presents the results obtained with the Sampling Dynamic Programming method.
The results in the first line were obtained by simulating the reservoir operating policy
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Table 4: Sampling dynamic programming results

Eqn No. of Revenue Penalty Profit Number of years
no. lags generated cost (days)

Rmax
t Rmin

t Smin
t

(22) 0 679498 75377 604121 4 (22) 40 (482) 31 (375)
(23) 0 679183 76579 602604 5 (24) 40 (490) 30 (368)
(25) 1 662238 31668 630570 3 (20) 8 (86) 7 (31)

determined by recursive equation (22) over a period of 100 years. This equation was
solved for 35 equidistant values of St in the interval [0, Scap] and for Qt equal to the
values of the 100 scenario inflows in day t. The results in the second line were obtained
with the operating policy determined by recursive equation (23), and those in the third
line with the operating policy determined by equation (25), as the first column of the
table indicates. The results of the two first lines show that it is preferable to determine
and use the probability distribution of the 100 inflows on day t than to assign the same
probability 1/100 to each inflow. Strangely enough, the results of the two first lines are
not as good as those in Table 3, which were obtained with the operating policy determined
by recursive equation (12). In other words, in this case, Sampling Dynamic Programming
does not perform as well as Stochastic Dynamic Programming. This is probably due to
the fact that the serial correlation of the inflows has not been taken into account. To
disregard the autocorrelation when it is high – and Figure 3 shows that it is high here –
may certainly yield a poor operating policy. When the lag-one autocorrelation is taken into
account, Sampling Dynamic Programming gives better results than Stochastic Dynamic
Programming. Comparing the results in the last line of Table 4 to those of the second line
in Table 3 shows that the profit is large, the penalty cost smaller and floods occur in three
years only when Sampling Dynamic Programming is used.

Table 5 presents the results obtained with Mixed Dynamic Programming and more
specifically with recursive equations (27a) and (27b). The probability pt (m) in (27a) has,
however, been replaced with pt (m|n) to take account of the correlation between the inflows
of days t and t− 1. The first column in Table 5 gives the number of days, j, for which the
inflows are supposed to be known in advance. This number is the same for the entire year.
The results show very clearly that the profits increase with the value of j. The last line in
Table 5 presents the results obtained with recursive equation (28), and more specifically
with conditional probabilities that take into account the correlation between the average
inflows of two consecutive five-day periods. These results are simply bad when compared
to those of line 5, which were obtained with the operating policy determined with (27a).
These results show that it is preferable to take into account the correlation between the
inflows of two consecutive days than the correlation between the average inflows of two
consecutive five-day periods.
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Table 5: Mixed dynamic programming results

Number Revenue Penalty Profit Number of years
of days j generated cost (days)

Rmax
t Rmin

t Smin
t

1 662238 31668 630570 3 (20) 8 (86) 7 (31)
2 659248 24946 634302 4 (19) 8 (74) 1 (2)
3 666612 24856 641756 3 (18) 8 (65) 2 (3)
4 662406 18806 643600 2 (13) 6 (67) 1 (2)
5 670050 18359 651691 2 (12) 9 (101) 2 (5)

5 ave 679017 51718 627299 3 (18) 33 (417) 12 (49)

Conclusion

The problem of determining the optimal daily operating policy of a reservoir with DP
may seem trivial, but it is not as this paper has shown. The optimization problem can
of course be easily solved with DP, but the results will be good only if the problem’s
mathematical model is good. The paper shows, for instance, that the profits are larger
and the constraints on the reservoir content and discharge better respected when the inflow
autocorrelation is taken into account. In Table 3, the number of years, in a simulation of
100 years where the constraint on the minimum discharge is not respected, decreases from
36 to 8 when the lag-one autocorrelation is taken into account, which is enormous. The
reservoir operating policy also improves significantly when the model takes into account
the fact that the inflows are often known more than one day in advance.

The paper has shown that nine different recursive equations can be used to determine
the optimal reservoir operating policy. These equations can very easily be programmed,
and except for equation (18), solved in a few minutes of computing time. For this reason,
we consider it important to compare the results obtained with these different equations
before choosing the one to be implemented in practice.
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Appendix II. Notation

The following symbols are used in the paper:

E {} = mathematical expectation

St = reservoir content at the beginning of day t

Smin
t = lower bound on the reservoir content

Smax
t = upper bound on the reservoir content

Scap = reservoir storage capacity

Rt = reservoir discharge in day t

Rmin
t = lower bound on the reservoir discharge

Rmax
t = upper bound on the reservoir discharge

Rturb
t = powerplant maximal outflow

υt = the value of the MWh produced in day t

gt (Rt) = energy generated by the powerplant in day t

n (St, St+1) = function of the water head

h(St) = water head as a function of reservoir content

Href = reference head

c = conversion factor

Φ (ST+1) = value of the water in storage at the end of the horizon

Qt = reservoir inflow on day t

Yt = normalized inflow

Mt = conditional mean

Lt (St+1, Rt) = penalty function

σt = standard deviation of Qt

Υt = coefficient of determination

ρt,t−1 = coefficient of correlation between Qt and Qt−1

ζt = standard normal random variable

pt (m) = probability that the inflow on day t will be equal to the inflow of scenario
m

pt (m|n) = conditional probability of the inflow on day t

Ft (St, Qt−1) = expected profit between the beginning of day t and the end of the horizon
when reservoir storage is equal to St at the beginning of day t and the
inflow in day t − 1 is equal to Qt−1


