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Abstract

The integrated aircraft routing and crew pairing problem consists in determining
a minimum-cost set of aircraft routes and crew pairings such that each flight leg is
covered by one aircraft and one crew, and some side constraints are satisfied. Linking
constraints impose minimum connection times for crews that depend on aircraft con-
nections. The main solution approach for this problem consists in solving a constrained
crew pairing problem iteratively, adding feasibility cuts until a solution is found where
the connection set used by the crew pairings is feasible for the aircraft routing problem.
The feasibility cuts can be generated by a Benders decomposition approach in which
aircraft routing is handled by the subproblem, or they can be selected from a prede-
fined family. We perform a theoretical comparison of the different types of feasibility
cuts. We also propose a simple procedure to strengthen these cuts. Computational
experiments performed on test instances provided by two major airlines are presented
to support the theoretical results.

Key Words: aircraft routing; crew pairing; integrated planning; Benders decompo-
sition; extreme rays; feasibility cuts.

Résumé

Le problème intégré de la création d’itinéraires d’avions et d’horaires d’équipages
consiste à déterminer un ensemble d’itinéraires d’avion et de rotations d’équipage tels
que chaque vol est couvert par un appareil et un équipage, tout en satisfaisant un en-
semble de contraintes supplémentaires. Alors que certaines contraintes supplémentaires
ne concernent que les équipages ou les avions, des contraintes liantes imposent des
temps minimums de connexion pour les équipages qui dépendent des connexions utili-
sées par les appareils. L’approche principale proposée pour résoudre ce problème
intégré consiste à résoudre, itérativement, un problème de rotations d’équipages mo-
difié, où une coupe de réalisabilité est ajoutée au problème d’équipages jusqu’à ce que
l’ensemble des connexions courtes utilisé par les équipages dans la solution courante
soit réalisable pour les avions. Les coupes de réalisabilité peuvent être générées par
une approche de décomposition de Benders, avec comme sous-problème le problème de
routage d’avions, ou à partir d’une famille prédéfinie de coupes. Nous présentons une
comparaison théorique des coupes de Benders et des autres familles de coupes. Nous
proposons aussi une méthode de renforcement simple qui peut être appliquée à tous
les types de coupes de réalisabilité pour le problème intégré avions-équipages.

Acknowledgments: This work was supported by the Québec Government (Fonds
pour la Formation de Chercheurs et l’Aide à la Recherche), and the Natural Sciences
and Engineering Research Council of Canada. This support is gratefully acknowledged.
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Introduction

The planning of airline operations is usually performed sequentially (see, e.g., Yu (1998)).
The airline first solves a flight scheduling problem to determine each flight leg to be flown
during a given period, with corresponding departure and arrival times. Then, the fleet
assignment is performed to assign an aircraft type to each flight leg, taking into account
the number of available aircraft of each type and the estimated profit. An aircraft routing
problem is then solved, for each aircraft type, to determine a sequence of flight legs to be
assigned to each individual aircraft so that each leg is flown exactly once and maintenance
is performed at regular interval. The airline then creates minimum-cost crew pairings by
solving a crew scheduling problem for each aircraft type, ensuring that every flight leg
is covered and that all work rules are satisfied. A pairing is a sequence of duty periods
separated by overnight rests, and a duty period is a sequence of flight legs separated by
smaller rest periods, called sits or connections. Finally, by solving a crew bidding problem
or a crew rostering problem, pairings are combined to form personalized monthly schedules
which are assigned to employees. On the one hand, because the five steps are linked
together, a sequential planning procedure is likely to yield suboptimal solutions. On the
other hand, completely integrating all steps would yield an intractable model. This paper
focuses on the integration of the aircraft routing and the crew scheduling problems.

Aircraft routing decisions have an impact on the set of feasible pairings since the min-
imum connection time required between two successive flight legs covered by the same
crew depends on whether the same aircraft is used on both legs. Cordeau et al. (2001b),
Klabjan et al. (2002) and Cohn and Barnhart (2003) have shown that integrating the two
problems yields solutions that are significantly better than those obtained by solving the
problems sequentially. A connection that is not long enough to be used by a crew if the
crew changes aircraft is said to be short. Cordeau et al. (2001b) have introduced a model
where one linking constraint per short connection is added to the aircraft routing and crew
pairing formulations to ensure that a crew uses a short connection only if the two connect-
ing flights are flown by the same aircraft. To handle these linking constraints, a solution
approach based on Benders decomposition is used. The latter model was further enhanced
by Mercier et al. (2005) who have shown that reversing the order of the solution sequence,
i.e., solving the crew pairing problem in the Benders master problem as opposed to the air-
craft routing problem, yields significant improvements over the approach of Cordeau et al.
(2001b). Since the aircraft routing problem is usually modeled as a feasibility problem, all
costs in the integrated model are associated with the crew pairings. Hence, when solving
an aircraft routing subproblem, only feasibility information is transfered to the master
problem (in the form of feasibility cuts). Huang et al. (2003) have also proposed a Benders
decomposition approach for the integrated problem, but instead of generating feasibility
cuts from the dual subproblem variables, they generate them from primal information.
Cohn and Barnhart (2003) have proposed an integrated model which includes variables
representing complete solutions to the aircraft routing problem instead of incorporating
the aircraft routing formulation. The authors show that only a subset of the feasible solu-
tions needs to be included in the model. They have also proposed an approach which first
solves a crew pairing problem in which all short connections are allowed. If the set of short
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connections used in the solution to this crew pairing problem leads to a feasible aircraft
routing problem, an optimal solution has been identified. Otherwise, a feasibility cut is
introduced in the crew pairing problem to forbid a minimally infeasible subset of short
connections, and the process is repeated. Finally, Klabjan et al. (2002) have presented
a partially integrated approach that solves a modified crew scheduling problem including
additional constraints that count the number of available aircraft on the ground at any
time.

The contribution of this paper is fourfold. First, we present a theoretical comparison
of different families of feasibility cuts that have been proposed in the literature for the
integrated aircraft routing and crew scheduling problem. We discuss their strength and
the procedures used for their generation. We show that the feasibility cuts proposed
in the literature are all included in the set of Benders feasibility cuts, and may also be
dominated by the latter. Second, we present a comparison of Benders feasibility cuts and
Benders optimality cuts through the description of the corresponding dual subproblem
polyhedra. The latter cuts are generated from an aircraft routing primal subproblem
that is made feasible by the introduction of artificial variables. In that case, the choice
of artificial variables has an impact on the dual subproblem polyhedron, and thus, on
the feasibility cuts being generated. Indeed, we show that cuts generated when a unique
artificial variable is used correspond to extreme rays while it is not the case for cuts
generated when other combinations of artificial variables are used. Third, we show that
in the case of cuts preventing the use of a set of short connections that are individually
infeasible for the aircraft routing problem, linear combinations of extreme rays give stronger
cuts than extreme rays. Finally, we introduce a simple lifting procedure that can be
applied to any type of feasibility cut for the integrated aircraft routing and crew scheduling
problem. Computational experiments performed on test instances provided by two major
airlines are presented to support all theoretical results.

The remainder of the article is organized as follows. The next section introduces some
notation and a mathematical formulation of the problem. Section 2 presents the Benders
feasibility cuts and a description of the dual subproblem polyhedron. Section 3 compares
different approaches to bound the Benders dual subproblem polyhedron and generate opti-
mality cuts. Some families of feasibility cuts are then introduced and compared in Section
4. Section 5 introduces two types of stronger cuts: Pareto-optimal cuts and feasibility cuts
obtained from a simple lifting procedure. This is followed by computational experiments
in Section 6, and by the conclusion.

1 Mathematical Formulation

We consider the Extended Crew Pairing (ECP) formulation proposed by Cohn and Barn-
hart (2003) for the integrated aircraft routing and crew pairing problem. In this formula-
tion, variables representing complete solutions to the aircraft routing problem are added
to the classical crew pairing model. All maintenance constraints can thus be eliminated
and a single aircraft routing solution is chosen through the use of a convexity constraint.
Cohn and Barnhart (2003) show that only a subset of the feasible solutions needs to be
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included in the model, i.e., one column for each unique and maximal maintenance-feasible
short connection set (UM). These columns can be generated individually and sequentially,
in a preprocessing step, by solving a series of aircraft routing problems with additional
constraints and a modified objective function. Although the aircraft routing problem is
considered to be the easiest of the airline planning problems, the modified routing problem
is a difficult combinatorial optimization problem (Mercier et al. (2005)). Nevertheless, we
consider the ECP formulation in this paper to facilitate the comparison between the differ-
ent feasibility cuts that have been proposed in the literature. Furthermore, once the UM
columns have all been generated, ECP can be used to perform sensitivity analysis on the
crew pairing problem. Finally, our conclusions also apply to alternative formulations of the
integrated aircraft routing and crew pairing problem, such as that of Mercier et al. (2005).
They should also apply to any problem for which Benders decomposition has proved to
be a successful solution method, as long as the Benders dual subproblem contains extreme
rays, and especially when the Benders primal subproblem is a feasibility problem (see,
e.g., Cordeau et al. (2001a), Santoso et al. (2005), Cordeau et al. (2006), and Rasmussen
(2006)).

Let L be the set of flight legs, K the set of feasible crew pairings, R the set of feasible
aircraft routing solutions, and S the set of short connections included in at least one aircraft
routing solution. Denote by ck the cost of pairing k ∈ K. For every leg i ∈ L and every
pairing k ∈ K, define a binary constant aki that takes value 1 if leg i ∈ L is covered by
pairing k. For every short connection s ∈ S and every pairing k ∈ K (resp. routing r ∈ R),
define a binary constant dks (resp. brs) that takes value 1 if connection s ∈ S is included
in pairing k ∈ K (resp. routing r ∈ R). Finally, let xk and yr be binary variables that take
value 1 if and only if pairing k ∈ K and routing r ∈ R is used in the solution, respectively.
The ECP model can be stated as follows:

Minimize
∑

k∈K

ckxk (1)

subject to
∑

k∈K

akixk = 1 (i ∈ L) (2)

∑

r∈R

brsyr −
∑

k∈K

dksxk ≥ 0 (s ∈ S) (3)

∑

r∈R

yr = 1 (4)

xk ∈ {0, 1} (k ∈ K) (5)

yr ∈ {0, 1} (r ∈ R). (6)

The objective function (1) minimizes crew pairing costs. No costs are associated with
aircraft routings. Constraints (2) together with constraints (5) ensure that each leg is
covered by exactly one crew. Constraints (3) prevent a crew to be assigned to any two flight
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legs forming a short connection, unless an aircraft is also assigned to both legs. Constraint
(4) together with constraints (6) ensure that exactly one solution to the aircraft routing
problem is chosen.

2 Benders Decomposition

The ECP model (1)–(6) includes both crew pairing and aircraft routing variables. Benders
decomposition (see, e.g., Benders (1962); Nemhauser and Wolsey (1988)) can be used
to reformulate the problem so as to reduce the number of variables at the expense of
an increase in the number of constraints. The additional constraints can, however, be
generated dynamically only when they are violated. In most applications, only a very
small subset of constraints needs to be generated for an optimal solution to be identified.

Let X be the set of solutions satisfying the crew constraints (2) and (5). For a given
vector x̄ ∈ X, ECP reduces to the following primal subproblem (PSP) involving only
aircraft variables:

Minimize 0 (7)

subject to

∑

r∈R

brsyr ≥
∑

k∈K

dksx̄k (s ∈ S) (8)

∑

r∈R

yr = 1 (9)

yr ≥ 0 (r ∈ R). (10)

Observe that upper bounds on the yr variables are not needed because of constraints (9)
and that the integrality constraints on the aircraft variables yr have been replaced with
non-negativity constraints. In fact, once the crew variables xk are given binary values,
the polyhedron corresponding to (8)–(10) has integer extreme points (Cohn and Barnhart
(2003)). Let α = (αs ≥ 0 | s ∈ S) and β be the dual variables associated with constraints
(8) and (9), respectively. When convexity constraint (9) is multiplied by −1, the dual of
(7)–(10) is the following dual subproblem (DSP):

Maximize
∑

k∈K

∑

s∈S

dksx̄kαs − β (11)

subject to

∑

s∈S

brsαs − β ≤ 0 (r ∈ R) (12)

αs ≥ 0 (s ∈ S). (13)
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Since brs ≥ 0, for all r ∈ R and s ∈ S, one can observe that β ≥ 0 by (12) and (13). The
dual subproblem is always feasible since the null vector 0 satisfies constraints (12)–(13).
Hence, the primal subproblem is either infeasible or feasible and bounded. For the dual
subproblem to be bounded (and the primal subproblem feasible), the value of its objective
function (11), which is a maximization, must be non-positive for every extreme ray of
its feasible region. Let ∆ denote the polyhedron defined by constraints (12)–(13). One
can see that ∆ is a pointed polyhedral cone, i.e., it has a unique extreme point, the null
vector, and a multitude of extreme rays. Let R∆ be the set of extreme rays of ∆. One
can notice that only the objective function of the dual subproblem (11)–(13) contains crew
information. This implies that the feasible region of the dual subproblem is independent
of the crew pairing solution and that all the extreme rays of ∆ could be enumerated a
priori. Model (1)–(6) can thus be reformulated as the following Benders master problem
(MP):

Minimize
∑

k∈K

ckxk (14)

subject to

∑

k∈K

akixk = 1 (i ∈ L) (15)

∑

k∈K

∑

s∈S

dksαsxk ≤ β ((α, β) ∈ R∆) (16)

xk ∈ {0, 1} (k ∈ K). (17)

The Benders master problem is comprised of the crew pairing problem (constraints (14),
(15) and (17)) and of the set of feasibility constraints (16) which ensure that the values
given to the crew pairing variables xk lead to a bounded dual subproblem (a feasible
primal aircraft routing subproblem). In general, model (14)–(17) contains more constraints
than model (1)–(6) but most feasibility constraints are inactive in an optimal solution.
Hence, these constraints need not be enumerated exhaustively but can instead be generated
dynamically by iterating between a relaxed master problem and the subproblem. The
relaxed master problem contains constraints (15) and (17) as well as a subset of the Benders
cuts (16). The optimal solution of the relaxed Benders master problem is used to set up
constraints (8) in the primal subproblem at every iteration. If the primal subproblem
is feasible, an optimal solution to the ECP problem has been obtained. Otherwise, an
extreme ray of R∆ violating one of the constraints (16) is identified. Hence, exactly one
constraint is added to the relaxed Benders master problem at each iteration.

2.1 Characterization of the extreme rays

When the extreme rays of the Benders dual subproblem polyhedron have a special struc-
ture, efficient algorithms can sometimes be devised to generate Benders feasibility cuts
without explicitly solving the subproblem. In the case of ECP, a single characterization of
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the elements of R∆ is not possible because the extreme rays of the DSP polyhedron may
take several forms (Mercier (2006)).

Assume that q = (αq, βq) is a ray of ∆. We now define the following additional notation:

• Sq = {s ∈ S |αq
s > 0}: the set of short connections for which the corresponding dual

variable is positive in q.

• Rq = {r ∈ R |
∑

s∈Sq brsα
q
s = βq}: the set of aircraft routings for which the corre-

sponding constraint (12) is active at q.

• n(Rq): the maximum number of linearly independent elements in Rq.

In the remainder of the paper, we will refer interchangeably to a routing r ∈ R and to
the dual constraint (12) associated with it. The same is true for a short connection s ∈ S
and its corresponding dual variable αs. For notational convenience, one can define the
variables xs =

∑
k∈K dksxk, ∀ s ∈ S, representing the flow on short connection s. To ease

readability, the proofs of all lemmas are provided in Appendix A.

Lemma 1 A ray q is an extreme ray of ∆ if and only if n(Rq) = |Sq|.

The following simple example shows that the positive elements of the extreme rays of
∆ can take different values. This result is important since all the predefined families of
feasibility cuts that have been proposed in the literature assume that the positive elements
of α always take the value one (see Section 4).

Example 1 A possible set of constraints for the Benders DSP:

αA+αB+αC ≤ β (18)

αA+αB +αD ≤ β (19)

αA +αC+αD ≤ β (20)

αB+αC+αD ≤ β (21)

αB +αD+αE ≤ β (22)

αA +αE ≤ β (23)

αC +αF ≤ β (24)

+αG ≤ β (25)

αA, αB , αC , αD, αE, αF , αG ≥ 0. (26)

Let ∆1 denote the polyhedron defined by constraints (18)–(26) and let R∆1
be the set of

extreme rays of ∆1. Ray a = {1, 1, 0, 0, 1, 0, 0, 2} is an extreme ray of ∆1 since |Sa| =
n(Ra) = 3 (Sa = {A,B,E} and Ra = {(18), (19), (22), (23)}, but n(Ra) = 3 since (18)
and (19) are linearly dependent at a). One can verify that the rays b = {1, 1, 0, 0, 1, 2, 0, 2}
and c = {2, 1, 1, 1, 2, 3, 4, 4} are also extreme rays of ∆1. The extreme ray b yields the
following feasibility cut: xA +xB +xE +2xF ≤ 2, which implies that one can either choose
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connection F, or a maximum of two connections among A, B, and E. The cut exhibits
coefficients of unequal value and is strictly stronger than the ones generated with extreme
ray a = {1, 1, 0, 0, 1, 0, 0, 2} or ray d = {1, 1, 0, 0, 1, 1, 0, 2}.

3 Bounding the Benders Dual Subproblem

When artificial variables are added to constraints (8) or (9) to ensure the feasibility of
the Benders PSP, the Benders DSP becomes bounded and Benders feasibility cuts (16)
are no longer needed in the Benders MP. However, because a cost is associated with each
artificial variable, the PSP becomes an optimization problem and Benders optimality cuts
must then be considered in the MP. This type of formulation is interesting since it is gen-
erally computationally easier to generate optimality cuts than feasibility cuts. Indeed, the
latter requires the identification of a non-basic dual variable which causes unboundedness.
Depending on the LP solver being used, this may be a difficult task, especially if the pri-
mal form of the subproblem is being solved. There are three different ways of making the
primal subproblem feasible. One can either introduce: (a) one artificial variable in each
short connection linking constraint (8), (b) a unique artificial variable appearing in every
constraint (8), or (c) a unique artificial variable appearing in the convexity constraint (9).
Since this choice has an impact on the dual subproblem polyhedron, it may also have
an impact on the cuts generated. The models will thus be individually examined below.
However, model (c) will not be part of the discussion since the dual subproblem of model
(c) is equivalent to the one of model (b) (Mercier (2006)).

In this section, we show that the sets of Benders cuts generated with both models include
all feasibility cuts (16) generated from extreme rays of the DSP. We also show that the
set of cuts generated from model (b) is, in fact, the same as the set of feasibility cuts
(16). However, the set of cuts generated from model (a) also includes cuts that do not
correspond to extreme rays, but to rays which are combinations of extreme rays. All cuts
generated with model (a) or model (b) thus yields valid feasibility cuts, but a larger number
of iterations could be required with model (a) before converging to an optimal solution. In
addition, we show that model (a) can favor the generation of cuts with equal coefficients,
even if these cuts are weaker. Finally, unlike feasibility cuts generated from predefined
families (see Section 4), Benders cuts may include, at a given iteration, short connections
that are not used in the current crew pairing solution (if they are incompatible with the
ones that are used). Since these cuts are stronger than those in which such connections take
the value zero, they may improve the convergence of the method. However, we show that
there always exists an optimal solution of model (a) or model (b) where all dual variables
corresponding to a connection not currently used are set to zero. Lifting procedures to
alleviate this weakness are discussed in Section 5.
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3.1 Model (a): One artificial variable in each short connection linking
constraint

Recall that X is the set of solutions satisfying the crew constraints (2) and (5). For a
given vector x̄ ∈ X, when model (a) is chosen, ECP reduces to the following feasible
primal subproblem (FPSPa) involving only aircraft variables:

Minimize
∑

s∈S

csas (27)

subject to

∑

r∈R

brsyr + as ≥
∑

k∈K

dksx̄k (s ∈ S) (28)

−
∑

r∈R

yr = −1 (29)

yr ≥ 0 (r ∈ R) (30)

as ≥ 0 (s ∈ S), (31)

where as is an artificial variable associated with short connection s ∈ S and cs is the cost of
using the artificial variable as. As is common in the first phase of the simplex algorithm, all
artificial variables can be assumed to have an equal cost, c̄. We can also assume, w.l.o.g.,
that c̄ = 1 since no other cost is present in the FPSPa.

Let F t be the short connection set used by the optimal crew pairing solution at iteration
t, i.e., F t = {s ∈ S |

∑
k∈K dksx̄k = 1}. The optimal solution of the FPSPa chooses

an aircraft routing solution that minimizes the sum of the artificial variables, and thus
maximizes the number of short connections used among those in F t.

The dual of (27)–(31) is the following bounded dual subproblem (BDSPa):

Maximize
∑

k∈K

∑

s∈S

dksx̄kαs − β (32)

subject to

∑

s∈S

brsαs − β ≤ 0 (r ∈ R) (33)

αs ≤ cs (s ∈ S) (34)

αs ≥ 0 (s ∈ S). (35)

No new dual variable is introduced, but the value of each αs variable is now bounded
by the cost of the associated artificial variable. Let ∆Ba denote the polyhedron defined
by constraints (33)–(35) and let P

∆
Ba be the set of extreme points of ∆Ba . Introducing
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the additional free variable z0, the integrated problem can thus be reformulated as the
following Benders master problem (MP2a):

Minimize
∑

k∈K

ckxk + z0 (36)

subject to

∑

k∈K

akixk = 1 (i ∈ L) (37)

−z0 +
∑

k∈K

∑

s∈S

dksαsxk ≤ β ((α, β) ∈ P
∆

Ba ) (38)

xk ∈ {0, 1} (k ∈ K). (39)

The value of z0 is restricted to be larger than or equal to the optimal value of the dual
subproblem, associated with an extreme point, by optimality constraints (38). One can
notice that the difference between Benders feasibility cuts (16) and Benders optimality
cuts (38) is the value of the cost associated with the artificial variables. This value is
minimized by the Benders MP2a and is equal to zero at optimality. In this problem,
Benders optimality cuts are thus in fact feasibility cuts.

3.1.1 Cuts corresponding to combinations of extreme rays

All cuts corresponding to an extreme ray of the BDSP can be generated from the ex-
treme points of the BDSPa. However, some extreme points of the BDSPa correspond to a
combination of these extreme rays.

Recall that Rq is the set of aircraft routings for which the corresponding dual constraint
(12) in the DSP is active at ray q and n(Rq) is the maximum number of linearly independent
elements in Rq. Now, let Hq be the complete set of active constraints at q (without the
non-negativity constraints) and n(Hq) be the maximum number of linearly independent
elements in Hq. For example, in the BDSPa, only the active dual constraints (33) which
are active at q are included in Rq, and Hq is comprised of all active constraints (33) and
(34).

Lemma 2 A point p is an extreme point of ∆Ba if and only if n(Hp) ≥ |Sp| + 1.

Proposition 3 Any extreme ray of ∆ corresponds to an extreme point of ∆Ba , but the
converse is not true, i.e., not all extreme points of ∆Ba correspond to an extreme ray of ∆.

Proof. If q = (αq, βq) ∈ R∆, then, n(Rq) = |Sq| in the DSP (see Lemma 1). By mul-
tiplying every element of q by a positive constant, one can rescale the extreme ray such
that at least one of the constraints (34) is active at q and all the others are satisfied. Since
the rescaling does not modify Rq or Sq, and the set of constraints (33) is the same as the
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set (12), then n(Rq) = |Sq| also in the BDSPa. Hence, n(Hq) ≥ |Sq| + 1 in the BDSPa
and, from Lemma 2, q ∈ P

∆
Ba . We now prove that the converse is not true. The null

vector is the unique extreme point of ∆. All other feasible solutions to the DSP are rays
of ∆. Since all extreme points of ∆Ba are feasible solutions to ∆, they thus correspond to
a ray of ∆. However, not all extreme points of ∆Ba correspond to an extreme ray of ∆.
One need only consider the point e = {1, 1, 0, 0, 0, 0, 0, 2} in Example 1. The point e is an

extreme point of ∆Ba

1 since n(He) = 3 ≥ |Se| + 1 = 3, but it is not an extreme ray of ∆

since n(Re) = 1 < |Se| = 2. 2

It can also be shown that, for a given set of short connections F t, not all optimal extreme
points of ∆Ba correspond to an extreme ray of ∆.

3.1.2 Cuts that may only include short connections taken by the crew pairings

In the BDSPa, points corresponding to cuts only including short connections taken by
the current crew pairing solution have an equal objective function value with respect to
stronger cuts including short connections not currently used.

Lemma 4 If p is an extreme point of ∆Ba , then αp
s = c̄ for at least one short connection

s ∈ Sp, and βp = maxr∈R

∑
s∈Sp brsα

p
s .

Lemma 5 If, for a given set F t, p is an optimal extreme point of ∆Ba , then there exists
ri ∈ Rp such that

∑
s∈F t brisα

p
s = βp, i.e., there exists at least one active dual constraint

(33) in the BDSPa in which all contributions come from the variables α from F t (bris = 0,
for all s ∈ (Sp\F t)).

Since F t = {s ∈ S |
∑

k∈K dksx̄k = 1}, let va(p, F t) =
∑

s∈F t αp
s − βp be the value of the

objective function (32) of the BDSPa at the point p for a given set F t of short connections,

and let v∗a(F
t) be the optimal value of (32) for the same problem. Let P̄F t

∆
Ba

be the

set of extreme points of ∆Ba that maximize the value of (32) for a given set F t, i.e.,

P̄F t

∆
Ba

= {p ∈ P
∆

Ba | va(p, F t) = v∗a(F
t)}.

Proposition 6 If, for a given set F t, p is an optimal extreme point of ∆Ba such that
there exists a short connection s ∈ S\F t with αp

s > 0, then there exists another feasible

point p′, where αp′

s = αp
s, for all s ∈ F t, and αp′

s = 0, for all s ∈ S\F t, such that
va(p

′, F t) = va(p, F t), i.e., there always exists an optimal solution of the BDSPa where all
short connections not currently used are set to zero.

Proof. From Lemma 5, if, for a given set F t, p ∈ P̄F t

∆
Ba

, then ∃ ri ∈ Rp |
∑

s∈F t brisα
p
s =

βp. Hence, even if αp′

s 6= αp
s , ∀ s ∈ S\F t, βp′ = βp. From that, and since αp′

s = αp
s, ∀ s ∈ F t,

va(p
′, F t) =

∑
s∈F t αp

s − βp = va(p, F t). 2
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3.1.3 Cuts with equal positive coefficients

In the BDSPa, points corresponding to cuts having equal positive coefficients might have
a better objective function value with respect to stronger cuts with unequal coefficients.

Let p1 = (αp1 , βp1) be an extreme point of ∆Ba . From Lemma 4, αp1

s = c̄ for at least
one short connection s ∈ Sp1 . Let p2 = (αp2, βp2) be a point in ∆Ba where (i) αp2

s =
maxj∈S αp1

j = c̄,∀ s ∈ (Sp1 ∩ F t), (ii) αp2

s = αp1

s ,∀ s ∈ (Sp1\F t), and (iii) βp2 = maxr∈R∑
s∈Sp2

brsα
p2

s . Let Sp = Sp1 = Sp2 be the common set of positive variables. One can
observe that p2 is feasible since it satisfies all constraints (33)–(35) from the BDSPa. For a
given set F t, recall that va(p, F t) is the value of the objective function (32) of the BDSPa
at the point p.

Lemma 7 If, for a given set F t, p1 is an extreme point of ∆Ba and p2 is a different point
which has the same set of positive variables as p1, but in which the values of all variables
αs, s ∈ (Sp2 ∩F t), are equal to their common upper bound, c̄, then, va(p2, F

t) ≥ va(p1, F
t).

In addition, if no aircraft routing r ∈ Rp1 contains all short connections si ∈ F t such that
αp1

si < 1, then va(p2, F
t) > va(p1, F

t).

To illustrate Lemma 7, recall that ray b = {1, 1, 0, 0, 1, 2, 0, 2}, from Example 1, is an

extreme ray of ∆1. However, b is not a feasible point of ∆Ba

1 since it violates one of the
upper bound constraints (34), but the equivalent extreme ray l = {1/2, 1/2, 0, 0, 1/2, 1, 0, 1}

corresponds to an an extreme point of ∆Ba

1 . Nevertheless, one can see that l is not always
an optimal solution of the BDSPa. For example, when F t = {A,B,E, F}, the value of
the objective function (32) at l is lower than it is at the point d = {1, 1, 0, 0, 1, 1, 0, 2}
(va(l, F

t) = 3/2 < va(d, F t) = 2), but d gives a weaker cut than l. Recall that d is
not an extreme ray of ∆1. It is, in fact, a linear combination of the extreme rays l and
a = {1, 1, 0, 0, 1, 0, 0, 2}.

Proposition 8 If, for a given set F t, p is an optimal extreme point of ∆Ba , then αp
s = c̄,

for all s ∈ Sp, or there exists another feasible point q, where αq
s = c̄, for all s ∈ Sq, such

that va(q, F
t) = va(p, F t), i.e., in at least one of the optimal points of the BDSPa, all

positive variables α take the value of their common upper bound, c̄.

Proof. From Lemma 7, if p ∈ P
∆

Ba and, for a given set F t, there exists a short connection

si ∈ (Sp ∩ F t) with αp
si < c̄, then, there exists another feasible point p′ where (i) αp′

s =

c̄,∀ s ∈ (Sp ∩ F t), (ii) αp′

s = αp
s,∀ s ∈ (Sp\F t), and (iii) va(p

′, F t) ≥ va(p, F t). From
that, and since p is optimal, va(p

′, F t) = va(p, F t). On the one hand, if there are no short

connections s ∈ S\F t with αp
s > 0, then (Sp∩F t) = Sp (or (Sp′ ∩F t) = Sp′). On the other

hand, if there exists a short connection s ∈ S\F t with αp
s > 0, then, from Proposition 6,

since p (or p′) is an optimal point in ∆Ba , there exists another optimal point p′′ where

αp′′

s = 0, ∀ s ∈ S\F t. Hence, if p ∈ P̄F t

∆
Ba

, then αp
s = c̄,∀ s ∈ Sp, or there exists another

feasible point q, where αq
s = c̄, ∀ s ∈ Sq, such that va(q, F

t) = va(p, F t). 2
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3.2 Model (b): A unique artificial variable appearing in every short
connection linking constraint

When model (b) is used, only one artificial variable is added in the primal subproblem and
the bounded dual subproblem (BDSPb) is the following:

Maximize
∑

k∈K

∑

s∈S

dksx̄kαs − β (40)

subject to

∑

s∈S

brsαs − β ≤ 0 (r ∈ R) (41)

∑

s∈S

αs ≤ 1 (42)

αs ≥ 0 (s ∈ S). (43)

No new dual variable is introduced, but the sum of the αs variables is now bounded by the
value 1. Let ∆Bb denote the polyhedron defined by constraints (41)–(43) and let P

∆
Bb be

the set of extreme points of ∆Bb .

3.2.1 Cuts corresponding to extreme rays

The set of possible cuts generated with the BDSPb corresponds exactly to the set generated
with the DSP.

Lemma 9 If p is an extreme point of ∆Bb , then
∑

s∈Sp αp
s = 1 (constraint (42) is active),

and there are exactly |Sp| linearly independent active constraints (41) at p.

Lemma 10 If q is an extreme ray of ∆, then the point p, with (i) αp
s = αq

s/
∑

s∈Sq αq
s,

∀s ∈ Sq, (ii) αp
s = 0, ∀s ∈ S\Sq, and (iii) βp = βq/

∑
s∈Sq αq

s, is an extreme point of ∆Bb,

i.e., every extreme ray of ∆ corresponds to an extreme point of ∆Bb , which is a rescaling
of the ray such that constraint (42) is satisfied as an equality.

To illustrate Lemma 10, recall that the ray a = {1, 1, 0, 0, 1, 0, 0, 2}, from Example 1, is an
extreme ray of ∆1 and it corresponds to the feasibility cut xA + xB + xE ≤ 2. From the
rescaling described in the lemma, one can construct point a′ = {1/3, 1/3, 0, 0, 1/3, 0, 0, 2/3}.
One can verify that the same set of dual constraints (41) are active at a and a′, and
that constraint (42) is satisfied as an equality at a′. Point a′ corresponds to the cut
1/3xA + 1/3xB + 1/3xE ≤ 2/3, which is, in fact, exactly the same as the cut generated
from a.

Proposition 11 Any extreme point of ∆Bb corresponds to an extreme ray of ∆, and
conversely.
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Proof. Every extreme ray of ∆ corresponds to an extreme point of ∆Bb (see Lemma 10).
Hence, R∆ ⊂ P

∆
Bb . From Lemma 9, if p ∈ P

∆
Bb , then n(Rp) = |Sp| in the BDSPb. Since

the set of constraints (12) is the same as the set (41), n(Rp) = |Sp| also in the DSP and
P

∆
Bb ⊂ R∆. Hence, P

∆
Bb = R∆. 2

3.2.2 Cuts that may only include short connections taken by the crew pairings

One can easily see that Proposition 6, from model (a), can be generalized to model (b)
since the set of dual variables, the set of dual constraints (33) and the dual subproblem
objective function remain the same. In the BDSPb, points corresponding to cuts only
including short connections taken by the current crew pairing solution thus also have an
equal objective function value with respect to stronger cuts including short connections
not currently used.

3.2.3 Stronger cuts with unequal positive coefficients

One can easily see that Proposition 8 does not hold for model (b). From Proposition
11, only extreme rays are generated from model (b). A cut corresponding to ray d =
{1, 1, 0, 0, 1, 1, 0, 2}, from Example 1, could thus not be generated instead of the stronger
cut corresponding to b = {1, 1, 0, 0, 1, 2, 0, 2}.

3.3 Comparison of the different bounding approaches for the Benders
dual subproblem

From the previous results, one can say that model (a) is likely to generate weaker cuts than
model (b). Theoretically, then, it is preferable to use model (b), but the computational
results found in Section 6 show that it is not the case in practice. Combinations of extreme
rays can actually give cuts that are much stronger than those generated from the extreme
rays themselves. A particular case is described in the following section.

3.3.1 Individually infeasible short connections

Recall that S was defined, in Section 1, as the set of short connections included in at least
one aircraft routing solution. When the ECP formulation (1)–(6) is chosen and complete
aircraft routing solutions are included in the formulation, removing from the set of short
connections those that are individually infeasible for the aircraft routing problem is an
easy task. Indeed, all the arcs corresponding to a short connection s such that brs = 0,
for all r ∈ R, can be removed from the crew networks in a preprocessing step. However,
getting all feasible routings is, by itself, a very difficult combinatorial optimization problem
(Mercier et al. (2005)). When complete routing solutions are not available and an explicit
formulation is used for the integrated problem, determining the individually infeasible short
connection (IISC) set requires solving a series of aircraft routing problems, imposing the
use of every short connection, one at a time, and verify the feasibility of the problem. If
one wishes to overlook this time-consuming step, then the set of short connections may
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include a subset of IISC. In that case, some feasibility cuts forbidding their use in the crew
pairings will be generated. These cuts have a null right-hand-side (β = 0). Interestingly,
model (a) has the ability to generate cuts forbidding, at the same time, the use of all IISC
taken by the crews at a given iteration, whereas model (b) does not. Therefore, model
(a) may dominate model (b) in practice. In fact, the numerical results reported in Section
6 show that the number of feasibility cuts generated with model (b) is smaller than with
model (a) only when the IISC arcs are removed. When an explicit formulation is used for
the integrated problem, the time needed to identify the set of IISC is actually even larger
than the total time needed to solve model (a).

Let Ŝ be the set of short connections not included in any aircraft routing solution. When
S includes a subset of infeasible short connections, i.e., |S ∩ Ŝ| 6= 0, constraints (33) and
(41) from the BDSPa and the BDSPb are in fact:

∑

s∈S\Ŝ

brsαs − β ≤ 0 (r ∈ R). (44)

Recall that, for a given set F t, (i) va(p, F t) =
∑

s∈F t αp
s − βp is the value of the objective

function (32) of the BDSPa at the point p, (ii) v∗a(F
t) is the optimal value of the BDSPa,

and (iii) P̄F t

∆
Ba

= {p ∈ P
∆

Ba | va(p, F t) = v∗a(F
t)} is the set of optimal extreme points of

∆Ba . Also recall that we can assume, w.l.o.g., that the cost of using an artificial variable
in an aircraft routing solution is 1, i.e., c̄ = 1.

Proposition 12 For a given set of short connections F t, if p is an optimal point of ∆Ba

where βp = 0, then αp
s = 1,∀ s ∈ (Ŝ∩F t), and p is an extreme point of ∆Ba , i.e., if there is

an optimal solution to the BDSPa in which β = 0, then all variables from F t corresponding
to an infeasible short connection take the value 1 in the solution and it corresponds to an
extreme point.

Proof. When βp = 0, then αp
s = 0,∀ s ∈ (S\Ŝ), and va(p, F t) =

∑
s∈F t αp

s − βp =∑
s∈F t αp

s =
∑

s∈(Ŝ∩F t) αp
s. Hence, increasing the value of the variables corresponding to

the short connections s ∈ (Ŝ ∩ F t) directly improves the value of the objective function,
and this, without violating any dual constraints (44). From that, and since all variables

αp
s, s ∈ Ŝ, are individually bounded by c̄ = 1 (constraints (34)), then, αp

s = 1,∀ s ∈ (Ŝ∩F t),
when βp = 0 and va(p, F t) = v∗a(F

t). In addition, since the total number of linearly
independent active constraints at p (|Sp| constraints (34) as well as |S| − |Sp| + 1 non-
negativity constraints) is equal to the total number of variables (|S| + 1), then p is an
extreme point of ∆Ba . 2

Proposition 13 For a given set of short connections F t, if |Ŝ ∩ F t| 6= 0 and p is an
optimal extreme point of ∆Bb where βp = 0, then |Sp| = 1, i.e., only one variable from F t

corresponding to an infeasible short connection takes a positive value.
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Proof. When βp = 0, then αp
s = 0,∀ s ∈ (S\Ŝ), and vb(p, F t) =

∑
s∈F t αp

s − βp =∑
s∈F t αp

s =
∑

s∈(Ŝ∩F t) αp
s. Hence, increasing the value of the variables corresponding to

the short connections s ∈ (Ŝ ∩ F t) directly increases the value of the objective function
without violating constraints (44), but, by constraint (42),

∑
s∈S αp

s ≤ 1. From that, and
since vb(p, F t) = v∗b (F

t), then
∑

s∈(Ŝ∩F t) αp
s = 1 and vb(p, F t) =

∑
s∈(Ŝ∩F t) αp

s = 1. One

can observe that p is an extreme point of ∆Bb only if |Sp| = 1, since the total number of
active constraints (constraint (42) as well as |S| − |Sp| + 1 non-negativity constraints) is
equal to the total number of variables (|S| + 1) only in that case. 2

Proposition 12 implies that, for a given crew pairing solution, a single cut simultaneously
forbidding all maintenance infeasible short connections from the set chosen by the crew
pairings, F t, is generated by model (a). In contrast, Proposition 13 indicates that as many

as |Ŝ ∩ F t| cuts are generated by model (b) to forbid every short connection from the
same set. One can easily see that a cut with a zero right-hand-side generated by model
(b) corresponds to the extreme ray of ∆ in the direction of the non-negativity constraint
of the corresponding positive dual variable. Similarly, the cut generated by model (a)
corresponds to a linear combination of extreme rays of ∆ in the direction of the non-
negativity constraint of all the corresponding positive dual variables. Hence, in the case
of cuts preventing the use of a set of short connections that are individually infeasible for
the aircraft routing problem, linear combinations of extreme rays give stronger cuts than
extreme rays. In a Benders decomposition method, the subproblem formulation does not
have to be identical at every iteration. One bounding method could thus be used in the
first iterations to generate all the IISC cuts, and then, the Benders subproblem could shift
to another bounding method.

4 Some Predefined Families of Feasibility Cuts

Without the use of a Benders decomposition method, one can still solve the integrated
problem iteratively, by adding feasibility cuts to the crew pairing problem until the set of
short connections used by the pairings is feasible for the aircraft routing problem. This
solution process is called the Constrained Crew Pairing (CCP) by Cohn and Barnhart
(2003), who have proposed three families of feasibility cuts. The first family simply forbids
the current crew pairing solution:

∑

k∈Kt

xk ≤ |Kt| − 1, (45)

where Kt = {k ∈ K |xt
k = 1} and x

t is the optimal crew pairing solution at iteration t.
The authors remark, however, that this type of cut is not very efficient since it prohibits a
maintenance infeasible set of pairings while there may exist other sets of pairings using the
same set of short connections. Hence, the second type of feasibility cut that is proposed
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prohibits the short connection set F t used by the optimal solution at iteration t:

∑

k∈K

∑

s∈F t

dksxk ≤ |F t| − 1. (46)

The authors observe that this type of cut may also be inefficient if a subset of incompatible
short connections from F t is attractive for the crew pairing problem and is likely to be
chosen in several successive iterations. For example, if F t = {A,B,C,D,E}, where A, B
and C are incompatible, the next iterations could yield solutions with short connection
sets {A,B,C,D}, {A,B,C,E} and {A,B,C}, which are all maintenance infeasible.

MIS feasibility cuts

To circumvent this weakness, the authors finally propose a family of cuts that directly
prohibit a Minimally Infeasible Subset (MIS) F̃ t of F t. An MIS is an infeasible set of short
connections such that the removal of any element from the set yields a feasible subset. The
resulting cut is the following:

∑

k∈K

∑

s∈F̃ t

dksxk ≤ |F̃ t| − 1. (47)

To determine a set F̃ t, one may solve the following integer problem denoted by (PMIS):

Minimize
∑

s∈F t

fs (48)

subject to

∑

s∈F t\S(r)

fs ≥ 1 (r ∈ R) (49)

fs ∈ {0, 1} (s ∈ F t), (50)

where fs is a binary variable indicating whether the short connection s ∈ F t is included
in F̃ t and S(r) is the set of short connections used in routing r ∈ R. Constraints (49)

require that for every feasible aircraft solution r ∈ R, there be at least one element of F̃ t

that is not in S(r). The latter constraints ensure that the chosen subset F̃ t is maintenance
infeasible. The objective function (48) finds the smallest maintenance infeasible subset of
F t.

PSP feasibility cuts

When the dual subproblem is bounded with model (a), a feasibility cut can easily be
generated with the primal subproblem (PSP) information. Recall that S(r) is the set of
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short connections used in routing r, and let r̄t be the FPSPa aircraft routing solution at
iteration t. Huang et al. (2003) have proposed a family of cuts generated from S(r̄t) as
follows:

∑

k∈K

∑

s∈F t

dksxk ≤ |S(r̄t) ∩ F t|. (51)

Since |S(r̄t) ∩ F t| is the maximum number of short connections that a feasible aircraft
routing solution can use among those chosen by the current crew pairing solution, the PSP
is infeasible when |S(r̄t) ∩ F t| < |F t|, and cuts (51) are valid feasibility cuts. One can
notice that the PSP cuts are stronger than the feasibility cuts (46).

4.1 Comparison of MIS and Benders feasibility cuts

In this section, we show that the set of MIS feasibility cuts is included in the set of Benders
feasibility cuts. In addition, we show that some MIS cuts can be lifted, and the resulting
cut corresponds to a Benders cut. The latter cuts can thus dominate the MIS cuts.

Proposition 14 Any MIS feasibility cut (47) corresponds to an extreme ray of ∆, but the
converse is not true, i.e., not all extreme rays of ∆ correspond to a MIS cut.

Proof. Let c = (αc, βc) be a point corresponding to an MIS cut formed from the short

connection set F̃ t, where αc
s = 1,∀ s ∈ F̃ t, and βc = |F̃ t| − 1. Since no routing contains

more than |F̃ t| − 1 short connections from F̃ t (F̃ t is a minimally infeasible subset) and

αc
s = 0,∀ s ∈ S\F̃ t, each constraint (12) contains at most |F̃ t| − 1 positive variables (of

value 1) and is satisfied. The point c is thus feasible since the constraints (13) are satisfied
from the definition of c. One can also observe that νc is in ∆,∀ ν > 0, and that c is
thus a ray of ∆. Since there exists a feasible aircraft routing for each subset of F̃ t, there
exists a feasible routing for each of the |F̃ t| subsets of size |F̃ t| − 1. Those distinct subsets
(and only those) each correspond to a constraint in the Benders dual subproblem that is

active at c, since βc = |F̃ t| − 1 and αc
s = 1,∀ s ∈ F̃ t. There are thus exactly |F̃ t| linearly

independent active constraints at c. Hence, n(Rc) = |F̃ t| = |Sc| and c is an extreme ray
of ∆. To prove that the converse is not true, one only has to consider the extreme ray
b = {1, 1, 0, 0, 1, 2, 0, 2}, from Example 1. It cannot correspond to an MIS since αF > 1. 2

Furthermore, the following simple example shows an extreme ray of ∆ that does not
correspond to an MIS even if, in this case, αs = 1,∀ s ∈ S, and S = F t.

Example 2 A possible set of constraints for the Benders DSP:

αA ≤ β (52)

αB ≤ β (53)

αC ≤ β (54)
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αA, αB, αC ≥ 0. (55)

If the current crew pairing solution uses all short connections, i.e., F t = {A,B,C}, the
aircraft routing problem is infeasible and there are three possible MIS: {A,B}, {A,C} and

{B,C}. For instance, if F̃ t = {A,B}, then the MIS cut is: xA + xB ≤ 1. There are
four non-trivial extreme rays, of which three correspond to the three MIS. The last one,
{1, 1, 1, 1} does not correspond to an MIS and it gives the strongest cut: xA +xB +xC ≤ 1.

Proposition 15 An MIS feasibility cut (47) generated at iteration t can be lifted by adding
to the corresponding MIS a short connection that is incompatible with all feasible subsets
in F̃ t. If such a short connection exists, the resulting cut is stronger and it corresponds to
an extreme ray of ∆.

Proof. From Proposition 14, a ray q with αs = 1,∀ s ∈ F̃ t, and β = |F̃ t|−1 is an extreme

ray of ∆ corresponding to the MIS F̃ t. Recall that n(Rq) is the maximum number of

linearly independent active dual constraints (12) at q, and Sq = F̃ t is the set of positive
variables in q. Since q is an extreme ray, n(Rq) = |Sq|. If there exists a short connection

s1 ∈ S\Sq which is incompatible with all feasible subsets of F̃ t, then a new ray g = (αg, βg)

is obtained, where αs1
≥ 1, αs = 1,∀ s ∈ Sq, and βg = βq = |F̃ t|−1. If s1 exists, then there

exists a feasible routing using s1 while using a strictly smaller number of short connections
from F̃ t than the value of βg. Therefore, αg

s1
≥ 1 and the cut corresponding to g is valid

and stronger than the one corresponding to q. In addition, it is always possible to choose
for αs1

a value for which a new dual constraints (12) is active, without modifying any other
value. When αg

s1
= minr∈R\Rq βg −

∑
s∈Sq brs, a new dual constraints (12) is satisfied at

equality and n(Rg) = n(Rq) + 1 = |Sq| + 1 = |Sg|. The ray g is thus an extreme ray of
∆. 2

The lifted MIS cut can be stated as follows:
∑

k∈K

∑

s∈F̃ t

dksxk +
∑

k∈K

ls1
dks1

xk ≤ |F̃ t| − 1, (56)

where s1 is a short connection s ∈ S\F̃ t that is incompatible with all feasible subsets of

F̃ t and ls1
is the value taken by αs1

in the corresponding extreme ray. An MIS cut can be
lifted repeatedly, as long as the added short connections are incompatible with each other.

4.2 Comparison of PSP feasibility cuts and Benders cuts

In this section, we show that PSP cuts do not always correspond to an extreme ray of ∆,
but to an optimal extreme point of ∆Ba that is likely to yield a weak cut.

Proposition 16 A PSP Feasibility cut (51) does not necessarily correspond to an extreme
ray of ∆.
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Proof. If F t = {A,B,E, F} in Example 1, then the PSP cut is xA + xB + xE + xF ≤ 2.
One can easily see that the corresponding ray r = {1, 1, 0, 0, 1, 1, 0, 2} is not an extreme
ray of ∆1 since |Sr| = 4 6= n(Rr) = 3. 2

Lemma 17 For a given short connection set F t, the PSP cut (51) corresponds to an
optimal extreme point of ∆Ba .

Proposition 18 PSP cuts are the weakest of the cuts corresponding to optimal solutions
of the BDSPa, according to the ratio violation/right-hand-side (v/rhs).

Proof. For a given set F t, define E as the set of cuts corresponding to an optimal solution
of the BDSPa. Let lhsfe be the sum of the coefficients of the short connections s ∈ F t in
feasibility cut e ∈ E, and rhse be the value of the right-hand-side of cut e. According to
the ratio v/rhs, the strength of the cut e is rve = (lhsfe + adde − rhse)/rhse, where adde

is the sum of the coefficients of s ∈ S\F t in e. Let the element e1 ∈ E coincide with the
PSP cut (see Lemma 17). Since adde1

= 0, rve1
= (|F t| − rhse1

)/rhse1
(all coefficients

are equal to 1 in e1 and lhsfe = |F t|). Recall that v∗a(F
t) = lhsfe − rhse,∀ e ∈ E. Since

all objective values for solutions corresponding to a cut e ∈ E are equal, then, for a given
e ∈ E, v∗a(F

t) = lhsfe − rhse = |F t| − rhse1
. From that, rhse = rhse1

− |F t| + lhsfe

and rve = (lhsfe + adde − (rhse1
− |F t| + lhsfe))/(rhse1

− |F t| + lhsfe) = (adde + |F t| −
rhse1

)/(rhse1
−(|F t|− lhsfe)). Since (i) adde ≥ 0, (ii) adde1

= 0, (iii) |F t| ≥ lhsfe,∀ e ∈ E,
and (iv) |F t| = lhsfe1

, then rve ≥ rve1
,∀ e ∈ E. 2

To illustrate Proposition 18, consider Example 1. If F t = {C,E,F}, then the PSP cut is
j1 : xC + xE + xF ≤ 2, but the following cuts also correspond to optimal solutions of the
BDSPa in that case: j2 : xC + xE ≤ 1, j3 : xE + xF ≤ 1, j4 : xC + xE + xF + xG ≤ 2, j5 :
xC + xE + xG ≤ 1 and j6 : xE + xF + xG ≤ 1. All these cuts correspond to a solution to
the BDSPa with an objective value of v∗a(F

t) = 1 but with different strengths according to
the ratio v/rhs since rv1 = 1/2, rv2 = 1, rv3 = 1, rv4 = 1, rv5 = 2 and rv6 = 2. One can
notice that j2, j3, j5 and j6 are extreme rays of ∆1 and j2 and j3 are MIS feasibility cuts
(47).

5 Strengthening the Feasibility Cuts

By definition, MIS and PSP feasibility cuts never include short connections which are not
part of the set used by the current crew pairing solution, even if they are incompatible with
those included. By Proposition 6, even though it is possible to include such connections
when generating a cut with BDSPa or BDSPb, neither formulation favors them since
these connections do not contribute to their objective function. For this reason, and to
allow unequal coefficients in MIS, PSP and BDSPa cuts, this section proposes two ways
of strengthening the feasibility cuts. The first procedure can be applied to Benders cuts
generated with BDSPa or BDSPb, whereas the second one can be applied to any feasibility
cut for the integrated aircraft routing and crew pairing problem.
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5.1 Pareto-optimal cuts

Whenever the primal subproblem (27)–(30) is degenerate (and this is often the case in
practice), there may exist more than one optimal solution to the bounded dual subproblem.
Although any of these points leads to a valid optimality cut, some may yield stronger
cuts than others. The cut generated from the extreme point (α1, β1) dominates the cut
generated from the extreme point (α2, β2) if and only if

∑

k∈K

∑

s∈S

dksα
1
sxk − β1 ≥

∑

k∈K

∑

s∈S

dksα
2
sxk − β2

for all x̄ ∈ X with strict inequality for at least one point. A cut is said to be Pareto-optimal
if no other cuts dominate it (Magnanti and Wong, 1981).

Let X
LP be the polyhedron defined by (2) and constraints xk ≥ 0 (k ∈ K), and let

ri(XLP ) denote the relative interior of X
LP . Pareto-optimal cuts are generated from

extreme points, one thus has to ensure that the dual subproblem is bounded for any
solution of the relaxed master problem. For a given solution x̄ ∈ X

LP , let v(x̄) denote the
optimal value of the primal subproblem. To identify an optimal solution to the bounded
dual subproblem that yields a Pareto-optimal cut, one must solve the following auxiliary
bounded dual subproblem (ABDSP), where x

0 is a point chosen in ri(XLP ):

Maximize
∑

k∈K

∑

s∈S

dksx
0
kαs − β (57)

subject to
∑

k∈K

∑

s∈S

dksx̄kαs − β = v(x̄) (58)

(α, β) ∈ ∆B . (59)

Besides including the same bounded dual subproblem constraints (59) (∆B = ∆Ba or
∆Bb), the ABDSP contains an additional constraint (58) to ensure that one will choose an
extreme point from the set of optimal solutions to the original bounded dual subproblem
(with a value equal to the original optimal value v(x̄)). The auxiliary problem is solved at
every iteration of the Benders decomposition algorithm, after the BDSP has been solved.
The objective function of the auxiliary problem (57) compares all possible cuts at a point
x

0 in the feasible region of the master problem. It therefore tries to maximize the strength
of the cut to be added to the Benders master problem.

When ∆B = ∆Ba in (59), the weakness highlighted by Proposition 8 for cuts generated
directly from the BDSPa is also true for cuts generated from the ABDSP because the upper
bound constraints on the dual variables are still present in the ABDSP. However, since x

0

is a point chosen in ri(XLP ), all dual variables α may have a positive coefficient in the
objective function (57), not only those corresponding to connections used in the current
crew pairing solution. Finding the Pareto-optimal cuts can thus reduce the number of cuts
needed before the Benders decomposition algorithm converges.
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5.2 Lifting procedure

One can use the lifting procedure described in this section to strengthen all types of feasi-
bility cuts. MIS and PSP feasibility cuts, as well as those generated from extreme rays of
∆ or from extreme points of ∆Ba or ∆Bb , all correspond to feasible solutions of the DSP
since they all satisfy the dual constraints (12) and (13). The lifting procedure presented
here consists of first generating a feasibility cut with a chosen method and then lifting it
by solving a modified version of the DSP. Let u = (ᾱu, β̄u) be the solution corresponding
to a cut that one wishes to strengthen. From u, a modified Benders dual subproblem can
be formulated as follows (MDSP(u)):

Maximize
∑

s∈S

αs (60)

subject to

∑

s∈S

brsαs ≤ β̄u −
∑

s∈S

brsᾱ
u
s (r ∈ R) (61)

αs ≥ 0 (s ∈ S). (62)

Constraints (61) limit the lifting of the dual variables αs to the slack of the constraints
(12) of the DSP at u. The right-hand-sides of constraints (61) are thus all positive and
bounded. This makes the MDSP(u) a bounded problem (without the use of specific upper
bounds on the variables) and also a feasible problem since the null vector, representing no
strengthening, is always feasible. One can observe that the dual variable β is not included
in the MDSP(u). The objective function (60) maximizes the sum of all variables αs, s ∈ S.
The coefficient of a variable in the lifted cut is the sum of its value in u and its value in an
optimal solution of the MDSP(u). Let ∆L denote the polyhedron defined by constraints
(61)–(62) and let P

∆
L be the set of extreme points of ∆L. Let v = (ᾱv) be an optimal

solution to the MDSP(u), and w = (ᾱu + ᾱ
v, β̄u) be the constructed point from which the

lifted cut is generated. The cut corresponding to w is always stronger than or equal to the
cut corresponding to u since the value of both right-hand-sides is equal and the coefficient
of every short connection s ∈ S in the left-hand-side of the lifted cut is larger than or equal
to its corresponding value in the cut generated from u (ᾱv

s ≥ 0,∀s ∈ S).

One can observe that since all variables have a positive coefficient in the objective function
(60), the MDSP(u) favors the stronger cuts which include short connections s ∈ S\F t. In
addition, the problem highlighted by Proposition 8 is not present in the MDSP(u) because
the upper bound constraints are removed. Lifted cuts can thus contain variables with differ-
ent coefficients. To illustrate this last statement, recall that the ray a = {1, 1, 0, 0, 1, 0, 0, 2},
from Example 1, is an extreme ray of ∆1 and it corresponds to the cut xA + xB + xE ≤ 2.
When the lifting procedure is applied to a, i.e., when u = b, the MDSP(u) is the following:
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Maximize αA + αB + αC + αD + αE + αF + αG (63)

subject to

αA+αB+αC ≤ 0 (64)

αA+αB +αD ≤ 0 (65)

αA +αC+αD ≤ 1 (66)

αB+αC+αD ≤ 1 (67)

αB +αD+αE ≤ 0 (68)

αA +αE ≤ 0 (69)

αC +αF ≤ 2 (70)

+αG ≤ 2 (71)

αA, αB , αC , αD, αE, αF , αG ≥ 0. (72)

One can observe that the problem can be simplified since variables αA, αB , αC , αD, αE

can be removed, as well as constraints (64)–(69). The optimal solution to the modified
problem is v = {0, 0, 0, 0, 0, 2, 2, 0}, i.e., αF = 2 and αG = 2. One can construct the ray
w = (ᾱu + ᾱ

v, β̄u) = {1, 1, 0, 0, 1, 2, 2, 2}. The corresponding lifted cut, xA + xB + xE +
2xF + 2xG ≤ 2, is stronger than the original one, and, since n(Rw) = 5 = Sw, w is an
extreme ray of ∆1.

Proposition 19 When the lifting procedure is applied to a cut corresponding to an extreme
ray of ∆, the resulting cut also corresponds to an extreme ray of ∆.

Proof. If u is an extreme ray of ∆, then, from Lemma 1, n(Ru) = |Su|. From that, and
since there is no slack in an active constraint, it is easy to see that |Su ∩ Sv| = 0, i.e.,
the variables that are positive in u take the value 0 in v. Hence, αw

s = αu
s ,∀ s ∈ Su, and

|Sw| = |Su| + |Sv|. Since v is an extreme point of ∆L and there are no upper bound
constraints and no variable β in the model, n(Rv) = |Sv|. Recall that

∑
s∈S brsᾱ

w
s =∑

s∈S brsᾱ
v
s+

∑
s∈S brsᾱ

u
s and β̄w = β̄u. Then, for a given routing r ∈ R,

∑
s∈S brsᾱ

w
s −β̄w =

0 if and only if
∑

s∈S brsᾱs
v = β̄u−

∑
s∈S brsᾱ

u
s . That is to say, a constraint (12) in the DSP

is active at w if and only if the corresponding constraint (61) in the MDSP(u) is active at v.
In addition, since αv

s ≥ 0, all constraints in the DSP that are active at u are also active at
w, thus, n(Rw) = n(Ru)+n(Rv). From this last statement and since (i) |Sw| = |Su|+ |Sv|,
(ii) |Su| = n(Ru), (iii) |Sv| = n(Rv), then |Sw| = n(Ru) + n(Rv) = n(Rw) and the point w
corresponds to an extreme ray of ∆. 2

Proposition 19 implies that any MIS cut and any cut generated by solving the DSP or the
BDSPb can be lifted and the resulting cut necessarily corresponds to a stronger extreme
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ray of ∆, if one exists, with αs = αu
s ,∀ s ∈ Su. However, if the procedure is applied to a

cut which is not an extreme ray of ∆, the resulting cut corresponds to a stronger ray of
∆, if one exists, but not necessarily to an extreme ray of ∆.

6 Computational Experiments

In this section, we present computational experiments that were performed on instances
based on data provided by two major airlines. We first provide a description of these
instances, followed by a summary of our computational experiments. These experiments
were done to compare the different dual subproblem bounding strategies in a Benders
decomposition method, and to evaluate the two proposed strengthening methods. We did
not compare all families of feasibility cuts. In fact, from Proposition 18, it is clear that
the Benders cuts dominate the PSP cuts (51). Proposition 14 show that all MIS cuts
(47) are included in the Benders cuts and that some of the stronger Benders cuts do not
correspond to MIS cuts. Furthermore, the generation of an MIS cut implies the solution
of an optimization problem in addition to the regular aircraft routing problem. We think
that although this family of cuts can be interesting since it leaves out the weakest of the
feasibility cuts, the generation procedure is too demanding and would offset the benefits.
As a matter of fact, the authors themselves did not implement the proposed cuts (see Cohn
and Barnhart (2003)).

6.1 Description of data sets

The test instances come from daily fleet assignment solutions provided by the airlines. The
characteristics of the different instances are summarized in Table 1. This table indicates
the number of daily legs and the number of short connections (SC).

Table 1: Characteristics of test instances
B757C A320D D9SA D9SB B767S MD80L

Legs 184 258 523 508 510 707

SC 114 183 502 659 370 1183

The aircraft routing problem is solved to determine the sequence of flight legs to be flown
by each individual aircraft so as to cover each leg exactly once while ensuring appropriate
aircraft maintenance with the available number of aircraft. Recall that the ECP formula-
tion includes all unique and maximal maintenance-feasible short connection sets (UM), i.e.,
columns containing all the information needed from the complete solutions to the aircraft
routing problem. Prior to solving ECP, one thus has to solve a series of aircraft routing
problems with additional constraints and a modified objective function to generate all UM
columns.

The crew pairing problem is solved to determine a minimum-cost set of pairings so that
every flight leg is assigned a qualified crew and each pairing follows a set of applicable work
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rules related to a large number of factors such as flight time, rest time, connection time,
etc. One may observe that, to compare the feasibility cuts studied in this paper, the crew
pairing part of the integrated problem can be modeled in any way. It is, in fact, independent
of the feasibility cut procedure. For the experiments reported in this section, the feasibility
constraints are modeled through the use of resources and are handled directly by dynamic
programming within a column generation framework (see, e.g., Desaulniers et al. (1998)).
Details on the crew cost function and on the work rules considered can be found in Mercier
et al. (2005).

6.2 Summary of computational experiments

The integrated aircraft routing and crew pairing problem has been solved with Benders
decomposition, using alternately the BDSPa and the BDSPb, with either the basic solution
process (basic), an auxiliary Pareto-optimal subproblem (P-O) or the proposed lifting pro-
cedure (Li). The different combinations have also been used jointly with two refinements:
method RA removes, in a preprocessing step, all arcs in the crew networks corresponding to
IISC (individually infeasible short connections) in order to eliminate the need for the zero
right-hand-side cuts, and method RC removes, at every iteration, the linking constraints
corresponding to the short connections not chosen by the current crew pairing solution
in order to make the subproblem easier to solve. Method RC forces the dual variables
corresponding to the removed constraints to take the value zero in an optimal solution.
Hence, as for cuts generated from predefined families, the connections not currently used,
at a given iteration, are left out of the cut generated with method RC. One can easily
observe that the Benders cuts generated would likely be weaker, but still valid. Since
the branch-and-bound methodology used for the integer crew pairing problem is heuristic
(due to the size and difficulty of the problem) and the purpose of the experiments is to
compare the different cut generation procedures, only the LP relaxation of the different
instances have been solved. We first report results on the ECP formulation, and then on
a different model with a more explicit formulation. Our algorithms were coded in C++
and all experiments were performed on a Sun UltraSPARC-II computer with a 480MHz
processor.

6.2.1 ECP formulation

Tables 2 and 3 present a comparison of the number of Benders cuts and the CPU time
needed to solve the LP relaxation when the arcs in the crew networks corresponding to
IISC are either kept or removed (RA) in a preprocessing step. One can observe that when
the IISC are kept and the lifting procedure is used, the MDSP(u) can be unbounded since
some dual variables included in the objective function may not appear in any constraint.
The results using the lifting procedure are thus only given when it is used jointly with
method RA.

One can clearly see from Table 2 that when the IISC arcs are kept in the crew networks,
the number of feasibility cuts needed is always smaller when model (a) is used. Not only
the number of cuts generated is smaller, but the first ones are also stronger. The latter
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statement is illustrated in Figure 1 from Appendix B, where the crew costs are plotted as
a function of the number of iterations. One can see from the figure that the lower bounds
given by model (a) are always higher than the ones given by model (b). Instances 320D
and MD80L were chosen as an illustration, but the same is true for all instances. This is
due to the IISC cuts generated. Indeed, when a zero right-hand-side cut was generated at
a given iteration in the tests, all IISC in the set taken by the current crew solution had
a positive coefficient in the cut when model (a) was used whereas only one of them was
included with model (b) (as Propositions 12 and 13 indicated). One can also see from the
table that generating Pareto-optimal cuts (P-O) helps in reducing the number of iterations
needed.

Table 2: Crew arcs corresponding to IISC are kept†

B757C A320D D9SA D9SB B767S MD80L

Model (a)

Cuts - Basic 9 20 7 15 12 20

CPU 0.34 1.32 4.83 7.18 5.63 46.28

Cuts - P-O 7 19 2 6 10 14

CPU 0.38 1.61 4.17 5.21 5.40 28.42

Cuts - Basic RC 13 28 19 24 14 51

CPU 0.47 2.00 10.08 10.25 6.64 87.23

Cuts - P-O RC 16 48 10 10 16 66

CPU 0.66 3.25 6.88 6.92 7.88 98.98

Model (b)

Cuts - Basic 23 52 101 146 56 216

CPU 0.67 3.04 56.03 83.14 20.86 376.51

Cuts - P-O 24 50 95 124 56 196

CPU 0.86 4.13 66.58 62.02 22.81 373.70

Cuts - Basic RC 24 49 93 139 61 198

CPU 0.75 3.52 51.30 59.93 20.53 395.31

Cuts - P-O RC 26 44 91 135 56 210

CPU 1.05 3.83 63.43 74.59 21.40 394.40

† All CPU times are in minutes.

When model (a) is chosen, Table 2 also shows that the number of cuts needed is greater
when RC is used, but that it is not always true with model (b). However, Figure 1 from
Appendix B shows that even in the cases where the number of iterations needed is not
greater with RC, the generated cuts are generally weaker. In fact, the dual variables corre-
sponding to the removed constraints are not always null. Keeping them thus strengthens
the cuts and, except for instance D9SB, the CPU times found in the table show that it
is not compensated by the solution time saved by a reduced number of constraints in the
Benders primal subproblem. Since method RC did not yield better results when jointly
used with method RA, the results for RC are left out of Table 3.

The comparison of Table 3 with Table 2 confirms that the number of iterations needed is
reduced with RA. In addition, Table 3 and Figure 2 from Appendix B show that, with
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Table 3: Crew arcs corresponding to IISC are removed (RA)†

B757C A320D D9SA D9SB B767S MD80L

Model (a)

Cuts - Basic 7 17 2 29 7 11

CPU 0.31 1.02 3.41 8.01 4.20 17.30

Cuts - P-O 5 15 2 9 8 16

CPU 0.34 1.23 3.32 4.36 4.55 26.97

Cuts - Li 6 15 2 20 7 9

CPU 0.31 1.02 3.24 7.01 3.87 17.19

Model (b)

Cuts - Basic 12 13 2 10 7 13

CPU 0.39 0.94 3.27 5.33 3.74 20.60

Cuts - P-O 15 10 2 8 10 14

CPU 0.59 0.93 3.29 4.17 4.92 23.27

Cuts - Li 7 14 2 10 5 8

CPU 0.33 0.97 3.16 4.96 3.49 13.06

† All CPU times are in minutes.

method RA, model (b) is generally better than model (a). When no zero right-hand-side
cut has to be generated, extreme rays indeed yield stronger cuts than combinations of
extreme rays. Table 3 also shows that the Pareto-optimal cuts, as well as the lifted cuts
(Li), help in reducing the number of iterations needed when method RA is used. In fact,
the Pareto-optimal cuts are generally outperformed by the proposed lifting procedure in
terms of speed of generation, and, in the case of model (b), also in terms of the number
of cuts generated. In addition, since the lifting procedure takes less time than solving the
Pareto-optimal auxiliary problem, one can see in Figure 3 from Appendix C that even when
the number of iterations with Li is larger than with P-O (instances A320B and D9SB), the
lower bound given by the crew costs increases as fast with Li.

Our experiments show that the cuts from model (a) exhibit coefficients with equal val-
ues and the cuts from both model (a) and model (b) do not include all incompatible short
connections when they are not part of the set taken by the current crew solution (as Propo-
sitions 6 and 8 suggested). Our computational experiments also show that the proposed
lifting procedure has the ability to overcome both weaknesses. The following example
shows the first cut generated with model (a) for the fleet D9SA, and the corresponding
lifted cut:

Regular cut : x1 + x2 + x3 + x4 ≤ 3

Lifted cut : x1 + x2 + x3 + x4+2x5 + x6 ≤ 3.

One can notice that a variable has a coefficient larger than one in the lifted cut. In
our computational experiments, when they had a right-hand-side larger than zero, the
lifted cuts and the cuts generated from model (b) often showed coefficients with unequal
values. Using a short connection can indeed prevent the use of more than one other short
connection (even up to four, in our experiments).
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In summary, when the ECP formulation is used, model (b) is preferred to model (a) since
finding the set of IISC is an easy task in that case and the feasibility cuts generated from
extreme rays of the dual subproblem polyhedron are stronger. In addition, the lifting
procedure is useful to strengthen the cuts and reduce the total computing time.

It is worth noting that some tests where done with the integrality constraints. A heuristic
branch-and-bound method not only influences the computing time, but also has an influ-
ence on the number of iterations of the Benders decomposition method. Nevertheless, we
believe that the conclusions reached in our experiments can be extended to the integer
formulation. The results for instance 757C are shown as an example in Table 4. One
will notice that the number of cuts generated is higher with model (b) when RA is used.
Although this seems to go against the conclusions drawn in the previous sections, one can
observe that it was also the case for this particular instance (and only this one) when the
LP relaxation was solved (see Table 3).

Table 4: Instance 757C - Results for the integer formulation†

Basic (a) P-O (a) Li (a) Basic (b) P-O (b) Li (b)

All arcs

Cuts 9 7 - 26 27 -

CPU 4.39 4.32 - 6.72 5.01 -

Cost IP 50 498 50 417 - 50 377 50 397 -

RA

Cuts 7 6 5 13 15 7

CPU 0.59 1.49 2.99 2.32 0.99 0.53

Cost IP 50 425 50 275 50 425 50 418 50 353 50 417

† All CPU times are in minutes.

6.2.2 A more explicit formulation

Finding all complete aircraft routing solutions is a difficult task (see Mercier et al. (2005)),
and for the larger problems, it is more efficient to solve an integrated model which includes
the aircraft routing formulation (IMARF) instead of complete solutions. Although IMARF
is harder to solve, the increased solution time is well compensated by the time saved by
not having to generate the UM columns as in ECP. This section will show that the results
on the ECP formulation still hold for the IMARF formulation.

Although the aircraft maintenance constraints are modeled through the use of resources
and are handled directly by dynamic programming in a column generation framework,
the IMARF formulation includes additional constraints to ensure that all legs are covered
by an aircraft and to limit the number of available aircraft. The Benders aircraft dual
subproblem of the IMARF formulation thus contains more variables compared to the ECP
formulation. The proposed lifting procedure is still valid in this case, but its efficiency is
reduced since it only lifts the dual variables associated with the short connection linking
constraints. We therefore did not include results for the lifting procedure with the IMARF
formulation.
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Table 5 presents a comparison of the number of Benders cuts and the CPU time needed
to solve the LP relaxation of IMARF when the IISC arcs are kept in the crew networks,
while Table 6 gives the time needed to find all IISC (preprocessing). As it was the case
with ECP, method RC did not prove to be useful and we therefore did not include the
corresponding results in the tables.

Table 5: When the IISC arcs are kept - IMARF†

B757C A320D D9SA D9SB B767S MD80L

Model (a)

Cuts - Basic 22 18 18 50 14 46

CPU 1.21 2.17 16.17 76.66 17.83 215.27

Cuts - P-O 15 12 14 21 11 1

CPU 1.92 3.40 21.98 100.16 42.60 68.33

Model (b)

Cuts - Basic 32 45 85 61 36 85

CPU 1.62 4.87 53.15 47.96 29.24 241.10

Cuts - P-O 25 38 72 61 33 82

CPU 2.58 5.92 69.96 80.25 61.85 390.92

† All CPU times are in minutes.

Although it is not as blatant as with the ECP formulation, one can see from Table 5
that model (a) again dominates model (b) when the IISC arcs are kept in the networks.
The table also shows that the number of Pareto-optimal cuts (P-O) generated is smaller
than the number of regular Benders cuts. One can notice that the total computing time
is not necessarily reduced when Pareto-optimal cuts are generated (solving the Pareto-
optimal auxiliary problem is time-consuming), but systematically reducing the number
of cuts might be preferred when the integer problem is solved. Table 6 shows that the
preprocessing step needed for method RA is more time consuming than the whole solution
process when the arcs are kept (even for the IP). Hence, when the IMARF formulation is
used, finding the set of IISC is a hard task and it is better to keep all arcs in the networks.
In that case, model (a) is preferred to model (b).

Table 6: Identifying the IISC - IMARF

B757C A320D D9SA D9SB B767S MD80L

Preprocessing (min.) 1.90 4.91 76.91 179.53 130.67 1612.80

One can observe that, with this formulation, a procedure using the MIS feasibility cuts
(47) could not generate the stronger zero right-hand-side cuts when the IISC arcs are kept
in the crew networks since, from Proposition 14, all MIS cuts correspond to extreme rays
of ∆.
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7 Conclusion

When the integrated aircraft routing and crew pairing problem is solved either with Benders
decomposition or another cut generation procedure, one has to verify at each iteration, in
a subproblem, if the set of short connections used by the current crew solution is feasible
for the aircraft routing problem. This paper has shown that there is no simple form for
the extreme rays of the dual subproblem polyhedron. The dual variables can indeed take
different values in an extreme ray. In addition, feasibility cuts generated from predefined
families (forcing each coefficient to take the value one) are all included in the set of Benders
feasibility cuts, and may also be dominated by the latter.

To avoid having to identify extreme rays, one can make the Benders dual subproblem
bounded. To achieve this, artificial variables must be introduced in the aircraft routing
primal subproblem. This paper has compared different bounding methods and pointed out
that the choice of artificial variables has an impact on the dual subproblem polyhedron,
and thus, on the feasibility cuts generated. It was shown that cuts generated when a
unique artificial variable is used correspond to extreme rays while it is not the case for
cuts generated when a different artificial variable is added in each short connection linking
constraint. The latter strategy may indeed favor cuts with equal coefficients even when
they are weaker. In addition, the different types of cuts do not necessarily include short
connections that are not taken by the current crew pairing solution, at a given iteration,
even if they are incompatible with those included. For this reason, and to allow the dual
variables to take different values, a lifting procedure was proposed which can be used on
all types of feasibility cuts. It was shown that when the procedure is applied on a cut
corresponding to an extreme ray, the resulting cut also corresponds to an extreme ray. On
test instances containing up to 700 daily legs, it was observed that the proposed lifting
procedure is useful to strengthen the cuts and to reduce the total computing time.

The paper has also shown that for cuts preventing the use of a set of individually infea-
sible short connections for the aircraft routing problem (IISC), some linear combinations
of extreme rays give stronger cuts than extreme rays. This counter-intuitive result could
potentially be applied to situations where some other blocks of dual constraints are inde-
pendent, or only weakly linked by the variables (IISC cuts are generated when some dual
variables are only present in the non-negativity constraints). The numerical results have
pointed out that the bounding method generating cuts corresponding to extreme rays is
preferred only when the IISC are identified in a preprocessing step.
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Appendix A

Proof of Lemma 1. Recall that a ray t of a polyhedral cone C ⊆ Rn is an extreme ray
if and only if there are n− 1 linearly independent constraints that are active at t (see e.g.
Bertsimas and Tsitsiklis (1997)). In the Benders DSP, the total number of variables is
|S| + 1. For q to be an extreme ray of ∆, the maximum number of linearly independent
constraints satisfied at equality by q thus has to be equal to |S|. Because of constraints
(13), the variables taking the value 0 in q correspond to active non-negativity constraints.
Therefore, only the number of positive variables αs, i.e., |Sq|, has to be considered and
compared to the maximum number of linearly independent constraints (12) which are
active at q, i.e., n(Rq).

Proof of Lemma 2. Recall that a point p of a polyhedron P of dimension n is an
extreme point if and only if there are at least n linearly independent active constraints
of P at p. In the Benders BDSPa, the total number of variables is |S| + 1 (with variable
β). For p to be an extreme point of ∆Ba , the maximum number of linearly independent
constraints satisfied at equality by p thus has to be greater than or equal to |S|+1. Since a
non-negativity constraint is active for every null variable α, one does not need to consider
constraints (35) and variables αs, s ∈ S\Sp. Therefore, the point p is an extreme point of
∆Ba if and only if n(Hp) ≥ |Sp| + 1.

Lemma 20 If p is an extreme point of ∆Ba , then n(Sp) ≤ |Sp|, i.e., the maximum number
of linearly independent active constraints (33) at p is bounded by the number of positive
variables α at the point.

Proof. There are a total of |Sp| + 1 positive variables contributing to constraints (33).
The maximum number of linearly independent active constraints (33) at p, n(Sp), is thus
bounded by |Sp|+1. Furthermore, since the variable β is present, with the same coefficient,
in all constraints (33), the latter bound can be improved, and n(Sp) ≤ |Sp|. 2

Proof of Lemma 4. If p ∈ P
∆

Ba , then n(Hp) ≥ |Sp| + 1 in the BDSPa (see Lemma
2). Since there cannot be more than |Sp| linearly independent active constraints (33) (see
Lemma 20), or more than |Sp| active constraints (34), at least one constraint of each type
is satisfied at equality at p, i.e., αs = c̄ for at least one short connection s ∈ Sp, and
βp = maxr∈R

∑
s∈Sp brsα

p
s.

Proof of Lemma 5. If, for a given set F t, p ∈ P̄F t

∆
Ba

, then there is at least one constraint

(33) which is active at p (see Lemma 4). Hence, Rp 6= 0 and
∑

s∈S brsα
p
s = βp, ∀ r ∈ Rp.

Recall that, for a given set F t, the value of the objective function (32) of the BDSPa at the
point p is va(p, F t) =

∑
s∈F t αp

s−βp. Let r1 ∈ Rp be any active constraint (33) at p. There-

fore, βp =
∑

s∈S br1sα
p
s and va(p, F t) =

∑
s∈F t αp

s −
∑

s∈S br1sα
p
s . One can observe that

the variables from S\F t can never positively contribute to the objective function value. If∑
s∈F t brsα

p
s < βp, ∀ r ∈ Rp, i.e., all active constraints (33) include contributions from vari-

ables α in S\F t, then one can construct a point p′ = (αp′ , βp′), where (i) αp′

s = αp
s, ∀ s ∈ F t,
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(ii) αp′

s = 0, ∀ s ∈ S\F t, and (iii) βp′ = βp−minr∈Rp′

∑
s∈S\F t brsα

p
s. One can observe that

p′ is feasible since it satisfies all constraints (33)–(35) from the BDSPa. The objective value

at p′ is va(p
′, F t) =

∑
s∈F t αp′

s −βp′ =
∑

s∈F t αp
s−βp+minr∈Rp′

∑
s∈S\F t brsα

p
s = va(p, F t)+

minr∈Rp′

∑
s∈S\F t brsα

p
s. Since

∑
s∈F t brsα

p
s < βp, ∀ r ∈ Rp, minr∈Rp′

∑
s∈S\F t brsα

p
s > 0,

and thus va(p
′, F t) > va(p, F t). This is impossible since p ∈ P̄F t

∆
Ba

.

Proof of Lemma 7. If c̄ = 1, then αp2

s = 1,∀ s ∈ (Sp ∩ F t). Let r1 ∈ Rp1 be one
active constraint at p1 and Sp

1 = {s ∈ Sp | br1s = 1} be the set of short connections from
Sp included in r1 (|Rp1 | ≥ 1 from Lemma 4). Let r2 and Sp

2 correspond to p2 as r1 and
Sp

1 correspond to p1. With the active constraint r1, one can calculate βp1 =
∑

s∈S
p
1

αp1

s

and obtain va(p1, F
t) =

∑
s∈F t αp1

s − βp1 =
∑

s∈F t αp1

s −
∑

s∈S
p
1

αp1

s . The same is true for

va(p2, F
t). Although Sp1 = Sp2, it is easy to see that Rp2 can differ from Rp1 since there

exists at least one short connection si ∈ (Sp ∩ F t) with αp1

si 6= αp2

si . Only two possible
situations can occur: either there is an active constraint ri ∈ Rp1 that is also active at p2,
or there is none.

Assume that r1 ∈ (Rp1 ∩ Rp2). In this case, βp2 = βp1 +
∑

s∈(Sp
1
∩F t)(1 − αp1

s ). Therefore,

va(p2, F
t) = va(p1, F

t)+
∑

s∈F t(1−αp1

s )−
∑

s∈(Sp
1
∩F t)(1−αp1

s ). Since (i) αp1

s ≤ 1,∀ s ∈ Sp1,

(ii) ∃ si ∈ F t |αp1

si < 1 and (iii) (Sp
1 ∩F t) ⊂ F t, then va(p2, F

t) ≥ va(p1, F
t). If, in addition,

no aircraft routings r ∈ Rp1 contain all short connections si ∈ F t such that αp1

si < 1, then∑
s∈F t(1 − αp1

s ) >
∑

s∈(Sp
1
∩F t)(1 − αp1

s ) and va(p2, F
t) > va(p1, F

t).

Assume that |Rp1 ∩ Rp2| = 0. In that case, βp2 = βp1 +
∑

s∈(F t∩S
p
1
∩S

p
2
)(1 − αp1

s ) −∑
s∈(Sp

1
\Sp

2
) αp1

s +
∑

s∈(Sp
2
\Sp

1
) αp2

s . Therefore, va(p2, F
t) = va(p1, F

t)+
∑

s∈F t αp2

s −
∑

s∈F t αp1

s −∑
s∈S

p
2

αp2

s + βp1 . Since r2 is not active at p1,
∑

s∈S
p
2

αp1

s < βp1 . Hence,
∑

s∈F t αp1

s −∑
s∈(F t\Sp

2
) αp1

s +
∑

s∈(Sp
2
\F t) αp1

s < βp1 . Seeing that (i)
∑

s∈(F t\Sp
2
) αp2

s >
∑

s∈(F t\Sp
2
) αp1

s ,

(ii)
∑

s∈(F t\Sp
2
) αp2

s =
∑

s∈F t αp2

s −
∑

s∈(F t∩S
p
2
) αp2

s , (iii)
∑

s∈(Sp
2
\F t) αp1

s =
∑

s∈(Sp
2
\F t) αp2

s

and (iv)
∑

s∈(F t∩S
p
2
) αp2

s +
∑

s∈(Sp
2
\F t) αp2

s =
∑

s∈S
p
2

αp2

s , then
∑

s∈F t αp1

s −
∑

s∈F t αp2

s +∑
s∈S

p
2

αp2

s < βp1 and va(p2, F
t) > va(p1, F

t).

Proof of Lemma 9. If p ∈ P
∆

Bb , then n(Hp) ≥ |Sp| + 1 in the BDSPb (see Lemma 2).
From Lemma 20, there cannot be more than |Sp| linearly independent active constraints
(41). From that, and since there is only one constraint (42), the latter constraint is active
and there are exactly |Sp| linearly independent active constraints (41) at p in the BDSPb.

Proof of Lemma 10. If q ∈ R∆, then n(Rq) = |Sq| in the DSP. By definition,∑
s∈Sq brsα

q
s = βq, ∀ r ∈ Rq. Since Sp = Sq,

∑
s∈Sp brsα

p
s =

∑
s∈Sq brs(α

q
s/

∑
s∈Sq αq

s) =
βq/

∑
s∈Sq αq

s = βp, ∀ r ∈ Rq. Therefore, Rp = Rq and n(Rp) = |Sp| in the BDSPb. In addi-
tion, constraint (42) is satisfied as an equality since

∑
s∈S αp

s =
∑

s∈Sq(α
q
s/

∑
s∈Sq αq

s) = 1.
Hence, n(Hp) = |Sp| + 1 in the BDSPb and, from Lemma 20, p ∈ P

∆
Bb .

Proof of Lemma 17. PSP cuts correspond to a point in ∆Ba , where ᾱs = 1,∀ s ∈ F t,
and β̄ = |S(r̄t) ∩ F t|. When c̄ = 1, the point is feasible and there are exactly |F t| active



32 G–2006–21 – Revised Les Cahiers du GERAD

constraints (34) at (ᾱ, β̄). In addition, at least one constraint (33) is also active at that
point since, from the definition of β, there exists at least one routing using exactly β
short connections. PSP cuts thus correspond to an extreme point of ∆Ba since n(Hp) ≥
|Sp|+1 (see Lemma 2). The objective function (32) chooses a solution that maximizes the
difference between the number of positive variables from F t in the solution and the value
of β. One cannot increase the number of positive variables from F t in the PSP cuts since
they are all already included, and a decrease in the number of variables from F t in the cut
would result in a smaller or equal decrease in the value of β. PSP cuts thus correspond to
an optimal extreme point of ∆Ba .

Appendix B
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Figure 1: Crew costs as a function of the number of iteration – ECP (320D and MD80LA)
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Figure 2: Crew costs as a function of the number of iteration – ECP RA (320D and
MD80LA)
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Appendix C
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Figure 3: Crew costs as a function of CPU time – ECP RA (320D and D9SB)
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J.-F. Cordeau, G. Stojković, F. Soumis and J. Desrosiers. “Benders Decomposition for
Simultaneous Aircraft Routing and Crew Scheduling.” Transportation Science, 35:375–
388 (2001b).

G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis and D. Villeneuve.
“A Unified Framework for Deterministic Time Constrained Vehicle Routing and Crew
Scheduling Problems.” In T.G. Crainic and G. Laporte, editors, Fleet Management and
Logistics, pages 57–93. Kluwer, Boston, 1998.

H.-C. Huang, Z. Liang and R. Li. “Solving Integrated Aircraft Routing and Crew Schedul-
ing Problem by Benders Decomposition.” Atlanta. INFORMS Annual Meeting (2003).



34 G–2006–21 – Revised Les Cahiers du GERAD

D. Klabjan, E.L. Johnson and G.L. Nemhauser. “Airline Crew Scheduling with Time
Windows and Plane Count Constraints.” Transportation Science, 36:337–348 (2002).

T.L. Magnanti and R.T. Wong. “Accelerating Benders Decomposition: Algorithmic En-
hancement and Model Selection Criteria.” Operations Research, 29:464–484 (1981).
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