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3000, chemin de la Côte-Sainte-Catherine
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Abstract

We consider two overlapping generations that want to coordinate their strategies
of working, consuming and controlling pollution. As the cooperative solution is not
an equilibrium, and hence is not a self-enforcing contract, a mechanism is required to
sustain it. We show how incentive strategies, and the resulting incentive equilibrium,
could provide such a mechanism. We also derive the conditions that ensure the credi-
bility of these strategies.

Key Words: Overlapping-Generations Models; Environment; Incentive Strategies;
Credibility.

Résumé

Dans cet article, nous considérons un jeu entre deux générations qui cherchent à
coordonner leurs stratégies de travail, de consommation et de contrôle de la pollution.
Nous déterminons l’équilibre de Nash ainsi que la solution coopérative et proposons
une manière de répartir le gain issu de la collaboration. Nous montrons que la solution
coopérative est accessible à l’aide d’un équilibre incitatif crédible.

Mots clés : générations imbriquées, environnement, stratégies incitatives, crédibilité.
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1 Introduction

Environmental economics has been an active research area in the last couple of decades,
and has considered a myriad of topics, such as, taxation, strategic interactions, interna-
tional treaties and their stability, assessment of pollution cost, R&D and emissions reduc-
tion, migration, etc.1 The game-theoretic subset of this literature can be characterized
along methodological lines. One possible classification is to distinguish between static
and dynamic (to allow for pollution accumulation) games, between cooperative and non-
cooperative games and between games involving (implicitly) one generation of players and
those (explicitly) assuming an overlapping-generations (OLG) framework. The arguments
put forward to justify the latter approach, to which this paper belongs, include, e.g., that
individuals take actions with consequences that outlive them, that intergenerational con-
flicts exist (on top of intra-generational ones), that time and generational dynamics are
not equivalent, that the life spans of an economic agent and of the economy are different,
etc.

The literature considering overlapping-generations (OLG) models with an environmen-
tal concern has focused on aspects such as sustainability, intergenerational distribution
and assessment of environmental policies. John and Pecchenino (1994) use a discrete-time
model to derive conditions for sustainable growth of both capital and environmental qual-
ity. Their model is extended in John et al. (1995), Ono (1996, 2003) and Ono and Maeda
(2001, 2002) with a focus on determining and assessing environmental tax policies. Us-
ing a continuous-time model, Marini and Scaramozzino (1995) characterize the trade-off
between the environment and capital accumulation. Bovenberg and Heijdra (1998) ex-
plore the impact of environmental taxation on the welfare of the different generations. In
Bovenberg and Heijdra (2002), the authors analyze the effect of public abatement on private
investment and the intergenerational distribution of welfare. Lines (2005), on the other
hand, determines the conditions under which a sustainable intertemporal equilibrium with
a pollution externality exists. Howarth (1998) uses a numerically calibrated OLG model
of climate change and the world economy to examine efficient rates of greenhouse-gas-
emissions abatement. Kavuncu and Knabb (2005) analyze the costs and benefits current
and future generations incur as the result of climate change or of an environmental control
policy. Jouvet et al. (2000) focus on the effect of the intergenerational degree of altruism
on competitive steady-state consumption. Note that it is often the case in these papers
that the analysis is restricted to the steady states. Further, they do not generally allow
the old generation to take part in the investment for the maintenance of the environment.

Few papers adopt the formalism of differential games to study the strategic interactions
between a sequence of OLG of agents. For instance, Haurie (2005) considers a multigener-
ational game model where the generations are altruistic and proposes criteria to perform
a cost-benefit analysis for very long-term projects. Jørgensen and Yeung (1999) develop
a differential game of inter- and intra-generational resource extraction. In Jørgensen and

1Surveys are available in, e.g., Mäler and Vincent (2003, 2005, 2006).



2 G–2006–08 Les Cahiers du GERAD

Yeung (2005), the authors extend the model to a stochastic setting by introducing ran-
dom disturbances in the stock dynamics and by considering an infinite number of OLG of
players.

This paper explores the issue of implementing and sustaining an optimal cooperative
solution in an overlapping-generations game. The setting is a discrete-time model where
players maximize their welfare by choosing their labor supply, their consumption and their
voluntary contribution to the maintenance of the environment. The model is in the spirit
of those in Diamond (1965) and Grandmont (1985), with the additional feature that it
considers pollution dynamics.

Our starting point is that the two generations wish to coordinate their strategies for
working, for consumption and for investment in the quality of the environment in order
to achieve a, possibly, higher collective welfare than the one that would result from acting
non-cooperatively. It is well known that the cooperative solution is not, in general, an
equilibrium and hence is not a self-enforcing contract. This means that a player may be
tempted to cheat on the agreement, i.e., deviating unilaterally, whenever it is profitable
for her to do so. Given this possibility, each generation would like to be reassured that
the other will actually stick to her part of the cooperative agreement for as long as she,
herself, is doing so. The objective of this paper is to show that this can be achieved by
using incentive strategies and the resulting incentive equilibrium.

The idea of an incentive equilibrium has been developed and applied to resource prob-
lems by Ehtamo and Hämäläinen (1986, 1989, 1993). Recently this approach has been
used by Jørgensen and Zaccour (2001) and by Mart́ın-Herrán and Zaccour (2005) in dif-
ferential games of pollution control. An incentive equilibrium has the property that when
one player implements her (coordinated) strategy, the other player can do no better than
to act in accordance with the agreement. One important question that must be addressed
is whether a player should believe that the other will actually implement her strategy.
Put differently, are incentive strategies credible? Informally speaking, credibility amounts
to say that if, a player detects that the other player is deviating from the agreed-upon
strategy, then it will indeed be in her (the cheated player) best interest to implement the
incentive strategy and not to continue to cooperate.

Our approach can be summarized by the following algorithm:

1. Compute noncooperative (Nash equilibrium) and cooperative solutions. The coop-
erative solution is the collectively optimal one and the noncooperative equilibrium is
the benchmark. The difference in total payoffs provides a measure of the dividend of
cooperation to be shared by the two generations;

2. Share the cooperative outcome between the two generations. This can be done by us-
ing, e.g., the egalitarian principle, which leaves both generations at an equal distance
from their noncooperative outcomes;

3. Characterize the incentive strategies and the resulting equilibrium and determine the
conditions under which these strategies are credible.
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To illustrate this approach, we shall consider a parsimonious model that nevertheless
has the main characteristics of an OLG model and the environmental externality.

The rest of the paper is organized as follows. In Section 2, we present an OLG model
with pollution externality. In Section 3, we compute the cooperative and noncooperative
solutions. In Section 4, we construct an incentive equilibrium and establish conditions for
the credibility of the incentive strategies. In Section 5, we briefly conclude.

2 The Model

Consider a two-period OLG model in discrete time. At each period, a generation of selfish
consumers appears and lives for two periods, young and old. For simplicity, we assume
that the population is constant and that each generation consists of a single represen-
tative individual. During her active period, the young generation works lt and receives
wt as a wage. The total income, wtl

y
t , is shared between consumption ct and savings st.

The income of the old generation corresponds to the yield of savings, which is given by
Rst,where R is the interest factor. This total income is devoted to consumption ct+1 and
to environmental maintenance mt+1. This investment by the old generation in the quality
of the environment can be justified essentially on health grounds. For instance, long-term
exposure to air pollution can provoke respiratory problems or bronchitis (Xu et al. (1998),
Williams (2002)).

We assume that pollution is a by-product of working activities and given by φlt, with
φ > 0. Denote by Pt the stock of pollution at period t. It evolves according to the following
simple dynamics:

Pt+1 = (1 − δ)Pt + φlt+1 − ρmt+1,

where δ is a constant decay rate of pollution, and ρ > 0 is an efficiency parameter of the
technology used for environmental maintenance. The term ρmt+1 measures the environ-
mental improvement due to the old-generation contribution.

As is standard in this class of models, the representative agent derives a disutility from
work v(lt) in the first period and a utility from consumption in the two periods given by
u(ct) and u(ct+1). We make the following:

Assumption 1

(i) u and v are twice continuously differentiable on R+;

(ii) u and v have the following characteristics: u′(c) > 0 , u′′(c) < 0 , v′(l) > 0, v′′(l) > 0;

(iii) liml→∞v
′(l) = +∞, liml→0 v

′(l) = 0 and limc→0 u
′(0) = +∞, i.e., zero consumption

is impossible.

The young individual optimizes the discounted sum of welfare over the two periods,
subject to the budget constraint in each period, and the evolution of the stock of pollution.
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This optimization problem is given by

maxW y = u(cyt ) − v(lyt ) + β
[

u(cyt+1
) −D(Pt+1)

]

,

subject to :

cyt + sy
t = wtl

y
t ,

cyt+1
+my

t+1
= Rsy

t ,

Pt+1 = (1 − δ)Pt + φlt+1 − ρmy
t+1

,

where β is the discount factor. After substitution for cyt , c
y
t+1

and Pt+1, the above problem
becomes

maxW y = u(wtl
y
t − sy

t ) − v(lyt ) + β
{

u(Rsy
t −my

t+1
) (P y)

−b
[

(1 − δ) ((1 − δ)Pt−1 + φlyt − ρmo
t ) + φlt+1 − ρmy

t+1

]}

.

The old-individual optimization problem consists in maximizing the second-period wel-
fare subject to the budget constraint and the pollution stock, i.e.,

maxW o = u(cot ) −D(Pt),

subject to :

cot +mo
t = Rso

t−1,

Pt = (1 − δ)Pt−1 + φlyt − ρmo
t .

Substituting for cot and P , the above problem can be rewritten as follows:

maxW o = u
(

Rso
t−1 −mo

t

)

− b [(1 − δ)Pt−1 + φlyt − ρmo
t ] . (P o)

3 Nash Equilibrium and Cooperative Solution

In this section, we characterize both noncooperative and cooperative solutions to the game.
In the latter, the assumption is that the two generations would agree to jointly optimize
their welfare. In the noncooperative case, we shall look for Nash equilibria, which will
be used as a benchmark to allocate the cooperation benefit. At least part of the analysis
could be done without specifying the forms of the different functions involved in the model.
However, to focus on the implementation of our methodological approach, and thus to show
how incentive strategies can be used within the framework of overlapping generations to
reach the cooperative solution, we shall adopt the following, very simple functional forms
for utilities and costs:

u(ct) = log(ct), v(lt) =
l2t
2
,D(Pt) = bSt,∀t, b > 0.

Clearly, the above functional forms satisfy the assumptions made earlier.

The following proposition characterizes the unique Nash equilibrium identified by a ∼.
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Proposition 1 The unique Nash equilibrium is given by

m̃o
t = Rso

t−1 −
1

bρ
, c̃ot =

1

bρ
, c̃yt =

1

βbρR
,

l̃yt = X, s̃y
t = wtX −

1

βbρR
, m̃y

t+1
= RwtX −

(

1 + β

βbρ

)

,

where

X = βb (wtρR− φ(1 − δ)) .

The equilibrium welfares are given by

W̃ o = log(
1

bρ
) − b

[

(1 − δ)Pt−1 + φX − ρ

(

Rso
t−1 −

1

bρ

)]

W̃ y = log(
1

βbρR
) −

X2

2
+ β

{

log
1

bρ

−b(1 − δ)

(

(1 − δ)Pt−1 + φX − ρ

(

Rso
t−1 −

1

bρ

))

−bφlt+1 + bρ

(

wtRX −

(

1 + β

βbρ

))}

.

Proof. We start by solving the old-individual problem (P o). Assuming an interior solu-
tion, the optimality condition is

∂W o

∂mo
t

=
−1

Rso
t−1

−mo
t

+ bρ = 0 ⇐⇒ m̃o
t = Rso

t−1 −
1

bρ

⇒ c̃ot =
1

bρ
.

Substituting for m̃o
t and c̃ot in W o provides the equilibrium payoff in the Proposition.

Assuming an interior solution, first-order optimality conditions for the young-individual
optimization problem are

∂W y

∂sy
t

=
−1

wtl
y
t − sy

t

+
βR

Rsy
t −my

t+1

= 0 ⇐⇒ cyt =
cyt+1

βR
,

∂W y

∂lyt
=

wt

wtl
y
t − sy

t

− lyt − βbφ(1 − δ) = 0 ⇐⇒ lyt =
wt

cyt
− βbφ(1 − δ),

∂W y

∂my
t+1

=
−β

Rsy
t −my

t+1

+ βbρ = 0 ⇐⇒ cyt+1
=

1

bρ
.

Using

cyt =
cyt+1

βR
,
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leads to

c̃yt =
1

βbρR
and l̃yt = βb (wtρR− φ(1 − δ)) .

In addition, as we have

wtl
y
t − sy

t =
1

βbρR
,

we get

s̃y
t = wtbβ (wtρR− φ(1 − δ)) −

1

βbρR
.

Finally, the equality

cyt+1
= Rsy

t −my
t+1

=
1

bρ
,

gives the value of environmental maintenance, my
t+1

:

m̃y
t+1

= Rs̃y
t −

1

bρ
= Rβwtb (wtρR− φ(1 − δ)) −

(

1 + β

βbρ

)

.

By straightforward substitution, we obtain the payoffs in the Proposition. 2

The contribution by the old generation to the maintenance of the environment is given
by the difference between the yield of savings when young and the consumption. It is
increasing in all the parameters, i.e.,

∂m̃o
t

∂so
t−1

= R > 0,
∂m̃o

t

∂R
= so

t−1 > 0,
∂m̃o

t

∂b
=

1

b2ρ
> 0,

∂m̃o
t

∂ρ
=

1

bρ2
> 0.

This shows that a richer old generation will invest more in the environment. Also, the
higher the marginal damage cost, and the efficiency of the emissions reduction technology,
the higher the investment in the quality of the environment. The same observation can be
made for the young generation. Indeed,

∂m̃y
t+1

∂R
= wtX +Rwtβbwtρ > 0,

∂m̃y
t+1

∂wt

= R (X + wtβbρR) > 0,

∂m̃y
t+1

∂β
=

RwtX

β
+

1

β2bρ
> 0,

∂m̃y
t+1

∂b
=
RwtX

b
+

1 + β

βρb2
> 0,

∂m̃y
t+1

∂ρ
= R2w2

t βb+
1 + β

βbρ2
> 0.

Regarding the consumption policy, we observe that

cyt =
cyt+1

βR
, c̃ot = cyt+1

=
1

bρ
.
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The first part is the traditional result that the marginal rate of substitution between
current and future consumption and the marginal rate of transformation must be equal.
The second part states that the consumption policy is time-consistent.

The next propositions provide the cooperative solution and a comparison with the
noncooperative equilibrium.

Proposition 2 Assuming an interior solution, if the two generations cooperate by maxi-

mizing their joint payoffs, then the optimal solution is given by

m̂o
t = Y, ĉot =

1

bρ (1 + β(1 − δ))
, ĉyt =

1

βbρR
,

l̂yt = Z, ŝy
t = wtZ −

1

βbρR
, m̂y

t+1
= RwtZ −

(

1 + β

βbρ

)

,

where

Y =

(

Rso
t−1 −

1

bρ (1 + β(1 − δ))

)

,

Z = b (wtβρR− φ (1 + β(1 − δ))) .

The total cooperative payoff is given by

Ŵ = − log(bρ (1 + β(1 − δ))) − b [(1 − δ)Pt−1 + φZ − ρY ] (1 + β(1 − δ)) −
Z2

2

− log(βbρR) − β

(

log(bρ) + b

(

φlt+1 − ρ

(

RwtZ −

(

1 + β

βbρ

))))

.

Proof. The cooperative solution is obtained by solving the following joint-optimization
problem:

max W = W o +W y = u
(

Rso
t−1 −mo

t

)

− b [(1 − δ)Pt−1 + φlyt − ρmo
t ]

+u(wtl
y
t − sy

t ) − v(lyt ) + β
{

u(Rsy
t −my

t+1
)

−b
[

(1 − δ) ((1 − δ)Pt−1 + φlyt − ρmo
t ) + φlt+1 − ρmy

t+1

]}

Taking into account the functional forms for u and v, and assuming an interior solution,
the optimality conditions are given by

∂W

∂mo
t

=
−1

Rso
t−1

−mo
t

+ bρ+ ρβb(1 − δ) = 0,

⇔ m̂o
t = Rso

t−1 −
1

bρ+ ρβb(1 − δ)
⇒ ĉot =

1

bρ+ ρβb(1 − δ)
,

∂W

∂sy
t

=
−1

wtl
y
t − sy

t

+
βR

Rsy
t −my

t+1

= 0 ⇐⇒ cyt =
cyt+1

βR
,
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∂W

∂lyt
= −bφ+

wt

wtl
y
t − sy

t

− lyt − βbφ(1 − δ) = 0 ⇐⇒ lyt =
wt

cyt
− bφ− βbφ(1 − δ),

∂W

∂my
t+1

=
−β

Rsy
t −my

t+1

+ βbρ = 0 ⇐⇒ ĉyt+1
=

1

bρ
.

Using

cyt =
cyt+1

βR
,

we get

ĉyt =
1

βbρR
and l̂yc t = βb (wtρR− φ(1 − δ)) − bφ.

In turn, this leads to

ŝy
t = wt l̂

y
t − ĉyt = wtbβ (wtρR− φ(1 − δ)) −

1

βbρR
− wtbφ.

Since her consumption, when old, is

cyt+1
= Rsy

t −my
t+1

=
1

bρ
,

her contribution to environmental improvement is thus:

m̂y
t+1

= Rŝy
t −

1

bρ

= Rwtb (wtβρR− φ (1 + β(1 − δ))) −

(

1 + β

βbρ

)

.

2

Proposition 3 Noncooperative and cooperative solutions compare as follows:

m̃o
t − m̂o

t =
−β(1 − δ)

bρ (1 + β(1 − δ))
, c̃ot − ĉot =

β(1 − δ)

bρ (1 + β(1 − δ))
,

c̃yt − ĉyt = 0, l̃yt − l̂yt = bφ, s̃y
t − ŝy

t = wtbφ,

m̃y
t+1

− m̂y
t+1

= Rwtbφ.

Proof. Straightforward computations lead to the results. 2

Recalling that pollution emission is measured by φlt, we encounter here a result that
is traditional in environmental economics, i.e., that pollution is higher under a noncoop-
erative mode of play than in the cooperative case. The young generation adopts the same
consumption plan in the two regimes. This is achieved, on the revenue side, by working
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and saving less in the cooperative case and, on the expenses side, by reducing the invest-
ment in the environment, which is consistent with the reduction in pollution. Note that
the result is different for the old generation. Indeed, the latter reduces its consumption
and increases its contribution to the maintenance of the environment when the game is
played cooperatively. Looking at the welfare impact of cooperation, we state the following
two propositions.

Proposition 4 Nash equilibrium is strictly inefficient.

Proof. Total difference is given by

Ŵ −
(

W̃ o + W̃ y
)

= wtβb
2ρRφ+

b2φ2

2
+ β(1 − δ) − log (1 + β(1 − δ)) .

Denote by x = β(1 − δ), 0 ≤ x ≤ 1 and define

g(x) , x− log(1 + x).

Clearly, g′(x) > 0,∀x ∈ [0, 1] and g(0) = 0 and g(1) = 1 − log 2 > 0. Therefore, g(x) >
0, x ∈ [0, 1] . Hence the result. 2

Proposition 5 Cooperation is Pareto-improving with respect to Nash equilibrium, if the

following condition holds:

b2φ2 +
β(1 − δ)

1 + β(1 − δ)
≥ log (1 + β(1 − δ)) .

Proof. Denote by Ŵ y and Ŵ o the payoffs of the young and the old generations, respec-
tively, when they implement the cooperative solution. Straightforward computations lead
to the following difference for the young generation:

Ŵ y − W̃ y =
1

2 (1 + β(1 − δ))

{

bφl̂yt + [β(1 − δ)]2

wtβb
2ρRφ (1 + 2β(1 − δ))

}

,

which is clearly strictly positive.

For the old generation, the difference in welfare is given by

Ŵ o − W̃ o = − log (1 + β(1 − δ)) + b2φ2 +
β(1 − δ)

1 + β(1 − δ)
,

which is nonnegative if

b2φ2 +
β(1 − δ)

1 + β(1 − δ)
≥ log (1 + β(1 − δ)) .

2
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The message given by these two propositions is that it is collectively beneficial (as
expected) to cooperate and that a side payment may be needed to ensure that both players
are better off under cooperation. If one adopts, for instance, the egalitarian principle, that
is, that both players improve their payoffs with respect to noncooperation by the same
amount, then the side payment (SP ) would be given by

SP =
1

2

[

Ŵ y − Ŵ o + W̃ o − W̃ y
]

.

With this transfer, the two generations will obtain the following net welfares:

NW y = Ŵ y − SP = W̃ y +
Ŵ −

(

W̃ o + W̃ y
)

2
> W̃ y,

NW o = Ŵ o + SP = W̃ o +
W −

(

W̃ o + W̃ y
)

2
> W̃ o.

It can readily be seen that each generation is getting its noncooperative payoff plus half

of the surplus (or dividend) of cooperation given by Ŵ −
(

W̃ o + W̃ y
)

. Since the latter

is strictly positive, then the allocation (NW y, NW o) is Pareto-improving with respect to
noncooperation.

4 Incentive Equilibrium

As has been shown, the coordinated solution is not an equilibrium. This section shows
how the cooperative solution can be sustained as an incentive equilibrium.

The old generation has one control mo
t and the young generation has five, namely,

cyt , s
y
t , l

y
t , c

y
t+1

and my
t+1

. Given the identities

cyt + sy
t = wtl

y
t ,

cyt+1
+my

t+1
= Rsy

t ,

only three of them are actually free. Further, it has been shown in the previous section
that the young generation keeps the same consumption pattern in both cooperative and
noncooperative regimes, i.e.,

ĉyt = c̃yt and ĉyt+1
= c̃yt+1

.

Then, it is easy to see that it is sufficient for the young generation to set its labor effort
at the cooperative level to have all other variables set also at their coordinated values. In
this context, the definition of an incentive equilibrium reduces to the following.
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Definition 6 Let
(

l̂yt, m̂
o
t

)

∈ R+xR+ be the coordinated solution. Let Ψy = {ψy/ψy :

R+ −→ R+} and Ψo = {ψo/ψo : R+ −→ R+} be the sets of admissible incentive strategies.

(ψy ∈ Ψy, ψo ∈ Ψo) is called an incentive equilibrium at
(

l̂yt, m̂
o
t

)

, if

W y
(

l̂yt, m̂
o
t

)

> W y (ly, ψo(l
y)) , ∀ly ∈ R+,

W o
(

l̂yt, m̂
o
t

)

> W o (ψy(m
o),mo) , ∀mo ∈ R+,

ψo(l̂
y) = m̂o, ψy(m̂

o) = l̂y.

In order to determine an incentive equilibrium, one has to solve the problem of each
generation assuming that the other is using the incentive strategy.

Proposition 7 A strategy pair (ψy ∈ Ψy, ψo ∈ Ψo) is an incentive equilibrium at (lyc ,mo
c)

if

ψy (m̂o
t) = l̂yt , ψ′

y (m̂o
t) = −

ρβ(1 − δ)

φ
=

1

ψ′

o(l̂
y
t )
,

ψo

(

l̂yt

)

= m̂o
t , ψ′

o(l̂
y
t ) = −

φ

ρβ(1 − δ)
=

1

ψ′

y (m̂o
t )
.

Proof. Substituting ψy (mo
t ) for lyt , the old-generation problem becomes

maxW o = u
(

Rso
t−1 −mo

t

)

− b [(1 − δ)Pt−1 + φψy (mo
t ) − ρmo

t ] .

The optimality condition is

∂W o

∂mo
t

=
−1

Rso
t−1

−mo
t

− bφψ′

y (mo
t ) + bρ = 0,

⇔ ψ′

y (mo
t ) =

−1

bφ
(

Rso
t−1

−mo
t

) +
bρ

bφ
.

Imposing

mo
t = m̂o

t = Rso
t−1 −

1

bρ+ ρβb(1 − δ)
,

we get

ψ′

y (m̂o
t) =

−ρβ(1 − δ)

φ
.

Substituting ψo(l
y
t ) for m0

t , the young-generation problem becomes

W y = u(wtl
y
t − sy

t ) − v(lyt ) + β
{

u(Rsy
t −my

t+1
)
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−b
[

(1 − δ) ((1 − δ)Pt−1 + φlyt − ρψo(l
y
t )) + φlt+1 − ρmy

t+1

]}

.

The optimality condition with respect to lyt is given by

∂W y

∂lyt
=

wt

wtl
y
t − sy

t

− lyt − βb(1 − δ)
(

φ− ρψ′

o(l
y
t )

)

= 0,

⇐⇒ ψ′

o(l
y
t ) =

φ

ρ
−

wt

ρβb(1 − δ) (wtl
y
t − sy

t )
+

lyt
ρβb(1 − δ)

.

Imposing
lyt = l̂yt = wtβbρR − bφ− βbφ(1 − δ),

leads to

ψ′

o(l̂
y
t) = −

φ

ρβ(1 − δ)
.

2

What is worth noting here is that, whatever the functional form of the incentive strate-
gies, they have to satisfy the requirement of having the product of their derivatives equal
to one, i.e., ψ′

y (m̂o
t)ψ

′

o(l̂
y
t ) = 1.

To illustrate, let us consider the simplest possible case, where the players adopt linear
incentive strategies. In such a context, they would read as follows:

ψy (mo
t) = l̂yt + vo (m̂o

t −mo
t ) , (1)

ψo (lyt) = m̂o
t + vy

(

lyt − l̂yt

)

, (2)

where the coefficients vo and vy are constants satisfying vovy = 1. They can be interpreted
as penalties applied by the two generations to observed deviations from the cooperative or
desired solution. Note, since we have shown that

m̃o
t − m̂o

t < 0 and l̃yt − l̂yt > 0,

we would expect that, if the old generation deviates from the cooperation, then it will invest
less in the maintenance of the environment. Therefore, it is intuitive to consider only the
case where m̂o

t −m
o
t ≥ 0. This deviation is of course equal to zero when the old generation

implements the cooperative solution. On the other hand, the young generation works less
under cooperation; hence, the difference term in (2) is expected to be nonnegative.

As mentioned in the introduction, these incentive strategies will be effective only if
they are credible, i.e., if it is more advantageous for a generation to apply its incentive
strategy than to adopt the cooperative one, when the other generation deviates from
the cooperative solution. A formal definition of credibility and a proposition providing
conditions to guarantee it follow.



Les Cahiers du GERAD G–2006–08 13

Definition 8 The incentive equilibrium strategy pair (ψy ∈ Ψy, ψo ∈ Ψo) at
(

l̂y, m̂o
)

is

credible in R+xR+ if the following conditions are satisfied:

W o (ly, ψo(l
y)) > W o (ly, m̂o) , ∀ly ∈ R+,

W y (ψy(m
o),mo) > W y

(

l̂y,mo
)

, ∀mo ∈ R+.

Proposition 9 For mo
t ≤ m̂o

t, and lot ≥ l̂ot, the incentive equilibrium strategy pair

(ψy ∈ Ψy, ψo ∈ Ψo) at
(

l̂y, m̂o
)

is credible if

ψ′

o(l
y
t )

[

bρ
(

Rso
t−1 − ψo(l

y
t )

)

− 1
]

> 0, (3)

and

ψ′

y(mo) [−ψy(mo) + βφ] ≤ 0. (4)

Proof. Define by

h(lyt ) = W o (ly, ψo(l
y)) −W o (ly, m̂o)

= log
[

Rso
t−1 − ψo(l

y
t )

]

+ bρψo(l
y
t ) + log (bρ (1 + β(1 − δ)))

−bρ

(

Rso
t−1 −

1

bρ (1 + β(1 − δ))

)

.

The first condition for credibility becomes thus:

h(lyt ) ≥ 0, ∀ly ∈ R+.

Clearly, h(l̂yt ) = 0. Compute the derivative of h(lyt ) :

h′(lyt ) =
−ψ′

o(l
y
t )

Rso
t−1

− ψo(l
y
t )

+ bρψ′

o(l
y
t ).

The first condition is thus:

h′(lyt ) > 0 ⇐⇒ ψ′

o(l
y
t )

[

bρ
(

Rso
t−1 − ψo(l

y
t )

)

− 1
]

> 0.

Define by

g(mo) = W y (ψy(m
o),mo) −W y

(

l̂y,mo
)

= −
(ψy(mo))

2

2
+ β

(

φψy(mo) − ρmo − ρmy
t+1

)

−
Z2

2
−β

{

φ [wtβbρR− bφ− βbφ(1 − δ)] − ρmo − ρm̂y
t+1

}

.
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Clearly g(m̂o) = 0. Compute the derivative of g(mo) :

g′(mo) = −ψ′

y(mo)ψy(mo) + βφψ′

y(mo).

g′(mo) ≤ 0 ⇐⇒ ψ′

y(mo) [−ψy(mo) + βφ] ≤ 0.

2

To remain in line with the example of linear incentive strategies, the proposition is stated
under the conditions mo

t ≤ m̂o
t and lyt ≥ l̂yt. Again, for the sole purpose of illustration,

let us assume that the players adopt the linear incentive strategies in (1)-(2). After some
straightforward calculations, the credibility conditions become

0 ≤ lyt − l̂yt ≤
β2(1 − δ)2

(1 + β(1 − δ)) bφ
,

0 ≤ m̂o
t −mo

t ≤ ((β + b)φ− βb (wtρR− φ(1 − δ)))
φ

ρβ(1 − δ)
.

These conditions involve all of the model’s parameters. Clearly, the ranges of the above
two intervals depend on the actual values of these parameters. Looking more closely at the
environmental parameters, we can make the following observations. The higher the labor
externality φ (i.e., emissions due to working activities), the narrower is the first interval
and the wider is the second. Whereas the efficiency parameter of the technology used for
environmental maintenance ρ does not affect the range of the first interval, it negatively
affects the range of the second.

To conclude, as has been shown in Mart́ın-Herrán and Zaccour (2005), one cannot expect
to have credibility of linear incentive strategies for any possible deviation. Following the
guidelines provided by these authors, one can construct non-linear strategies which are
credible for any deviation from the cooperative solution.

5 Conclusion

In this article, we showed how one can implement a desired coordinated strategy in the
area of overlapping-generations models, using incentive strategies. We also established
conditions for the credibility of such strategies. The main purpose of the paper being to
illustrate such methodology, our setting was deliberately simple. The following extensions
are of interest:

1. Consider a non-linear damage cost; this seems to be more realistic with regards to
the literature in environmental economics and would lead to richer strategies, i.e.,
strategies that depend on the stock of pollution;

2. Drop the assumption of a representative agent for each generation and let there be a
game within each generation on the top of the intergenerational one. This, however,
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would require the tackling of the complex (and not yet considered) issue of how to
extend the theory of incentive strategies to more than two players.
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[4] Ehtamo H, Hämäläinen RP. On Affine Incentives for Dynamic Decision Problems.
In: Basar T (Ed), Dynamic Games and Applications in Economics, Springer Verlag:
Berlin; 1986. p. 47–63.
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