
Les Cahiers du GERAD ISSN: 0711–2440

A Hybrid Heuristic for a Real-Life Car
Sequencing Problem with Painting and
Assembly Line Constraints

C.C. Ribeiro, D. Aloise, T.F. Noronha,
C. Rocha, S. Urrutia

G–2006–02

January 2006

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.

A Hybrid Heuristic for a Real-Life Car

Sequencing Problem with Painting and

Assembly Line Constraints

Celso C. Ribiero
Department of Computer Science, Universidade Federal Fluminense

and Department of Computer Science, Catholic University of Rio de Janeiro

celso@inf.puc-rio.br

Daniel Aloise
GERAD and Département de mathématiques et de génie industriel

École Polytechnique de Montréal

daniel.aloise@gerad.ca

Thiago F. Noronha
Department of Computer Science

Catholic University of Rio de Janeiro

tfn@inf.puc-rio.br

Caroline Rocha
CRT and Département d’informatique et de recherche opérationnelle

Université de Montréal

thennecy@crt.umontreal.ca

Sebastián Urrutia
Department of Computer Science

Catholic University of Rio de Janeiro

useba@inf.puc-rio.br

January 2006

Les Cahiers du GERAD

G–2006–02

Copyright c© 2006 GERAD

Abstract

We address a multi-objective version of the car sequencing problem, which con-
sists in sequencing a given set of cars to be produced in a single day, minimizing the
number of violations of assembly constraints and the number of paint color changes
in the production line. We propose a set of heuristics for approximately solving this
problem, based on the paradigms of the VNS and ILS metaheuristics, to which further
intensification and diversification strategies have been added. Computational results
on real-life test instances are reported. The work presented in this paper obtained the
second prize in the ROADEF challenge 2005 sponsored by Renault.

Key Words: Car sequencing problem, metaheuristics, VNS, ILS, heuristics.

Résumé

Nous adressons une version à plusieurs objectifs du problème d’ordonnancement de
la production de véhicules. Le problème consiste à ordonner la séquence des voitures
qui doivent être produites dans un atelier pendant une journée, de façon à minimiser
les violations associées aux contraintes d’assemblage et le nombre de changement de
couleur de peinture dans la châıne de production. Pour résoudre ce problème, nous
proposons un ensemble d’heuristiques basées sur les paradigmes des métaheuristiques
VNS et ILS, auxquelles d’autres stratégies d’intensification et de diversification sont
ajoutées. Nous présentons des résultats numériques obtenus sur des données réelles.
Le travail présenté dans cet article a obtenu le deuxième prix dans la compétition
ROADEF 2005, commanditée par Renault.

Les Cahiers du GERAD G–2006–02 1

1 Introduction

The basic version of the car sequencing problem [6] consists in sequencing a given set of
cars to be produced, in such a way that the number of violations of assembly constraints
in the production line is minimized. Metaheuristic-based methods for this problem were
proposed in [2, 8, 9].

In this work, we address the multi-objective version of the car sequencing problem
proposed in the ROADEF challenge 2005 [5], which involved 55 teams from 15 different
countries and was sponsored by Renault. This version of the problem does not take into
account only the minimization of the number of violations of assembly constraints, but also
the minimization of the number of paint color changes in the production line. Furthermore,
two possible priority levels (high priority, low priority) are assigned to each constraint, with
different weights in the objective function. We refer to [1, 5] for a more detailed account
of the problem description.

The rest of the paper is organized as follows. The next section introduces some notation.
Section 3 describes the general approach proposed to tackle the multi-objective version of
the car sequencing problem. Two constructive heuristics are proposed in Section 4. Neigh-
borhood definitions and improvement heuristics based on the paradigms of the Iterated
Local Search (ILS) and Variable Neighborhood Search (VNS) metaheuristics are presented
in Section 5. Some relevant implementation issues, regarding data structures and quick
neighborhood investigation, are commented in detail in Section 6. Computational results
are reported in the last section.

2 Notation

We denote by V = {v1, . . . , vn} the set of cars to be scheduled and by O = {o1, . . . , om}
the set of options that a car may have. The set of colors used to paint the cars is denoted
by C = {c1, . . . , ct}.

Ratio constraints associated with each option o ∈ O are defined by two functions p :
O → N and q : O → N: there must be at most p(o) cars requiring option o in any sequence
of q(o) consecutive cars. High priority ratio constraints (HPRC) are those that should
preferably be enforced, while the others are low priority ratio constraints (LPRC). For any
i = 1, . . . , n and j = 1, . . . ,m, we define r(vi, oj) = 1 if option oj is associated with car vi,
r(vi, oj) = 0 otherwise.

Paint color batches (sequences of cars that have to be painted with the same color) have
an upper bound on their size, since spray guns have to be washed regularly, even if there
is no paint color change in the sequence of vehicles. This limitation is a hard constraint,
in the sense that the presence of a paint color batch with more cars than the upper bound
makes the solution infeasible.

2 G–2006–02 Les Cahiers du GERAD

We denote by π =< vi1 , vi2 , . . . , vik > a sequence of |π| = k consecutive (and different)
cars, with viℓ ∈ V for every ℓ = 1, . . . , k and viℓ1

6= viℓ2
for any ℓ1, ℓ2 = 1, . . . , k with

ℓ1 6= ℓ2.

3 Solution approach

The multi-objective version of the car sequencing problem consists in scheduling the pro-
duction of a set of vehicles satisfying the paint shop and assembly line requirements. There-
fore, there are three different objectives to minimize: (a) the number of paint color changes
(PCC), (b) the number of violations of high priority ratio constraints, and (c) the number
of violations of low priority ratio constraints.

These objectives are often conflicting. However, they can be considered with differ-
ent priority levels. Their priority levels may be different from one factory to another or
at different times at the same factory. Renault proposed to tackle the problem using
a weighted sum method that groups the three objectives into a single objective func-
tion, by assigning different weights to each objective, according with their priority levels.
Three problem classes with different objective functions are considered [1, 5], with weights
W1 > > W2 > > W3:

Class I: Objective function 1 = W1 × number of paint color changes + W2 × number of
violations of HPRC + W3 × number of violations of LPRC;

Class II: Objective function 2 = W1 × number of violations of HPRC + W2 × number
of paint color changes + W3 × number of violations of LPRC;

Class III: Objective function 3 = W1 × number of violations of HPRC + W2 × number
of violations of LPRC + W3 × number of paint color changes.

The values of W1, W2, and W3 are defined in a way that the best solution is the one
with the smallest value for the first objective. In case of ties in the first objective, the best
solution is the one with the smallest value for the second objective. Finally, in case of ties
in the first and second objectives, the best solution is the one with the smallest value for
the third objective. In practice, Renault proposed to consider W1 = 1000000, W2 = 1000,
and W3 = 1. Problem instances are evenly distributed over the three classes in practice.

The rules of the ROADEF challenge 2005 stated that the algorithms should stop after
600 seconds of processing time. This time limit was enforced by Renault and ROADEF,
representing the maximum response time accepted by the users. The best solution found
should be returned.

Since three different objectives must be optimized and the weighted sums clearly dif-
ferentiate the importance of each one, we optimize each of them individually in the order
given by their weight in the objective function. First, we optimize the most important
objective (paint colors changes or violations of high priority ratio constraints). Then, we
attempt to optimize the second objective, without deteriorating the value of the first objec-

Les Cahiers du GERAD G–2006–02 3

tive. Finally, we attempt to optimize the third objective, without deteriorating the values
of the first two objectives.

Therefore, there are four subproblems associated with each problem class: (1) the
construction of a good initial solution, (2) the optimization of the first objective, (3)
the optimization of the second objective, without deteriorating the value of the first one,
and (4) the optimization of the third objective, without deteriorating the values of the
first and second objectives. Specific codes were developed for each class and for each
subproblem, to take advantage of their specific characteristics. Moreover, the computation
of the cost function (which usually accounts for the largest fraction of the time spent by
local search algorithms) can be performed quickly, since not all objectives are evaluated in
every subproblem. Triggers based on the computation time and on the stabilization of the
best known solution are used to interrupt the resolution of a subproblem and to activate
the resolution of the next.

We first notice that the minimization of the paint color changes, in the absence of other
constraints, is solvable in polynomial time. Therefore, we implemented a fast constructive
algorithm that obtains a solution minimizing the number of paint color changes to handle
the two first subproblems for class I problems. Second, we observe that the first objective
is the same for classes II and III, therefore the same pair of algorithms can be used by both
classes for constructing an initial solution and for optimizing the first objective. Finally, we
also notice that the fourth subproblem is the same for classes I and II, therefore the same
algorithm can be used in these two cases. Table 1 summarizes the different algorithms
implemented and described in the next section. Each algorithm uses as the initial solution
that obtained by the previous algorithm for the corresponding subproblem.

The two constructive algorithms Gre1 and Gre2 are greedy heuristics described in Sec-
tion 4. The other algorithms are improvement heuristics based on the paradigms of the
Iterated Local Search and the Variable Neighborhood Search metaheuristics, as reported
in Section 5.

4 Constructive heuristics

The first constructive heuristic, named Gre1, starts with a sequence formed exclusively
by the cars already scheduled in the previous day. At each iteration, a new car selected
among those not yet scheduled is considered for insertion into the current partial solution.
The insertion criterion consists in searching for the best position to schedule this car into
the sequence formed by the cars already scheduled. The best position corresponds to that
leading to the smallest increase (possibly negative) in the cost function. Insertions into
positions corresponding to infeasible partial solutions are discarded. This procedure is
repeated until all cars have been scheduled. Figure 1 illustrates an example.

In this figure, cars are represented by identifiers vi and by their colors (R, G, or B).
For ease of understanding, this example considers only the number of paint color changes.
The number of paint color changes is not increased if car v8 is scheduled in between cars

4 G–2006–02 Les Cahiers du GERAD

Table 1: Greedy algorithms and improvement heuristics

Class I Class II Class III

Construction Gre1: builds a
solution minimiz-
ing the number of
paint color changes
(greedy).

Gre2: builds a solution minimizing the
number of violations of high priority ratio
constraints (greedy).

First objective Imp3: attempts to reduce the number
of violations of high priority ratio con-
straints (ILS).

Second objective Imp4: attempts to
reduce the number
of violations of high
priority ratio con-
straints, without in-
creasing the num-
ber of paint color
changes (ILS).

Imp5: attempts to
reduce the num-
ber of paint color
changes, without
increasing the num-
ber of violations of
high priority ratio
constraints (VNS).

Imp6: attempts to
reduce the number
of violations of low
priority ratio con-
straints, without in-
creasing the number
of violations of high
priority ratio con-
straints (VNS).

Third objective Imp7: attempts to reduce the number of
violations of low priority ratio constraints,
without increasing the number of viola-
tions of high priority ratio constraints and
the number of paint color changes (ILS).

Imp8: attempts to
reduce the num-
ber of paint color
changes, without in-
creasing the number
of violations of high
and low priority
ratio constraints
(VNS).

v5 and v6. The number of violations of high priority ratio constraints is also evaluated in
the implementation, in case of ties in the variation on the number of paint color changes.
There is only one position to be considered for insertion in the first iteration (the first one),
while in the last iteration there are as many possible positions as the number of cars.

Figure 2 presents the pseudo-code of algorithm Gre1. The latter receives as inputs the
initial solution formed by the sequence π0 of cars already scheduled in the previous day and
the set V of cars to be scheduled in the current day. The current solution π is initialized
with π0 in line 1. In line 2, the set S of yet unscheduled cars is initialized with V . The loop
in lines 3–18 iterates until all cars have been scheduled. At each iteration, the best position

Les Cahiers du GERAD G–2006–02 5

8 insert v (R)

previous day

v (R) v (G) v (G) v (G) v (R) v (R) v (R) v (B)

previous day

v (R) v (G) v (G) v (G) v (R) v (R) v (B)1 2 3 4 5 6 7

1 2 3 4 5 8 6 7

considered positions

Figure 1: Construction heuristic Gre1

procedure Gre1(π0, V);
1 π ← π0;
2 S ← V ;
3 while S 6= ∅ do
4 ∆∗,∆∗

color ←∞;
5 v ← randomly chosen element of S;
6 for i = |π0|+ 1, . . . , |π|+ 1 do
7 ∆color ← cost color(π, v, i);
8 ∆← cost(π, v, i);
9 if (∆color < ∆∗

color) or (∆color = ∆∗

color and ∆ < ∆∗)
10 then do;
11 ∆∗

color ← ∆color;
12 ∆∗ ← ∆;
13 best pos← i;
14 end-if;
15 end-for;
16 Insert car v at position best pos of the current partial solution π;
17 S ← S − {v};
18 end-while;
19 return π;
end Gre1;

Figure 2: Pseudo-code of the heuristic Gre1

6 G–2006–02 Les Cahiers du GERAD

to insert a yet unscheduled car is determined. Variables ∆∗ and ∆∗

color are initialized in
line 4 and store, respectively, the smallest solution cost (low priority ratio constraints are
not taken into account) and the smallest number of paint color changes over all possible
insertion positions. A car v still to be scheduled is randomly selected in line 5. The loop
in lines 6–15 investigates all possible insertion positions for this car. The number of paint
color changes and the cost of the solution obtained by inserting car v at position i of the
current partial solution π is computed by functions cost color(π, v, i) and cost(π, v, i) in
lines 7 and 8, respectively (cost color(π, v, i)=∞ if car v cannot be inserted at position
i). In line 9, we compare the solution obtained by inserting car v at position i of solution
π with that obtained by performing the best move found so far. The smallest number of
paint color changes, the smallest solution cost, and the best insertion position, are possibly
updated in lines 10–14. In line 16, car v is inserted at position best pos of the current
partial solution π and the latter is updated. The set of yet unscheduled cars is updated in
line 17 and a new iteration starts. The algorithm ends when S = ∅, returning a complete
sequence π with all cars in V scheduled.

Heuristic Gre1 is guaranteed to find a solution with the minimum number of paint color
changes in time O(mn2), if implemented with data structures directly derived from those
presented in Section 6.2.

The second constructive heuristic, named Gre2, also builds the initial solution using a
greedy strategy. It takes the number of additional violations of high priority ratio con-
straints as the greedy criterion to define the next car to be introduced into the sequence.
Ties are broken using an extension of the strategy proposed in [2], which favors a more
equitable car distribution. In our case, we also considered second and third tie breaking
criteria based on the hardness of each constraint and on the cost of the second objective,
respectively. Harder constraints are those applied to more cars and that have smaller ra-
tios. Cars associated with harder constraints are scheduled first. Heuristic Gre2 also runs
in time O(mn2).

5 Improvement heuristics

Six neighborhoods are used by the improvement heuristics Imp3 to Imp8 described in the
next subsections:

1. Car exchange (CarExchange): the positions of two cars are exchanged.

2. Car insertion (CarInsertion): a car is moved from its current position to a new
specific position and the positions of all cars in between the new and the former
positions are shifted.

3. Group exchange (GroupExchange): two maximal subsequences of consecutive cars
painted with the same color are exchanged.

4. Group inversion (GroupInversion): a maximal subsequence of consecutive cars
painted with the same color is inverted.

Les Cahiers du GERAD G–2006–02 7

5. Reinsertion (Reinsertion): a subset of cars is discarded and reinserted using the
greedy heuristic Gre1.

6. Multiple car exchanges (k-CarExchange): k pairs of cars are randomly chosen and
the positions of the two cars in each pair are exchanged.

Moves in neighborhoods CarExchange and CarInsertion can be quickly evaluated (see
Section 6), making them good candidates to be used in local search procedures. Since moves
in the other four neighborhoods are harder to evaluate, they are used as perturbations that
are only sporadically applied.

Neighborhood CarExchange is defined by moves that swap the positions a and b of two
cars of a sequence

π =< vi1, . . . , via , . . . , vib , . . . , vin > .

The application of move exchange(π, a, b) to sequence π results in the sequence

π′ =< vi1 , . . . , vib , . . . , via , . . . , vin > .

Neighborhood CarInsertion is defined by moves that insert into position b the vehicle
currently at position a of a sequence

π =< vi1 , . . . , via−1 , via , via+1 , . . . , vib−1
, vib , vib+1

, . . . , vin > .

Move insertion(π, a, b) results in the sequence

π′ =< vi1 , . . . , via−1 , via+1 , . . . , vib−1
, vib , via , vib+1

, . . . , vin >,

for b > a (a similar definition applies for a > b).

The local search procedures used in this work are based exclusively on exchange and
insertion moves. They terminate when the objective function cannot be improved after
the evaluation of all moves in the neighborhood.

5.1 Framework

Metaheuristics are general high-level procedures that coordinate simple heuristics and rules
to find good (often optimal) approximate solutions to computationally difficult combina-
torial optimization problems. Among them, we find simulated annealing, tabu search,
GRASP, genetic algorithms, scatter search, VNS, ant colonies, and others. They are based
on distinct paradigms and offer different mechanisms to escape from locally optimal solu-
tions, contrarily to greedy algorithms or local search methods. Metaheuristics are among
the most effective solution strategies for solving combinatorial optimization problems in
practice and they have been applied to a very large variety of areas and situations. The
customization (or instantiation) of some metaheuristic to a given problem yields a heuristic
to the latter.

All improvement heuristics Imp3 to Imp8 proposed in this work follow the same frame-
work. They are based on the paradigms of the Variable Neighborhood Search (VNS) [3]

8 G–2006–02 Les Cahiers du GERAD

and the Iterated Local Search (ILS) [4] metaheuristics. We added to their basic templates
two additional phases: intensification and diversification. These phases are not applied at
every iteration of the algorithm. The goal of the intensification phase is to perform a more
effective (and, consequently, also more time consuming) search in the neighborhood of the
current solution. The goal of the diversification phase is to drive the search to another
region of the solution space.

procedure ImprovementHeuristic(S0);
1 S, S∗ ← LocalSearch(S0);
2 while .NOT.StoppingCriterion do;
3 S′ ← Perturbation(S);
4 S′ ← LocalSearch(S′);
5 if S′ is not worse than S then do;
6 S ← S′;
7 S∗ ← UpdateBestSolution(S, S∗);
8 end-if;
9 if IntensificationCriterion then do;
10 S ← IntensificationProcedure(S);
11 S∗ ← UpdateBestSolution(S, S∗);
12 end-if;
13 if DiversificationCriterion then do;
14 S ← DiversificationProcedure(S);
15 S∗ ← UpdateBestSolution(S, S∗);
16 end-if;
17 end-while;
18 return S∗;
end ImprovementHeuristic;

Figure 3: General framework of the improvement heuristics

The pseudo-code in Figure 3 summarizes the framework of the main steps of our im-
provement heuristics. They all start from a feasible solution S0. A local search procedure
is applied to the initial solution and returns a locally optimal solution S, which is also used
to initialize the best solution found S∗. The while loop in lines 2–17 runs until the stop-
ping criterion is satisfied. A perturbation is applied to the current solution S to produce
a new solution S′ in line 3. A local search procedure is applied to the solution obtained
by the perturbation, returning a locally optimal solution S′ in line 4. If solution S′ is not
worse than the current solution S, then the latter is updated in line 6. The best solution
found S∗ is possibly updated in line 7. An intensification phase is performed whenever an
intensification criterion is met in line 9. The current solution is updated in line 10 after the
intensification procedure. The best solution S∗ is possibly updated in line 11. Similarly,
the diversification procedure is performed whenever a diversification criterion is met in

Les Cahiers du GERAD G–2006–02 9

line 13. The current solution is always updated in line 14 after diversification, to drive the
search to another region of the solution space. The best solution S∗ is possibly updated in
line 15.

The improvement heuristics Imp3 to Imp8 differ from each other by the subproblem
they tackle, the neighborhoods they use for local search and perturbations, the stopping
criteria, and also by the intensification and diversification phases.

5.2 Class I problems

The optimization of the first objective of Class I problems is performed in polynomial time
by the constructive heuristic Gre1 described in Section 4.

Heuristic Imp4 takes the two first minimization objectives into account: the number
of paint color changes and the number of violations of high priority ratio constraints. It
follows the paradigm of the ILS metaheuristic. Local search is based on the neighborhood
CarExchange, while moves in the GroupExchange and GroupInversion neighborhoods are
used as perturbations. The intensification and diversification phases start after a given
number of iterations since the last time the best solution found was updated. Intensi-
fication is performed by means of a VND local search strategy [3], using neighborhoods
CarExchange and CarInsertion. Diversification is performed by means of restarts using
algorithm Gre1. The procedure stops after a given number of restarts since the last time
the best solution was updated or after a given fraction of the maximum time limit (this
criterion is used for triggering the optimization of the last objective).

Heuristic Imp7 is very similar to Imp4, but tackles all three objectives. It uses the same
strategies of the latter for local search, perturbations, and intensification. Diversification
consists in restarts from a new solution constructed by a variant of Gre2 that does not
change the value of the first two objectives. In this variant, one can only select a car
for a given position if its paint color and its options associated to high priority ratio
constraints are the same as those of the car at this position in the best known solution.
The intensification and diversification phases start after a given number of iterations since
the last time the best solution was updated. The algorithm stops when the maximum time
limit is reached.

5.3 Class II problems

The initial solution is built with the greedy algorithm Gre2. Next, the ILS heuristic Imp3

handles exclusively the first objective, i.e. the minimization of the number of violations of
high priority ratio constraints. Local search is based on the CarExchange neighborhood.
Moves in the Reinsertion neighborhood are used as perturbations, after the removal of
five cars involved in violations. The intensification and diversification phases are activated
after a given number of iterations since the last time the best solution found was updated.
Intensification is performed by means of a VND local search strategy using neighborhoods

10 G–2006–02 Les Cahiers du GERAD

CarExchange and CarInsertion. Diversification is performed via restarts from new solu-
tions constructed by algorithm Gre2. The heuristic stops after a given number of restarts
since the last time the best solution was updated or after a given fraction of the maximum
time limit.

Heuristic Imp5 takes the solution obtained by Imp3 and considers the two first min-
imization objectives: the number of violations of high priority ratio constraints and the
number of paint color changes. Again, local search is based on the CarExchange neigh-
borhood. Perturbations follow the VNS strategy, generating moves in the neighborhoods
k-CarExchange, for k = 3, . . . , 20. The intensification phase is activated every time the
highest order of the k-CarExchange neighborhood is attained. Intensification is performed
by a technique similar to that used in Imp3, based on a VND local search strategy using
neighborhoods CarExchange and CarInsertion. The diversification phase is activated af-
ter the highest neighborhood order has been attained a given number of times, since the
last time the best solution found was updated. Diversification is performed via restarts
from new solutions constructed by a variant of algorithm Gre2 that does not change the
value of the first objective. In this variant, one can only select a car for a given position if
its options associated to high priority ratio constraints are the same as those of the car at
this position in the best known solution. The heuristic stops after diversification has been
applied a given number of times since the last time the best solution was updated or after
a given time limit.

The optimization of the third objective of Class II problems is performed by the same
heuristic Imp7 described in Section 5.2, since the last objective of Class I and Class II
problems is the same.

5.4 Class III problems

The construction of the initial solution and the optimization of the first objective of Class
III problems is performed by the same algorithms used for Class II problems, respectively
Gre2 and Imp3, as described in Section 5.3, since the first objective of the problems in
these classes is the same.

Heuristic Imp6 takes the solution obtained by Imp3 and considers the two first minimiza-
tion objectives: the number of violations of high priority ratio constraints and the number
of violations of low priority ratio constraints. It follows the VNS paradigm, once again
with local search based on the CarExchange neighborhood. Imp6 oscillates between the
Reinsertion and k-CarExchange neighborhoods to perform perturbation moves, chang-
ing the type of perturbation whenever the highest neighborhood order of the current per-
turbation is attained. The number of cars removed in each move within neighborhood
Reinsertion ranges from three to eight, while for moves in the k-CarExchange neigh-
borhood k varies from five to ten. The intensification phase is activated every time the
highest neighborhood order of the current perturbation is attained. The intensification
strategy is similar to that used in Imp3, consisting on a VND local search strategy using
neighborhoods CarExchange and CarInsertion. There is no diversification phase. The

Les Cahiers du GERAD G–2006–02 11

heuristic stops after a given number of applications of the intensification phase since the
last time the best solution was updated or after a given fraction of the maximum time
limit.

Finally, the VNS heuristic Imp8 tackles all three objectives, taking the solution produced
by Imp6 as the initial solution. However, the latter may be infeasible, since Imp6 does not
consider the paint color changes constraints. Therefore, a repair procedure is applied to
make the solution feasible. This algorithm is still another variant of Gre2. In this case, one
can only select a car for a given position if its options associated to ratio constraints are the
same as those of the car at this position in the solution produced by Imp6. If the solution
obtained by this algorithm is still infeasible, we apply insertion moves to enforce feasibility
by breaking infeasible paint color batches. The selected moves are the best ones, in the
sense that they do not deteriorate too much the solution cost and make the solution feasible.
As before, local search is based on the CarExchange neighborhood. Imp8 also oscillates
between the Reinsertion and k-CarExchange neighborhoods to perform perturbation
moves, changing the type of perturbation whenever the highest neighborhood order of
the current perturbation is attained. The number of cars removed in each move within
neighborhood Reinsertion ranges from two to six, while k = 2, . . . , 8 for moves in the
k-CarExchange neighborhood. The intensification phase is similar to those used by Imp3

and Imp6, consisting on a VND local search strategy using neighborhoods CarExchange

and CarInsertion. Also in this case, there is no diversification phase. The algorithm
stops when the maximum time limit is reached.

6 Implementation issues

In this section, we give further details concerning implementation issues that are quite
important to speedup the neighborhood search and move evaluation.

6.1 Quick neighborhood investigation: non-improving moves

Identical cars: Two cars are said to be identical if they have to be painted with the
same color and have the same options (in which case they are subject to the same ratio
constraints). An exchange move involving two identical cars does not change the cost
function. Therefore, the improving heuristics Imp3 to Imp8 do not consider exchange
moves of identical cars. Using the appropriate data structures, one can check in time O(1)
if two cars are identical.

Isolated cars: A car is said to be isolated in a given solution if its color is different from
those of the cars scheduled immediately before and immediately after it. An insertion move
can only reduce the number of paint color changes if the reinserted car was isolated before
the move. To improve the performance of the local search based on insertion moves in
algorithm Imp5, we consider not only isolated cars, but also cars that are in small batches
of size at most equal to three. This case is also considered because such moves can make
the batches smaller and, subsequently, some cars may become isolated.

12 G–2006–02 Les Cahiers du GERAD

Extreme cars: A car is said to be extreme in a given solution if its color is different
from that of the car scheduled immediately before or immediately after it, i.e. if it is the
first or the last of a sequence of consecutive cars painted with the same color. If none
of the cars involved in an exchange move is an extreme car, then the number of paint
color changes necessarily increases. Exchange moves that do not meet this condition are
discarded whenever the number of paint color changes is part of the objective function
being considered.

Cars with the same options: Given an option associated to a given ratio constraint, an
exchange move involving two cars having both or none of them this option do not change
the number of violations of the associated constraint. Therefore, the term of the objective
function corresponding to the variation on the number of violations of this ratio constraint
does not have to be evaluated.

Cars not involved in violations: An exchange move of two cars that are not involved in
violations of a given constraint does not decrease the number of violations of this constraint.
Therefore, exchange moves between pairs of cars not involved in violations are discarded
(and not even evaluated) when the neighborhood is sought for moves strictly decreasing
the number of violations of ratio constraints.

Perturbations and local search: Moves in the neighborhoods GroupExchange and
GroupInversion do not modify the number of paint color changes. Let us suppose that
a move in one of these neighborhoods was applied as a perturbation to a locally optimal
solution, followed by a local search procedure using exchange moves. Then, an exchange
move can only reduce the solution cost if it involves at least one car affected by the previous
perturbation move. A car is affected by a perturbation move if at least one of the cars
scheduled at a distance lower than or equal to the maximum value of q(oj) over all options
j = 1, . . . ,m was moved by the perturbation.

6.2 Data structures

Move evaluations are performed much more often than solution updates. Therefore, we
decided to implement data structures optimizing the complexity of move evaluations.

The variation on the number of paint color changes can be easily evaluated in time
O(1), since it amounts to check the colors of adjacent cars. Solution feasibility can be
performed in time O(1) as well.

Each solution is represented as a vector that stores the car sequence π. To be able
to quickly evaluate the number of violations of the ratio constraints, we also keep three
additional auxiliary matrices associated with the sequence π. Each of their rows is asso-
ciated with an option oj ∈ O, j = 1, . . . ,m. The first matrix, M1, stores in position [j, i]
the number of cars which require option oj in the subsequence of q(oj) cars starting at
position i in the sequence π. The second matrix, M2, stores in position i of row j the
number of subsequences of q(oj) cars starting at positions 1 up to i in which the number of
cars that require this option is greater than p(oj). The third matrix, M3, is similar to M2,

Les Cahiers du GERAD G–2006–02 13

except by the fact that it stores in each position of the row j the number of subsequences
in which the number of cars which require an option oj is greater than or equal to p(oj).
This matrix is used to count the number of subsequences in which the addition of a car
requiring option oj increases the number of violations of the ratio constraint associated
with that option. Figure 4 presents a single example for n = 10 and m = 1, with p(o1) = 1
and q(o1) = 4.

Figure 4: Auxiliary matrices M1, M2, and M3 (an “X” in the sequence denotes a car
requiring option 1, otherwise the symbol “ ” is used)

Let us now examine how these matrices contribute to the efficient evaluation of exchange
moves. The number of violations of a ratio constraint associated with an option oj ∈ O,
for a given j = 1, . . . ,m, can only change after an exchange move if one of the cars has
this option, but not the other. Let us suppose that these cars are via and vib , respectively.
Notice that a and b are the corresponding positions of these cars before the move.

The decrease in the number of violations of the ratio constraint associated with option
oj due to the replacement of car via by vib is given by

∆1
j =

{

M2[j][a] −M2[j][a− q(oj)], if a− q(oj) > 0;
M2[j][a], otherwise.

The value ∆1
j gives the number of subsequences of π with size q(oj) that contain via

and that violate the ratio constraint associated with option oj . Analogously, the increase
in the number of violations of the ratio constraint associated with option oj due to the
replacement of car vib by via is given by

∆2
j =

{

M3[j][b] −M3[j][b − q(oj)], if b− q(oj) > 0;
M3[j][b], otherwise.

In this case, ∆2
j gives the number of subsequences of π with size q(oj) that contain vib and

that will have a new violation after the exchange of the positions of cars via and vib .

14 G–2006–02 Les Cahiers du GERAD

Therefore, the variation on the number of violations of the ratio constraint associated
with option oj is given by ∆j = ∆2

j −∆1
j . Special care with these computations is required

when the distance between positions a and b is smaller than q(oj). The total variation for
all ratio constraints is given by

∑m
j=1 ∆j and can be computed in time O(m).

Only matrix M1 is necessary to perform the evaluation of insertion moves. In the
proposed local search algorithm, one searches for the best insertion move considering each
car in the sequence π =< vi1, vi2 , . . . , vin > at a time. Suppose that we are considering the
insertion of car via at position b. First, we remove this car from π and update each row of
M1 as follows:

M1[j][k] =

M1[j][k], for k = 1, . . . , a− q(oj);
M1[j][k] − r(via, oj) + r(vik+q(oj)−1

, oj), for k = a− q(oj) + 1, . . . , a− 1;

M1[j][k + 1], for k = a, . . . , n− 1,

All positions of matrix M1 associated to subsequences that contained the car via to be
moved (subsequences starting at positions k = a−(q(oj)−1), . . . , a−1) should be updated.
The new values M1[j][k] are obtained by subtracting one unity from the old value when
car via requires option oj and by adding one unity when the shifted car vik+q(oj)−1

requires

that option.

The evaluation of insertion moves is based on the following idea. Suppose that the
variation on the number of violations has already been computed for the insertion of car
via in the first possible position. We now show that if the variation on the number of
violations associated to the insertion of this car in a given position was already computed,
then the evaluation of the variation for the insertion at the next position is straightforward.
We notice that for any option oj ∈ O, j = 1, . . . ,m, the insertion of car via at position
b affects q(oj) subsequences of cars in the current solution: q(oj) − 1 subsequences are
changed and a new subsequence starting at position b is created.

Let us denote by b0 the first possible position of π (corresponding to the position of
the first car of the current production day). The variation on the number of violations of
ratio constraints due to the insertion of car via at position b0 is given by the number of
violations in the new subsequence starting at position b0 plus the variation on the number
of violations in the modified subsequences. The number of violations of the ratio constraint
associated to option oj ∈ O, for a given j = 1, . . . ,m, in the new subsequence is given by

∆1
j,b0

=

(M1[j][b0] + r(via , oj)− r(vib0+q(oj)−1
, oj))− p(oj),

if M1[j][b0] + r(via , oj)− r(vib0+q(oj)−1
, oj) > p(oj);

0, otherwise,

while the variation due to the modified subsequences is given by

Les Cahiers du GERAD G–2006–02 15

∆2
j,b0

=

b0−1
∑

k=b0−q(oj)+1

Bk,

with

Bk =

−1, if r(via, oj) < r(vik+q(oj)−1
, oj) and M1[j][k] > p(oj);

+1, if r(via, oj) > r(vik+q(oj)−1
, oj) and M1[j][k] ≥ p(oj);

0, otherwise.

Then, the variation on the number of violations of ratio constraints associated to the
insertion of via at position b0 is given by

∑m
j=1 ∆1

j,b0
+ ∆2

j,b0
. The variations associated to

insertions in the other positions are sequentially computed. For any subsequent position b,
the value of ∆1

j,b is computed as before, while the value of ∆2
j,b is simply obtained by taking

advantage of the value previously computed for position b− 1. The value ∆2
j,b associated

to the insertion of car via at position b = b0 + 1, . . . , n is given by

∆2
j,b = ∆2

j,b−1 − δb−q(oj) + δb−1,

with

δb−q(oj) =

−1, if r(via , oj) < r(vib−1
, oj) and M1[j][b − q(oj)] > p(oj);

+1, if r(via , oj) > r(vib−1
, oj) and M1[j][b − q(oj)] ≥ p(oj);

0, otherwise,

and

δb−1 =

−1, if r(via , oj) < r(vib+q(oj)−2
, oj) and M1[j][b − 1] > p(oj);

+1, if r(via , oj) > r(vib+q(oj)−2
, oj) and M1[j][b − 1] ≥ p(oj);

0, otherwise.

6.3 Complexity

Both local search algorithms, using either exchange or insertion moves, follow the same
principle. First, all moves involving a given car are evaluated and the best one is selected.
If the latter is an improving move or leads to a neighbor solution with the same cost of the
current one, then it is performed and the current solution is updated. Otherwise, the next
car is considered and, as before, all associated moves are evaluated. The procedure stops
after performing a full search in which all cars are considered and no improving move is
found. We notice that at most n− 1 feasible moves are evaluated for each car, while only

16 G–2006–02 Les Cahiers du GERAD

one solution update is performed. The data structures described in the previous section
are used.

We first consider the local search algorithm using exchange moves. The evaluation of
each exchange move can be performed in time O(m). Once a move involving cars via and
vib is chosen, matrices M1, M2, and M3 have to be updated. At most 2q(oj) positions of
each row j of matrix M1 have to be updated, corresponding to all subsequences to which
the exchanged cars belong. Then, matrix M1 can be updated in time O(mqmax), where
qmax = maxo∈O{q(o)}. Updating matrices M2 and M3 requires time O(mn), because for
each row j = 1, . . . ,m all entries starting at column min{a, b} − (q(oj) − 1) should be
updated.

Each local search iteration involves the evaluation of O(n2) moves. Since the evaluation
of each of them can be performed in time O(m), all evaluation operations take time O(mn2).
Because only one update has to be performed for each car (corresponding to the best move
for this car), all update operations take time O(mn2). Therefore, each local search iteration
in the CarExchange neighborhood is performed in time O(mn2).

Similar arguments show that each local iteration in the CarInsertion neighborhood
can also be performed in time O(mn2).

7 Computational experiments

The algorithms described in the previous sections were coded in C++ and compiled with
version 3.2.2 of the gcc compiler with the optimization flag -O3. We have used our own
implementation of the random number generator described in [7]. The computational
experiments were performed on a Pentium IV 1.7 GHz machine with 1 Gbyte of RAM
memory running under Linux.

The problem instances in the test set X were provided by Renault and are available
from the challenge web site [5]. Each instance corresponds to production data from a
different factory. They are defined by the high priority level ratio constraints, the low
priority level ratio constraints, the upper bound on the size of the paint color batches, the
vehicles of the current production day to be scheduled, the remaining cars scheduled but
not produced in the previous day, and the ranking of the optimization objectives (which
defines the objective function).

The computational results for all test instances are presented in Tables 2 to 4. The
first column gives the name of each instance. The second, third, and fourth columns give
average results obtained by our algorithms over five independent runs, as reported by the
organization committee, respectively for the first, second, and third objectives. The three
last columns present the same results for the best among the other teams taking part in
the challenge. Results in bold indicate that our algorithm found the best solution over all
teams.

Les Cahiers du GERAD G–2006–02 17

Table 2: Average results for class I test problems

Proposed algorithm Best result
Instances PCC HPRC LPRC PCC HPRC LPRC

022 S49 J2 12.0 2.0 3.0 12.0 2.0 3.0
035 CH1 S50 J4 5.0 10.0 0.0 5.0 10.0 0.0
035 CH2 S50 J4 6.0 56.0 0.0 6.0 56.0 0.0

Table 3: Average results for class II test problems

Proposed algorithm Best result
Instances HPRC PCC LPRC HPRC PCC LPRC

023 S49 J2 0.0 193.0 77.2 0.0 192.4 66.0
024 S49 J2 0.0 352.8 12.0 0.0 337.0 6.0
029 S49 J5 0.0 111.8 66.0 0.0 110.2 98.4

034 VP S51 J1 J2 J3 0.0 58.0 643.6 0.0 55.2 794.8
034 VU S51 J1 J2 J3 8.0 87.0 35.8 8.0 87.0 36.4

039 CH1 S49 J1 0.0 69.0 479.6 0.0 69.0 239.0
039 CH3 S49 J1 0.0 231.0 2162.6 0.0 231.0 30.0
048 CH1 S50 J4 0.0 196.0 1016.0 0.0 196.0 1005.6
048 CH2 S49 J5 31.0 79.0 1128.4 31.0 76.8 1116.2
064 CH1 S49 J1 61.0 190.8 81.4 61.0 187.2 29.8
064 CH2 S49 J4 0.0 37.0 0.0 0.0 37.0 0.0

655 CH1 S51 J2 J3 J4 0.0 30.0 0.0 0.0 30.0 0.0
655 CH2 S52 J1 J2 S01 J1 153.0 34.0 0.0 153.0 34.0 0.0

Table 4: Average results for class III test problems

Proposed algorithm Best result
Instances HPRC LPRC PCC HPRC LPRC PCC

025 S49 J1 0.0 160.0 602.2 0.0 160.0 407.6
028 CH1 S50 J4 36.0 341.4 95.4 36.0 360.0 92.4
028 CH2 S51 J1 0.0 0.0 3.0 0.0 0.0 3.0

Figure 5 provides a plot depicting the number of instances for which our algorithms
obtained a certain ranking position, in comparison with the results obtained by the other
teams. The set of algorithms described in this paper obtained the second place in the
ROADEF challenge 2005.

18 G–2006–02 Les Cahiers du GERAD

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2nd 4th 5th 6th 7th

nu
m

be
r

of
 in

st
an

ce
s

ranking
 1st 3rd

Figure 5: Number of instances for which the proposed algorithms obtained a given ranking

References

[1] V.-D. Cung, “The car sequencing problem”, European Journal of Operational Research, this
issue.

[2] J. Gottlieb, M. Puchta, and C. Solnon, “A study of greedy, local search and ant colony opti-
mization approaches for car sequencing problems”, Lecture Notes in Computer Science 2611
(2003): 246–257.

[3] P. Hansen and N. Mladenovic, “Variable Neighborhood Search”, in Handbook of Metaheuristics

(F. Glover and G. Kochenberger, eds.), pages 145–184, Kluwer, 2002.

[4] H.R. Lourenço, O.C. Martin, and T. Stützle, “Iterated local search”, in Handbook of Meta-

heuristics (F. Glover and G. Kochenberger, eds.), pages 321–353, Kluwer, 2002.

[5] A. Nguyen, “Challenge ROADEF’2005: Car Sequencing Problem”, online reference at
http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/, last visited on December 11,
2005.

[6] B.D. Parello, W.C. Kabat, and L. Wos, “Job-shop scheduling using automated reasoning: a
case study of the car sequencing problem”, Journal of the Automated Reasoning 2 (1986):
1–42.

[7] L. Schrage, “A more portable FORTRAN random number generator”, ACM Transactions on

Mathematical Software 5 (1979): 132–138.

[8] C. Solnon, “Solving permutation constraint satisfaction problems with artificial ants”, in Pro-

ceedings of European Conference on Artificial Intelligence (ECAI-2000), pages 118–122, 2000.

[9] T. Warnick and E. Tsang, “Tackling car sequencing problems using a genetic algorithm”,
Evolutionary Computation 3 (1995): 267–298.

