
Les Cahiers du GERAD ISSN: 0711–2440

A Bloc Heuristic for the

Container Loading Problem

F. Chauny

G–2005–87

October 2005

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.





A Bloc Heuristic for the

Container Loading Problem

Fabien Chauny

GERAD and
Service de l’enseignement des méthodes quantitatives de gestion

HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7
fabien.chauny@gerad.ca

October 2005

Les Cahiers du GERAD

G–2005–87

Copyright c© 2005 GERAD





Abstract

This paper presents a new heuristic for the container loading problem. This prob-
lem arrives when one wants to load a subset of rectangular boxes into a rectangular
container such that the volume of the packed boxes is maximized. The basic idea con-
sists to form a lot of blocs composed of identical boxes. A series of blocs are stacked to
form piles which are loaded side by side in a section of the container. The container is
filled with these sections. Four optimization procedures are utilized along the heuris-
tic: To form the blocs, the piles, the sections and finally to fill the container. The
performance of the method is shown by numerical tests over already published data.

Résumé

Dans cet article, on présente une nouvelle heuristique pour le problème de charge-
ment de container. Ce problème consiste à charger des bôıtes rectangulaires dans un
container rectangulaire de façon à maximiser le volume total des bôıtes chargées. On
s’intéresse plus particulièrement ici au problème faiblement hétérogène qui correspond
au cas où il y a un petit nombre de types de bôıtes différentes et pour chaque type
un grand nombre de bôıtes sont disponibles. L’idée mâıtresse de l’algorithme con-
siste à rassembler les bôıtes identiques en blocs. Ces blocs sont ensuite empilés les
uns au-dessus des autres pour former des piles de blocs. Ces piles sont placées côte à
côte dans les différentes sections du container. Quatre procédures d’optimisation sont
utilisées tout au long de l’heuristique : la formation de blocs, l’empilement de blocs,
l’ajustement de piles dans les sections et finalement le choix de la séquence de sections.
La performance de l’algorithme est comparée à d’autres algorithmes sur des données
déjà publiées et les résultats sont supérieurs pour la majorité des cas étudiés.





Les Cahiers du GERAD G–2005–87 1

1 Introduction

The container loading problem arrives when one wants to load a series of rectangular boxes
into a container. Identical boxes may be grouped by type. For each type, the number of
loaded boxes can not exceed a given quantity. Many versions of this problem appear in
the literature according to the fact that we want to minimize the number (or the value) of
the containers required to load all the boxes (also called the three dimensional bin packing
problem) or to maximize the total volume (or the total value) of all the loaded boxes (the
three-dimensional knapsack problem). Another important distinction concerns the number
of types. When one single type of boxes is considered, we refer to the homogeneous problem
(also called the manufacturer’s problem). When the set of boxes is composed of many
different types, we have a strongly heterogeneous problem and when there are only a few
different types of boxes with many boxes for each type, we call it the weakly heterogeneous
problem. In this paper we try to maximize the volume of the loaded boxes in a single
container for the weakly heterogeneous problem. As usual for this type of problem, all
stowed boxes are placed completely in the container, without overlapping and laid parallel
to the container sides. We also suppose that empty spaces can be filled out with some kind
of foam to ensure the stability of the load.

The three dimensional packing problem was the subject of several papers for the last
thirty years. For the homogeneous problem, many heuristics are based on a pattern similar
to the one presented in Figure 1 (see e.g. Steudel (1979), Smith and de Cani (1980), Bischoff
and Dowsland (1982), Scheithauer and Terno (1996) and Morabito and Morales (1998)).
This pattern is repeated as long as the top of the container is not reached. If the box can
be loaded on their bottom side or end surface, the number of layers in each dimension can
be obtained with a small knapsack problem (Liu and Hsiao (1997)) or with a combination
of patterns along the side or the end wall of the container (Han et al. (1989), George
(1992)).

a1 a2

a4 a5

a3

a6

a9a8a7

b1 b2 b3

b4 b5 b6

d1 d2 d3

d4 d5 d6

c1 c2 c3

c4 c5 c6

c7 c8 c9

Figure 1: Typical layout



2 G–2005–87 Les Cahiers du GERAD

Many greedy heuristics have been proposed for the heterogeneous problem, (See e.g.
George and Robinson (1980), Carlo et al. (1985), de Kovel (1986), Ivancic et al (1989),
Portman (1990), Li and Cheng (1990, 1992), Mohanty et al. (1994), Ngoi et al. (1994),
Heady et al. (1995) and Bischoff and Ratcliff (1995)). More sophisticated methods have
also been proposed Eley (2002), Pisinger (2002) and Brunetta and Grégoire (2005) (Sub-
optimization methods with enumeration trees), Terno et al. (2000) (Dynamic program-
ming), Bortfeld and Gehring (genetic algorithms (1997 and 2001) and tabu search (1998)).

The algorithm proposed here begins with the formation of blocs of a single box type.
These blocs are stacked to form piles of blocs which are loaded side by side in sections.
The lengths of the sections are obtained with a search in an enumeration tree. At each
step of the algorithm, different optimization procedures are involved with the objective
to minimize the lost of space. The organization of this paper is the following: Section 2
describes the problem and the notation. In Section 3, we present the different procedures
used in the algorithm. Computational experiments with different test instances taken from
the literature are exposed in Section 4. The paper is concluded by some final remarks in
Section 5.

2 The Container Loading Problem.

The problem under consideration may be formulated as follows: Consider a container of
length L, width W and height H and a given set of n types of boxes. Boxes of types j,
(j=1, 2,...,n) have a length lj , a width wj and a height hj . The number of boxes of type
j that may be loaded is noted by qj . When it is possible to rotate a box and to use the
length or the width of this box as its height, we will utilize the following parameters to
indicate it:

pk
j =

{

1 if dimension k may be used as height
0 otherwise

where k = 1 corresponds to the length, k = 2 for the width and k = 3 for the height. Note
that p3

j = 1,∀j.

The volume of boxes of type j is noted by Vj = lj · wj · hj . The problem is to find a
feasible arrangement of the boxes within the container with the maximum total volume
of the loaded boxes. This problem may be seen as a generalisation of the well known
knapsack problem, which is the case when (W/2 < wj ≤ W ) and (H/2 < hj ≤ H)∀j. It
is then NP-hard and there exists not any algorithm to solve it to optimality for practical
instances.

The basic approach consists to divide the length of the container in a series of sections
where it will be placed one or more piles of blocs of similar boxes. A useful concept allows
us to limit the number of possible lengths for a section. It is called the normal cuts (Herz
(1972)). A value c is called a normal cut for a rectangle l × w if there exists two integer
numbers α1 and α2 such that c = α1 · l + α2 · w. The set of all normal cuts for the box



Les Cahiers du GERAD G–2005–87 3

of type j, with dimension k for the vertical dimension is noted Ck
j with Ck

j = φ if pk
j = 0

and C =
⋃

j,k Ck
j = {c1, c2, . . . , cn} is the set of all allowable lengths for a section. We will

use the staircase functions tkj (x) = max{c ∈ Ck
j : c ≤ x} and t(x) = max{c ∈ C : c ≤ x}

to refer to the largest value smaller than or equal to x in the corresponding sets. Note
that the set C does not include all the integer linear combinations of all the dimensions of
boxes but simply the integer linear combinations of two dimensions of a single box.

Another set of possible lengths is of special interest here. As introduced by Scheithauer
and Terno (1996), the set of raster points is defined as R(Y ) = {〈Y − x〉 : x ∈ C; x ≤ Y }
where 〈x〉 holds for max{c ∈ C : c ≤ x}.

3 The heuristic

In this section we first briefly describe the way the blocs are created. Next a general model
will be presented. This model is too difficult to be solved to optimality. It will then be
decomposed in three parts. First, we will see how the piles are formed, next how the piles
are loaded in sections and finally how the lengths of sections are decided.

3.1 Create blocs

We need to know how many boxes of type j could be inserted in a block of length y and
width x when the height of the bloc is its k-th dimension. The objective of this section is
then to find the maximum number of rectangles of length l and width w that can be entered
in a rectangle of length y and width x. This problem is known as the homogeneous problem,
discussed earlier. Different algorithms have been proposed in the recent years to solve this
problem. We choose to use the dynamic programming approach proposed by Scheithauer
and Terno (1996). The main advantage of this algorithm is that the computations are done
for all values of x, y ∈ Ck

j . Let gk
j (x, y) be the number of boxes of type j put in an x by y

rectangle when the k-th dimension of the box is used for the vertical dimension (k=1, 2,
3). The general equation is given by:

gk
j (x, y) = min{max{N1, N2, N3}; qj · p

k
j }

where:
N1 = max

xa∈Ck
j

{gk
j (xa, y) + gk

j (tkj (x − xa), y)}

N2 = max
yc∈Ck

j

{gk
j (x, yc) + gk

j (x, tkj (y − yc))}

N3 = max
{xa,xb,yc,yd}

{gk
j (xa, yc)+gk

j (tkj (x−xa), yd)+gk
j (xb, t

k
j (y−yc))+gk

j (tkj (x−xa), t
k
j (y−yd))

here, xa and xb ≤ x ≤ W , yc and yd ≤ y ≤ L are some values from the set Ck
j . The

values of N1 and N2 are easy to obtain. They correspond to the case where the rectangle



4 G–2005–87 Les Cahiers du GERAD

is divided in two parts with the separation parallel to a side of the x by y rectangle. The
value of N3 is more difficult to obtain. It corresponds to a pattern similar to the one of
Figure 1, but the four sections are filled with this kind of pattern. Concepts of bounds
and symmetries are useful to avoid unnecessary computations. (See Scheithauer and Terno
(1996) for more details on the algorithm.) Note that if the k-th dimension is forbidden
for the vertical dimension of the box, then gk

j (x, y) = 0. Moreover, gk
j (x, y) is bounded by

qj . The values of gk
j (x, y), j = 1, 2, . . . , n; k = 1, 2, 3; x, y ∈ Ck

j are computed once at the
beginning of the algorithm and stored in memory.

3.2 The general model

The aim of the general model is to minimize the volume of the remaining boxes when
they are loaded according to the pattern described earlier. Suppose that the container is
divided in PL sections and that section s contains at most PW piles. Consider the following
variables:
ys: length of the section s;
xs

p: width of the pile p of the section s;

zsk
pj : number of blocs formed with boxes of type j with its k-th dimension for its vertical

dimension in the pile p of section s;
ej : unloaded boxes of type j; uj : overloaded boxes of type j.

νcs =

{

1 if the lentgth of section s = c ∈ C
0 otherwise

µs
cp =

{

1 if the width of pile p in section s = c ∈ C
0 otherwise

Finally, let θk
j be the vertical dimension of a box of type j when it is rotated with the

k-th dimension placed vertically (θ1
j = lj , θ

2
j = wj , θ

3
j = hj).

Then, the model is:

Min
n

∑

j=1

Vj · ej (1)

Subject to

PL
∑

s=1

ys ≤ L (2)

s
∑

p=1

xs
p ≤ W ∀s (3)

n
∑

j=1

3
∑

k=1

θk
j · zsk

pj ≤ H ∀s, p (4)



Les Cahiers du GERAD G–2005–87 5

PL
∑

s=1

PW
∑

p=1

3
∑

k=1

gk
j (tkj (x

p
s), t

k
j (ys)) · z

sk
pj + ej = qj + uj ∀j (5)

ys =
∑

c∈C

c · νcs ∀s (6)

xs
p =

∑

c∈C

c · µs
cp ∀s, p (7)

∑

c∈C

νcs = 1 ∀s (8)

∑

c∈C

µs
cp = 1 ∀s, p (9)

zsk
pj integer ≥ 0 ∀s, p, j, k (10)

νcs ∈ {0, 1} ∀c, s (11)

µs
cp ∈ {0, 1} ∀c, s, p (12)

ej , uj ≥ 0 ∀j (13)

ys ≥ 0 ∀s (14)

xp
s ≥ 0 ∀s, p (15)

Constraints (2) to (4) control the size of the piles, the constraints (5) compute the
number of loaded boxes, and constraints (6) to (9) limit the dimensions of any pile to be
a normal cut. This model is not very useful for practical instances since the number of
integer variables is too high and the structure is hard to handle. Then, we propose a few
features to obtain a good heuristic solution. These features are:

1. To limit the number of sections. Since the blocs do not have the same dimensions, it
is unavoidable to have some lost of space between each pile. If we limit the number of
sections, we reduce the number of times this lost occurs. Moreover, numerical tests
shown that such a number is often less than four for weakly heterogeneous problems.

2. The lengths of the sections will be determined with a search in a tree. At each node
of the tree, the length of a section is evaluated by the volume of the boxes which are
not already loaded in the previous sections and that can be loaded with the heuristic.
In order to speed up the search, an upper bound will be derived which permits us to
prune some nodes.

3. Within each section at most two piles are loaded. The width of the section is divided
in two parts, each of them will be filled with a single pile. The location for the border
between the two piles is also obtained by a search in a tree and again, an upper bound
will permit us to prune some nodes.

4. Each pile is formed by solving a pure integer linear programming problem by a fast
branch and bound procedure.



6 G–2005–87 Les Cahiers du GERAD

We will now describe in more details each step of the algorithm.

3.3 Construction of piles

Many times during the construction of a solution, we will have to find the most valuable
pile with a height no more than H and formed from blocs with a length not larger than y
and a width not larger than x. Moreover, if the number of loaded boxes of type j exceeds
bj , only the first bj boxes are valuable. To see the nature of this problem, let us introduce
the following variables:
ζk
j = Number of blocs of boxes of type j with the k-th dimension as height.

γj = Number of valuable boxes of type j in the pile.
σj = Surplus variables for the boxes of type j.

Consider now the model for finding the best pile of blocs when there are at most bj

boxes of type j to load. (Note that for the first pile bj = qj∀j ):

Max
n

∑

j=1

Vj · γj (16)

S.t.
n

∑

j=1

3
∑

k=1

θk
j · ζk

j ≤ H (17)

3
∑

k=1

gk
j (tkj (x), tkj (y)) · ζk

j = γj + σj j = 1, 2, . . . , n (18)

γj ≤ bj j = 1, 2, . . . , n (19)

γj , σj , ζ
k
j ≥ 0 integers

The objective function (16) evaluates the volume of valuable boxes in the pile, the con-
straint (17) is for the height of the pile and the constraints (18) and (19) control the number
of valuable boxes. This is a pure integer linear programming problem with a reasonable
number of variables but very similar to a knapsack problem with bounded variables. In
fact, if the demands (bj) are sufficiently large, the surplus variables become useless, and
the problem may be rewritten as a multidimensional knapsack problem (MKP), the con-
straints (18) and (19) may now be replaced by the traditional constraints on demands for
any cutting stock problem. A different way to see this problem as an MKP, is to introduce
incomplete blocs for each different height. With incomplete blocs, we have an MKP with
one linking constraint and n independent constraints. To simplify the notation, suppose
that the set of all the indexes S is partitioned in K separate subsets Si, i = 1, 2, ..., K and
we have to solve the following problem:



Les Cahiers du GERAD G–2005–87 7

Z =Max
∑

j∈S

cj · xj

S. t.
∑

j∈S

aj · xj ≤ b0

∑

j∈Si

αij · xj ≤ bi i = 1, 2, ..., K

xj integer ≥ 0

The first constraint is called the knapsack constraint and we will consider all the
other constraints like special bounding conditions on variables and we will adapt the al-
gorithm for the bounded knapsack problem from Martello and Toth (1990). Note that
∀j ∈ Si, cj/αij = Vi is the volume of a box of type i. To solve this problem, we first sup-
pose that the variables are already sorted such that c1/a1 ≥ c2/a2 ≥ ... ≥ cm/am and we
denote by mj the type of box associated to variable xj . The proposed algorithm is simply
a branch and bound procedure. The following proposition gives an idea of the optimal
basis for the linear relaxation:

Proposition 1:

If the linear relaxation has an optimal solution then there exists an optimal solution where
x1 is a basic variable.

Proof:

We first note that for the optimal solution of the linear relaxation, if the knapsack constraint
is not tight, then all the other constraints must be tight.

Consider the basic variable with the smallest index. Let xk be this variable, and suppose
now that k > 1. There exists two possibilities for m1 and mk: m1 = mk or m1 6= mk.
If m1 = mk, then the reduced cost of x1 is c̄1 = c1 − µ0 · a1 − µm1

· αm11 where µ0 is
the shadow price of the knapsack constraint and µi is the shadow price of the (i+1)-th
constraint. The reduced cost of xk is given by c̄k = ck − µ0 · ak − µmk

· αmkk = 0 since xk

is a basic variable, then c̄1
a1

= c1
a1

−µ0 −
αm11

a1

(

ck−µ0ak

αmkk

)

. Using the relation between cj and

αij ,
c̄1
a1

= −µ0 +
αm11

a1

(

µ0ak

αmkk

)

. We know that µ0 is non negative, a1 > 0 and
αm11/a1

αmkk/ak
≥ 1

then the reduced cost of x1 must be positive. The variable x1 may be introduced in the
basis without destroying the optimality.
If m1 6= mk, x1 non basic implies that all the variables xj such that αm1j > 0 must be
non basic (it is the case m1 = mk), the constraint for this type of box is not tight and
its shadow price is 0. Moreover, the knapsack constraint is tight with a positive shadow
price. The reduced costs for xk and x1 are c̄k = ck − µ0 · ak − µmk

· αmkk = 0 and



8 G–2005–87 Les Cahiers du GERAD

c̄1 = c1 − µ0 · a1 = c1 −
ck−µmkk·αmkk

ak
· a1. Then, c̄1

a1
=

(

c1
a1

− ck

ak

)

+
µmk

·αmkk

ak
and we can

conclude that c̄1 ≥ 0 and the variable x1 may be introduced in the basis without destroying
the optimality.

Proposition 1 allows to find fastly the next branching variable in a branch and bound
algorithm. Now we find an upper bound as follows. Suppose that all the variables x1

through xj−1 have been fixed and we want to evaluate the possibility to set the value of
some variables xk, k ≥ j to a value greater than 0. Let b̄ = b0−

∑

k<j xk ·ak the remaining

height over the pile after that the first blocs are loaded and z̄ =
∑

k<j ck · xk the value

of the current partial solution. The quantity u1 = z̄ +
cj ·b̄
aj

is clearly an upper bound for

the solution of our problem when the first j − 1 variables have been fixed to these values.

This bound may be improved. Let ν = Min
{

bmj

αmjj
; b̄

aj

}

. We have possibly a better bound

as u2 = z̄ + cj · ν +
cj+1·(b̄−ν·aj)

aj+1
. If ν = b̄

aj
then u1 = u2, else u1 > u2. Here is the detail

of the algorithm for the knapsack problem with special structure for the bounds (KSSB).
The input is b0 and vector b, which are the right hand side of the constraints, the vector c,
which corresponds to the coefficients of the objective function, the vector a and the matrix
α which are the coefficients of the constraints. The output is the vector of variables X∗,
the optimal volume Z∗ and the vector N∗ for the number of boxes of each type loaded in
the pile. The values of b0 and b will be modified during the algorithm. They correspond
to residual capacities when some variables are fixed:

Procedure KSSB (b0,b, c,a, α);

Step 1: Initialisation:
X∗ = X = 0;Z∗ = Z = 0;N∗ = 0;
LMin(k) = mink+1≤i≤n{ak}, k = 1, 2, ...n − 1; j = 1.

Step 2: Forward:
While ((b0 ≥ LMin(j)) and (j ≤ n)) do

xj = min
{

⌈
bmj

αmjj
⌉, ⌊ b0

aj
⌋
}

; qj = min{xj · αmjj ; bmj
};

z = z + qj · Vmj
; b0 = b0 − xj · aj ; bmj

= bmj
− qj ;

j = j + 1.
Update Z∗,N∗ and X∗;

Step 3: Backtrack:
If (j = n) then

z = z − qj · Vmj
; b0 = b0 + xj · aj ; bmj

= bmj
+ qj ; xj = 0.

Find the largest value of j such that xj > 0.
If (j = 0) stop; Return the optimal solution: Z∗,N∗ and X∗.
Remove the last bloc from the pile and adjust the values of xj , z, b0 and bmj

.
Compute u2.
If (u2 ≤ Z∗)

If (xj > 0) then set xj = 0 and adjust the values of z, b0 and bmj
.



Les Cahiers du GERAD G–2005–87 9

Go to step 3.
Else

Set j = j + 1 and go to step 2.

At step 2, the values of xk, k = 1, 2, ..., j−1 have all been fixed. We obtain a lower bound
by increasing the values of xj , xj+1, ..., xn as high as possible in this order. According to
Proposition 1, we know that there exists an optimal solution for the linear relaxation where
xj is a basic variable. This variable is chosen to be the next branching variable in a branch
and bound scheme. Its value corresponds to the largest possible value which respects all
the constraints. It is then useless to try to branch to a greater integer value. At step 3, the
value of the variable with a strictly positive value with the largest index is decreased by
one unit. It should be paid attention for the last bloc could be incomplete. Next the upper
bound is computed. If this bound shows that it is impossible to obtain a better solution,
the branching variable is directly set to 0 since all the lower values for this variable will
leave a lower upper bound. We may backtrack again.

3.4 Filling a section

The aim of this portion of the algorithm is to fill as well as possible a section of the container
with piles of blocs of boxes. Each section is filled with one or two piles. Let c ∈ C be the
length of the section to be filled. We first tentatively divide the section in two rectangular
parts with dimensions (x × c) and ((W − x) × c) where x ∈ R(W ), x ≥ W/2. These two
rectangular spaces are filled in turn with boxes which were not loaded yet in the preceding
sections using the procedure KSSB. The boxes in the first pile are not admissible for the
second pile. At this point we have two adjacent piles. If at least one stage in each pile is
composed of the same type of box with the same vertical orientation, these two stages are
merged together to possibly load more boxes of this type. This procedure is repeated for
all the values of x ∈ R(W ), x ≥ W/2, and the value of x which presents the best overall
volume for the loaded boxes in the whole section is preserved if a length c is adopted for
this section.

There are two characteristics which make it possible to save time even if the quality of
the solution would be slightly worse. First, the volume of the second pile is bounded by
t(W − x) · c · H. If the volume of the first pile plus this bound is less than or equal to the
best known volume for the whole section, the value of x for the width of the first pile is
automatically rejected. Note that the value of x is rejected even if the merging procedure
would give a better result. Next, we consider only the values greater than or equal to W/2
for x. Since, when we are filling the second pile, the choice of boxes becomes different,
one cannot suppose that the solution will be the same one if we would try two piles with
dimensions ((W − x) × c) and (x × c).



10 G–2005–87 Les Cahiers du GERAD

3.5 Choose the length of the sections

To determine the length of the sections, several strategies are possible. We analyse, in this
paper, four of them.

The 2-sections strategy

The first strategy consists in dividing the length of the container into two sections of lengths
y1 and y2, such that y1 + y2 ≤ L. The values for y1 and y2 are two elements of the set
of raster points R(L). We start by evaluating the total volume of the boxes which can be
placed in a section of length y1,∀y1 ∈ R(L) using at most qi boxes of type i, i = 1, 2, ..., n.
This volume is noted by V (y1,q) and is obtained by using the procedure of the Section 3.4.
Next, the length of the second section is evaluated by y2 = max{y ∈ R(L) : y ≤ L − y1}.
Since, y2 ∈ R(L) there is immediately a good idea of the maximum volume of boxes which
it will be possible to place in the second section. Let Z∗ be the value of the best known
solution for the problem, then if V (y1,q) + V (y2,q) < Z∗, the optimization for the second
section is abandoned, the value of y1 for the length of the first section is automatically
eliminated. Otherwise, we evaluate the maximum volume of the boxes which it is possible
to place in the second section by using only the boxes which are not loaded in the first
section.

A greedy strategy

The second strategy, named the greedy strategy, consists to evaluate for the section s, (s ≥
1), the total volume of the remaining boxes which it is possible to place in a section of

length c, for all the feasible values of c,
(

0 < c ∈ C ≤ L −
∑

j<s yj

)

. The value of ys is

the value of c which maximizes the ratio V (c,qs)
c (where qs denotes the set of remaining

boxes). This procedure is repeated until the remaining length becomes too small to give
an interesting packing. We then use another strategy to fill out the last section of the
container. When the remaining length is less than W , we use the 2-sections strategy to fill
out the section of length W , width L −

∑

j≤s yj < W and height H with the remaining
boxes.

The 3-sections strategy

The third approach consists to use at most three sections. We first compute V (c,q),
∀c ∈ C using the procedure of Section 3.4. The remainder of the container is filled using
the 2-sections strategy with the remaining boxes. Here again, one suspects that the result
of the 2-sections strategy will be lower than u1, where

u1 = max
{c1∈C:c+c1≤L}

{V (c1,q) + V (t(L − c − c1),q)}.

But with the amalgamation between various stages of the two piles, it seldom happens that
this is not true. It so much rarely arrives that the 2-sections strategy presents a better
result, that we decided to use this quantity as a bound and we make the following test



Les Cahiers du GERAD G–2005–87 11

before calling the 2-sections procedure: If Z∗ ≥ V (c,q) + u1 then the value of c is rejected
for the length of the first section.

The accelerated 3-sections strategy

The difference between this strategy and the preceding one is in the evaluation of u1. If
ci < cj , it is known that very often V (ci,q) ≤ V (cj ,q). Let us note now V (ci,q) the total
volume of the boxes packed by the 2-sections strategy in the remaining part of the container
when the first part, with length ci, has already been packed with a subset of boxes from
the set q. We note that very often V (ci,q) ≥ V (ci,q). This suggests the following test: If
Z∗ ≥ V (ci,q) + V (ci−1,q) then the value of ci is rejected for the length of the first section
without applying the 2-sections strategy for the remaining of the container.

3.6 An example

We present now an example. The data comes from Bischoff and Ratcliff [3] and is available
from the web site of OR-Library [1]. Figures 2 to 5 present a typical layout of the boxes.
The length of the container is 587, its width is 233 and its height is 220. There are three
types of boxes. The dimensions are presented in the Table 1.

All dimensions except the length of the first type of box can be used like the vertical
dimension of the box. The results for the 2-sections strategy appear in Table 2.

Table 1: Data for the example

Type Length Width Height Quantity
1 55 50 26 160
2 48 42 37 167
3 47 34 26 149

Table 2: Results for the example

Length
550 37

Width Type Height Qty Nbr of Type Height Qty Nbr of Width
stages stages

1 26 31 5 2 42 3 4 146
155 2 48 53 1 3 26 3 2

2 42 45 1

3 47 48 2 2 48 2 1
78 3 34 34 1 3 47 3 3 87

2 48 26 1 3 26 1 1
2 42 22 1



12 G–2005–87 Les Cahiers du GERAD

The length of the container is divided in two parts of lengths 550 and 37 respectively.
The width of part one is also divided in two parts of widths 155 and 78 respectively while
the part two is divided in two widths of 146 and 87. The algorithm KSSB proposes to do
five stages with 31 boxes of type 1 with a height of 26 each and two stages with boxes of
type two, the first one with 53 boxes by using its length as vertical dimension and for the
other stage to put 45 boxes by using its width for the vertical dimension. The remainder
of the table is read in the same way. The two piles of length 550 have a stage formed with
boxes of type 2 with a height of 42 which can be merged together. It is the same situation
for the stage with a height of 48. The merging process suggests putting 71 boxes with
the height 42 (Figure 2) and 81 boxes with the height 48 (Figure 3). The two piles of the

Figure 2: First floor

Figure 3: Second floor



Les Cahiers du GERAD G–2005–87 13

Figure 4: Third floor

Figure 5: Fourth floor

second section also have a common height, but no gain is possible in this case. Figure 4
presents the lay out of the five stages with the boxes of type 1 (Bottom left) and the stage
with 34 boxes of type 3 (Top left). Figure 5 presents the final stages with 48 boxes of type
3 each. The right part of Table 2 is rather obvious. The container is filled at 98.14% with
this packing.

4 Numerical results

In order to investigate the computational behaviour of the proposed algorithms, numerical
tests were carried out. All the programs are written in Fortran 77 and run on a Sun



14 G–2005–87 Les Cahiers du GERAD

Workstation Sun4u SunFire 4800, 1200 MHz. The approaches were compared on two
series of instances, that makes it possible to compare the performance with known existing
methods.

The first series (Loh and Nee 1992) is composed of 15 instances. For all of these
instances, the vertical dimension of any boxes is fixed since the boxes can not be rotated.
We give in Table 3 the volume utilization rate (in percent) for four of these instances. The
other eleven instances do not really present a challenge, most of methods manage to load
all the boxes and this is the case for all the heuristics presented here. The first column
of Table 3 gives the problem name with the number of different types and the average
number of boxes per type. The second column presents the best known solution, which
corresponds to the percentage of utilised space in the container. These solutions were
always obtained by the tabu search algorithm from Bortfeldt and Ghering (1998). For the
problems LN07 and LN13, it is the optimal solution since all the boxes were loaded. The
four other columns give the results of the methods proposed in this paper. As we can
see, the performance of the proposed methods is just behind the tabu search algorithm for
these problems.

The second series was made on 600 instances proposed by Bischoff and Ratcliff (1995).
There are six series composed of 100 instances, each with different degrees of heterogeneity
for the consignment. According to the series, there are 3, 5, 8, 10, 12 and 15 types of
boxes. The total volume of boxes is slightly less than the volume of the container. For
a box, when a dimension is larger than twice its smallest dimension, it can not act as
the vertical dimension. It is the only restriction for this characteristic. Tables 4, 5 and 6
present the results for these instances. In Table 4, we present the performance of other
known algorithms for the same instances. The first column gives the name of the series,
the second column presents the average volume utilization (%) for the 100 instances of
the series for the hybrid genetic algorithm of Bortfeldt and Gehring (2001). The column
BR-Comb presents the minimum, the average and the maximum volume utilization (%) for
the 100 instances of the series for the combined approach of Bischoff and Ratcliff (1995).
The other columns are for the genetic algorithm of Bortfeldt and Ghering (1997), the Tabu
search algorithm of Bortfeldt and Ghering (1998) and the algorithm of Terno et al (2000).
Eley (2002) has also used this data to test its algorithm, but did not obtain results as good
as those from the Tabu search. Tables 5 and 6 present the same statistics for the methods

Table 3: Results for four instances from Loh and Nee
Best known Accelerated

Problem solution 2-sections Greedy 3-sections 3 sections
LN02 (8,25) 96.6% 96.1% 96.4% 96.1% 96.1%
LN06 (8,25) 96.2% 95.0% 94.9% 95.5% 95.0%
LN07 (8,25) 84.7% 84.7% 84.7% 84.7% 84.7%
LN13 (7,17.6) 85.6% 85.6% 84.6% 85.6% 85.6%



Les Cahiers du GERAD G–2005–87 15

Table 4: Known results for instances from Bischoff and Ratcliff
Set BG BR-Comb. (1995) GB (1997) BG (1998) TSSR (2000)

2001 Min Ave. Max Min Ave Max Min Ave Max Min Ave Max
B3 87.8 73.7 85.4 94.4 76.7 85.8 94.3 83.6 92.4 97.0 75.7 89.9 95.9
B5 89.4 73.8 86.3 93.8 78.4 87.3 95.2 86.8 92.3 96.5 81.9 89.6 94.7
B8 90.5 75.3 85.9 92.6 81.1 88.1 92.9 87.5 92.0 96.5 83.2 89.2 93.0
B10 90.6 78.4 85.1 90.1 82.7 88.0 91.6 87.0 91.3 94.5 83.1 88.9 92.7
B12 90.7 78.7 85.2 90.4 81.7 87.9 92.6 86.6 90.4 93.0 83.0 88.3 91.6
B15 90.7 75.2 83.8 89.2 84.1 87.9 92.5 86.3 89.6 92.2 82.3 87.4 90.5

Table 5: Results for the first three methods
Set 2-sections Greedy 3-sections

Min Ave. Max Time Min Ave Max Time Min Ave Max Time
B3 84.0 93.6 98.1 3.83 72.1 90.8 97.6 4.03 84.0 94.1 98.1 4.66
B5 85.4 93.3 96.7 1.32 79.6 92.0 96.5 2.54 87.8 94.1 96.9 6.20
B8 86.3 92.2 95.0 3.99 83.4 92.5 96.7 8.96 90.2 93.8 96.2 48.4
B10 86.1 91.4 94.7 7.39 86.2 92.7 96.0 17.3 88.9 93.3 95.7 118.5
B12 86.5 90.4 93.3 12.6 82.9 92.5 95.0 29.3 89.3 92.6 94.8 255.6
B15 85.7 88.8 92.1 23.6 85.3 92.3 94.4 53.8 89.7 91.9 93.8 582.6

Table 6: Results for the last method
Set Accelerated 3-sections

Min Ave. Max Time
B3 83.2 94.0 98.1 4.25
B5 87.8 94.0 96.7 3.98
B8 90.2 93.5 96.2 26.40
B10 88.9 93.3 95.7 60.04
B12 88.8 92.4 94.5 124.8
B15 89.1 91.6 93.5 267.4

proposed here as well as average time (in seconds) necessary to solve the hundred problems
of the series.

Clearly, for this benchmark, our methods outperformed the existing ones. When the
number of types is very small (3 or 5) the solutions for the 3-sections are very good and
the computing times are sufficiently low. As the number of types increases, the computing
times increase in a fulgurating way. The accelerated 3-sections presents solutions which are
slightly below the 3-sections method but the computing times are lower when the number
of types becomes greater than 8. The computing times for the 2-sections method are very
low, but the solutions are fairly worse, even they are comparables with those proposed



16 G–2005–87 Les Cahiers du GERAD

by the Tabu Search algorithm. When the number of types becomes larger, the greedy
heuristic gives the best results with a reasonable amount of time.

5 Conclusions

In this paper, a new bloc heuristic was developed to solve the container loading problem.
The problem is decomposed in four sub problems. At the upper level, the length of the
container is divided in sections. Each section is filled with at most two piles of homogenous
blocs. Four methods are proposed on the way of dividing the container into sections.
According to the degree of heterogeneity of the consignment and the available amount of
time, the user may choose between four methods. When the numbers of different types is
very low (five or less) the 3-sections method performs very well. As the number of types
increases, the greedy heuristic seems to be a better choice. These methods give better
solutions than those obtained by the tabu search of Bortfeldt and Ghering especially when
the boxes may be rotated in any direction. Two more general situations arise in practical
situations. The first one is the three dimensional bin packing problem when one wants to
minimize the number of containers utilized to load all the boxes. The second one is when
the order demands for the boxes are given with lower and upper bounds only. The author
is currently working on these issues.

References

[1] Beasley, J.E., (1990), “OR-Library. Distributing Test Problems by Electronic Mail”,
Journal of the Operational Research Society, 41, 1069–1072.

[2] Bischoff, E., Dowsland, W.B., (1982), “An Application of the Micro to Product Design
and Distribution”, Journal of the Operational Research Society, 33, 271–280.

[3] Bischoff, E.E., Ratcliff, M.S.W., (1995), “Issues in the Development of Approaches to
Container Loading”, Omega, 23, 377–390.

[4] Bortfeld, A., Gehring, H., (1997), “A genetic Algorithm for Solving the Container
Loading Problem”, Int. Trans. Opl Res., 4, 401–418.

[5] Bortfeldt, A., Gehring, H., (2001), “A hybrid genetic algorithm for the container
loading problem”, European Journal of Operational Research, 131, 143–161.

[6] Bortfeldt, A., Gehring, H., (1998), “Ein Tabu search-Verfahren fr Containerbe-
ladeprobleme mit schwach herogenem Kistenvorrat”, OR Spektrum, 20, 237–250.

[7] Brunetta, L., Grégoire, P., (2005), “A General Purpose Algorithm for Three-
Dimensional Packing”, INFORMS J. on Comp., 17, 328–338.

[8] Carlo, H., Hodgson, T.J., Martin-Vega, L.A., Stern, E.R., (1985), “Micro-IPLS: Pallet
Loading on a Microcomputer”, Computers and Industrial Engineering, 9, 29–34.



Les Cahiers du GERAD G–2005–87 17

[9] De Kovel, W.F., (1986), “An Algorithm for the Loading of Containers with Block-
shape Parcels of Arbitrary Sizes”, Proc. of the 3rd int. Conf. on Automated Material

Handling, 274–261.

[10] Eley, M., (2002), “Solving Container Loading problems by Block Arrangement”, Eu-

ropean Journal of Operational Research, 141, 393–409.

[11] George, J.A., (1992), “A Method for Solving Container Packing for a Single Size of
Box”, Journal of the Operational Research Society, 43, 307–312.

[12] George, J.A., Robinson, D.F., (1980), “A Heuristic for Packing Boxes into a Con-
tainer”, Comp. and Op. Res., 7, 147–156.

[13] Han, C.P., Knott, K., Egbelu, P.J., (1989), “A Heuristic Approach to the Three-
dimensional Cargo-loading Problem”, Int. J. Prod. Res., 27, 757–774.

[14] Heady, R.B., Toma, A.G., Ristroph, J.H., (1995), “Evaluation of Carton Packing for
High Volume Operations”, J. of Operations Management, 13, 59–66.

[15] Herz, J.C., (1972), “Recursive Computational Procedure for Two-dimensional Stock
Cutting”, IBM J. Res. Develop., 16, 462–469.

[16] Ivancic, N., Mathur, K., Mohanty, B.B., (1989), “An Integer Programming Based
Heuristic Approach to the Three-dimensional Packing Problem”, J. Mfg. Oper. Mgt.,
2, 268–298.

[17] Li, H., Cheng, K.H., (1990), “On Three Dimensional Packing”, SIAM J. Computing.,
19, 847–867.

[18] Li, H., Cheng, K.H., (1992), “Heuristic Algorithm for On-Line Packing in Three
Dimensions,” J. of Algorithms, 13, 589–605.

[19] Liu, F.-H., Hsiao, C.-J., (1997), “A three-dimensional pallet loading method for the
single-size boxes”, Journal of the Operational Research Society, 48, 726–735.

[20] Loh, H.T., Nee, A.Y.C., (1992), “A Packing Algorithm for Hexahedral Boxes”, Proc.

of the Industrial Automation’92 Conf., Singapore, 115–126.

[21] Martello, S., Toth, P., (1990), Knapsack Problems, John Wiley and Sons.

[22] Mohanty, B.B., Mathur, K., Ivancic, N.J., (1994), “Value Considerations in Three-
dimensional Packing- A Heuristic Procedure Using the Fractional Knapsack Problem”,
European Journal of Operational Research, 74, 143–151.

[23] Morabito, R., Morales, S., (1998), “A Simple and Effective Recursive Procedure for
the Manufacturer’s Pallet Loading Problem”, Journal of the Operational Research

Society, 49, 819–828.

[24] Ngoi, B.K.A., Tay, M.L., Chua, E.S., (1994), “Applying Spatial Representation Tech-
niques to the Container Packing Problem”, Int. J. Prod. Res., 32, 111–123.

[25] Pisinger, D., (2002), “Heuristics for the Container Loading Problem”, European Jour-

nal of Operational Research, 141, 382–392.

[26] Portman, M.C., (1990), “An Efficient Algorithm for Container Loading”, Methods of

Oper. Res., 64, 563–572.



18 G–2005–87 Les Cahiers du GERAD

[27] Scheithauer, G., Terno, J., (1996), “The G4-Heuristic for the Pallet Loading Problem”,
Journal of the Operational Research Society, 47, 511–522.

[28] Smith, A., De Cani, P., (1980), “An Algorithm to Optimize the layout of Boxes in
Pallets”, Journal of the Operational Research Society, 31, 573–578.

[29] Steudel, H.J., (1979), “Generating Pallet Loading Patterns: A Special Case of the
Two-Dimensional Cutting Stock Problem”, Management Science, 25, 997–1004.

[30] Terno, J., Scheithauer, G., Sommerweiss, U., Riehme, J., (2000), “An efficient ap-
proach for the multi-pallet loading problem”, European Journal of Operational Re-

search, 123, 372–381.


