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Abstract

The aim of this paper is to present efficient algorithms for the detection of multiple
targets in noisy images of a finite region. The algorithms are based on the optimal filter
of a multidimensional Markov chain signal. Simulations are used to illustrate the effi-
ciency of the method for detecting the positions of the many targets moving on a torus.
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Résumé

Le but de cet article est de présenter des algorithmes efficaces pour la recherche de
cibles dans des images bruitées. Les algorithmes reposent sur le filtre optimal pour une
châıne de Markov multidimentionnelle représentant le signal. Nous présentons aussi
des simulations dans le cas d’une, deux, trois et quatre cibles, démontrant l’efficacité
de la méthode proposée pour la détection de positions de cibles se déplaçant sur un tore.
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1 Introduction

The problem of trying to find targets moving in some area using noisy images is a fonda-

mental problem of filtering. Think for example of trying to locate a person lost at sea on

a dingy when there are bad weather conditions. See for example Ballantine et al. (2005)

and Gentil et al. (2005).

In this paper, one is interested in locating m targets moving according to independent

regime switching Markov chains on a finite set T , where their exact positions z1, . . . , zm

are hidden in noisy black-and-white images Y of T . Note that the proposed model is a

particular case of Hidden markov models, e.g. Elliott et al. (1995).

To describe the dynamics involved, set Xk = (Z1
k , . . . , Zm

k , R1
k, . . . , R

m
k ), with Zj

k and

Rj
k standing respectively for the position and the regime of the j-th particle at time k.

Suppose that (Xk)k≥0 is a homogeneous Markov chain on T m ×Rm, R = {1, . . . , d}, and

setting x =
(

z1, . . . , zm, r1, . . . , rm
)

, x′ =
(

w1, . . . , wm, s1, . . . , sm
)

, its transition matrix P

is given by

P(x, x′) = P
{

Xk =
(

z1, . . . , zm, r1, . . . , rm
)

|Xk−1 =
(

w1, . . . , wm, s1, . . . , sm
)}

=
m
∏

j=1

P
(

Zj
k = zj |Zj

k−1 = wj , Rj
k = rj

)

P
(

Rj
k = rj |Rj

k−1 = sj
)

.

Note that
(

Zj
k

)

k≥0
is not a Markov chain in general, but

(

Rj
k

)

k≥0
is a Markov chain and

so is
(

Zj
k, R

j
k

)

k≥0
.

Because Xk is not observed, the best tool to use is thus filtering theory. Note that, in

addition to the unobserved regime, the fact that more than one target may be at the same

location complicates the tracking.

Since it is assumed that the targets are not identifiable, the only information available

at time k about the location and regime is supposed to be given by the pair (Sk, ξk), where

ξk(x) = 1 or 0 according to if a target is at site x or not, and Sk ∈ A, where A is the set

of all sets A of the form
⋃l

j=1{(xj , rj , nj)}, where nj is the number of targets at site xj

with regime rj and n1 + . . . + nl = m. Obviously, ξk is a function of Sk, so one can write

ξk = L(Sk).

Since (Xk)k≥0 is a homogeneous Markov chain, (Sk)k≥0 is also a homogeneous Markov

chain, with state space A and its transition matrix M on A×A is given by

M(A, B) = P (Sk = A|Sk−1 = B), k ≥ 1,

which can be easily calculated from the transition matrix P of the Markov chain (Xk)k≥0.
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Next, assume that the observations Yk ∈ {0, 1}T at time k consists of random perturbed

images according to the following scheme: Given S0, . . . , Sk, (Yk(x))x∈T are independent

and

P (Yk(x) = 0| ξk(x) = 0) = p0, (1)

P (Yk(x) = 1| ξk(x) = 1) = p1, (2)

where 0 < p0, p1 < 1.

The filtering problem consists in computing

P (Sk = A| Y1 = y1, . . . , Yk = yk)

for any A ∈ A and any k ≥ 1.

In the next section, one finds the optimal filter, while in section 3, illustrations and

simulations are used to assess the performance of the algorithm for one, two, three and

four targets.

2 Description of the optimal filter

Throughout this article, one assumes that the transition matrix M is known. Otherwise

one could adapt the methodology developed Gentil et al. (2005). In what follows, one

wants to find an easy algorithm for computing

P (Sk = A| Yk),

where A ∈ A and Yk is the sigma-algebra generated by observations Y1, . . . , Yk. This

probability describes the estimation of the position of the m targets in T together with

the associated regimes.

For any A =
{(

z1, r1, n1
)

, . . . ,
(

zl, rl, nl
)}

∈ A, define its projection onto the “position

space” AP by

Proj(A) =
{

(

z1, n1
)

, . . . ,
(

zl, nl
)}

,

If one is interested in the positions only, i.e. finding P (Proj(Sk) = B| Yk), then it is given

by

P (Proj(Sk) = B| Yk) =
∑

A∈A; Proj(A)=B

P (Sk = A| Yk).

The first step in finding a recursive formula for P (Sk = A| Yk), is to compute, for any

y, ξ ∈ {0, 1}T , the conditional probability

P (Yk = y| ξk = ξ) = P (∩x∈T {Yk(x) = y(x)}| ξk = ξ) .
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To this end, for any y, ξ ∈ {0, 1}T , set

Λ(y, ξ) ==(1 − p1)
|T |

(

(1 − p0)(1 − p1)

p0p1

)〈y,ξ〉( p1

1 − p1

)〈y〉( p0

1 − p1

)〈ξ〉

,

where |T | = card(T ), 〈y〉 =
∑

x∈T

y(x) and 〈y, ξ〉 =
∑

x∈T

y(x)ξ(x).

Using the independence assumption, together with (1)–(2), one can check that

P (Yk = y| ξk = ξ) = Λ(y, ξ).

Let P be the joint law of (Xk)k≥0 with initial distribution ν and the observations (Yk)

with law given by (1)–(2), and let Q be the joint law of (Xk)k≥0 with initial distribution ν,

and independent Bernoulli observations with mean 1/2, i.e corresponding with p0 = p1 =

1/2.

Further let Gk be the sigma-algebra generated by Y1, . . . , Yk, X0, . . . , Xk. Then it is easy

to check that with respect to Gk, P is equivalent to Q and

dP

dQ

∣

∣

∣

∣

Gk

=
k

∏

j=1

2|T |Λ(Yj , ξj). (3)

Further define

Lk =

k
∏

j=1

Λ(Yj , ξj). (4)

It follows that for any Gk-measurable random variable Z and for any sigma-algebra F ⊂ Gk,

EP (Z| F) =
EQ (ZLk| F)

EQ (Lk| F)
. (5)

While this formula is an easy consequence of the properties of conditional expectations, in

the context of filtering, (5) is known as the Kallianpur-Striebel formula. The key observa-

tion here is to note that expectations relative to Q are much easier to evaluate since the

signal and the observations are independent. Moreover all variables {Yi(x)}1≤i≤k,x∈I are

independent and identically distributed Bernoulli with mean 1/2.

For any A ∈ A, define

qk(A) = EQ(I(Sk = A)Lk| Yk).

Note that according to (5), one has, for any A ∈ A,

P (Sk = A| Yk) =
qk(A)

∑

B∈A

qk(B)
. (6)
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Therefore the conditional law of Sk given Yk is completely determined by the {qk(A); A ∈

A}.

It only remains to find a recursive formula for the unnormalized measures qk, k ≥ 1.

To this end, for any y ∈ {0, 1}T and any A ∈ A, set

DA(y) = Λ(y,L(A)).

Using independence under Q together with (3), one obtains

qk+1(A) = EQ(I(Sk+1 = A)Lk+1| Yk+1)

= EQ[EQ(I(Sk+1 = A)Λ(Yk+1, ξk+1)| Yk+1, Sk)Lk| Yk]

= DA(Yk+1)
∑

B∈A

M(A, B)EQ {I(Sk = B)Lk| Yk}

= DA(Yk+1)
∑

B∈A

M(A, B)qk(B).

Therefore we obtain the so-called “Zakai” equation, namely

qk+1(A) = DA(Yk+1)
∑

B∈A

M(A, B)qk(B). (7)

Since A is finite, Zakai equation (7) can be evaluated, at least theoretically. Note that

by definition, q0 is determined by the initial law of the targets. Having observed Y1, one

can calculate the measure q1, and so on.

According to (6), the most probable value of Sk given the first k observations can be

estimated by choosing A ∈ A such that qk(A) = max
B∈A

qk(B). Moreover, the most probable

“position” B ∈ AP can be estimated by choosing B maximizing

∑

A∈A; Proj(A)=B

qk(B).

REMARK. In view of applications, one can either consider that the parameters p0 and

p1 have been estimated or one can use the maximum likelihood method to estimate them

from the observation of images.

3 Illustrations and simulations

In what follows, it is assumed that T = {1, . . . , N} is a torus, that is N +1 is identified with

1 and so on. Further assume that the there are only two regimes, and that the targets are
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independent and move to their nearest neighbors (right or left), with probabilities α1 and

α2 = 1 − α1 for the first regime, and with probabilities α3 and α4 = 1 − α3 for the second

regime. The dynamic of the (independent) regimes is given by the following Markov chain

with values in {1, 2}:
{

P (Rk+1 = 2| Rk = 1) = a
P (Rk+1 = 1| Rk = 2) = b,

0 ≤ a, b ≤ 1.

The simulations were restricted to the cases of one, two, three and four targets, and

torus with length N = 500 in the case of one or two targets, length N = 150 for three

targets and length N = 25 for four targets.

In order to estimate the efficiency of the algorithm, the mean error over several time

intervals was computed. After only 5 to 10 steps, the positions predictions were already

quite good.

The error made at each iteration was calculated in the following way: in case of just

one estimate A, the L1-distance between the targets and the estimate was calculated; in

case of several estimates, the largest L1-distance was kept. The first iteration was never

considered.

Various values of parameters p0 and p1 were taken into account, while the other pa-

rameters were given the values: α1 = α3 = 0.2, α2 = α4 = 0.8, a = b = 0.9. Finally, the

initial distribution q0 was chosen to be the uniform law on all possible configurations. The

results are reported in Tables 1–4.

Note that, in each case, the results are quite satisfactory. From the 5th or 10th iteration,

depending on the choice of parameters p0 and p1, the distance between the estimation and

the targets is about one or three pixels. This is due to the fact that the algorithm provides

an exact solution to the resolution of the optimal filter. The fact that one seems to lose

precision when there are many targets, is mainly due to the fact that one used the L1

distance to calculate the error.

Finally, animations representing the results of the simulations described below, as in

Figure 1 for two targets, can be obtained at the web site

http://www.ceremade.dauphine.fr/̃ gentil/ensimulations2.html.

Calculations were done using C and MATLAB.
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Table 1: Mean absolute error for one target on a torus of length 500

Parameters Time intervals
[2, 100] [10, 100] [30, 100]

p0 = p1 = 0.9 3.9 0.2 0.1

p0 = p1 = 0.95 2.8 0.4 0.3

Table 2: Mean absolute error for one target on a torus of length 500

Parameters Time intervals
[2, 100] [10, 100] [30, 100]

p0 = p1 = 0.9 6.5 0.8 0.8

p0 = p1 = 0.95 5.5 0.2 0.3

Table 3: Mean absolute error for one target on a torus of length 150

Parameters Time intervals
[2, 100] [10, 100] [30, 100]

p0 = p1 = 0.9 2.2 1.8 1.3

p0 = p1 = 0.95 1.0 0.4 0.4

Table 4: Mean absolute error for one target on a torus of length 25

Parameters Time intervals
[2, 100] [10, 100] [30, 100]

p0 = p1 = 0.9 5.1 3.0 3.2

p0 = p1 = 0.95 0.6 0.5 0.6
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Figure 1: MATLAB film for two targets on a torus on length 300
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