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Abstract

We consider the multivariate location problem with cluster correlated data. A fam-
ily of multivariate weighted sign tests are introduced for which observations from dif-
ferent clusters can receive different weights. Under weak assumptions, the test statistic
is asymptotically distributed as a chi-squared random variable as the number of clus-
ters goes to infinity. The asymptotic distribution of the test statistic is also given for
a local alternative model under multivariate normality. Optimal weights maximizing
Pitman asymptotic efficiency are provided. These weights depend on the cluster sizes
and on the intracluster correlation. Several approaches for estimating these weights are
presented. Using Pitman asymptotic efficiency, it is shown that appropriate weighting
can increase substantially the efficiency compared to a test that gives the same weight
to each cluster. A multivariate weighted t-test is also introduced. The finite sample
performance of the weighted sign test is explored through a simulation study which
shows that the proposed approach is very competitive.

Key Words: Multivariate location problem, Spatial sign test, Intraclass correlation,
One-way random effect, Clustered observations, Affine-invariance.

Résumé

Dans cet article, nous proposons et étudions les propriétés d’une classe de tests du
signe pondéré pour le problème de position multivarié avec des données corrélées en
grappes.
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Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT). The
research work of Jaakko Nevalainen and Hannu Oja was partially supported by research
grants from Academy of Finland and by doctoral program SIIDA. Part of this work
was done while Denis Larocque was visiting the University of Tampere. He wishes to
thank Hannu Oja for inviting him.





Les Cahiers du GERAD G–2005–74 1

1 Introduction

Analysts often face situations where the classical assumption of N independent observations
is not reasonable. Multilaboratory studies, multiple measurements taken from the same
individual or questionnaires put on several classes of students are examples where one
cannot assume independence: outcomes from the same laboratory, individual or school
class tend to be alike. It is rather well-known that if such within-cluster dependency is not
carefully taken into account during the course of the analysis, p–values are likely to be too
small thus inflating the Type I error rate of tests. A complete treatment of longitudinal
and clustered data including numerous examples drawn from studies in the biomedical and
health sciences can be found in Fitzmaurice, Laird and Ware (2004).

Extensions of nonparametric univariate tests to cluster correlated data have been pro-
posed in the literature; Datta and Satten (2005), Rosner and Grove (1999) and Rosner,
Glynn and Ting Lee (2003). Other approaches for treating clustered data include the use of
generalized estimating equations (Williamson, Datta and Satten, 2003; Stoner and Leroux,
2002) and resampling methods (Hoffman, Sen and Weinberg, 2001).

In this paper our aim is to consider the multivariate location problem under minimal
assumptions of the underlying model. Much less attention has been paid to this multivari-
ate problem before. Recently, Larocque (2003) proposed an extension of the one-sample
affine-invariant multivariate sign test to cluster correlated data. A parallel development
for the estimation problem appears in Nevalainen, Larocque and Oja (2005). The purpose
of this paper is to extend Larocque’s test to a whole family of (cluster) weighted tests that
keep the advantages of the original procedure which are affine-invariance, validity under
very slight assumptions and computing ease. However, by incorporating cluster weights,
the new tests can improve the power of the original test when cluster sizes are different.

The description and the asymptotic null distribution of the weighted sign test is given
in Section 2. Optimal weights maximizing Pitman asymptotic efficiency under a general
multivariate normal model are derived in Section 3. Different approaches to estimate the
optimal weights are proposed in Section 4. In Section 5, a parallel development is made for
a weighted multivariate t-test. Results of a simulation study are given in Section 6 followed
by concluding remarks in Section 7. Technical details and some proofs are reported in the
Appendix.

2 Description of the weighted sign statistic

Suppose that we have n clusters of respective size m1, . . . , mn for a total of N =
∑n

j=1 mj

observations. Let Xij = (Xij1, . . . , Xijp)
′ be the p-vectors corresponding to the jth obser-

vation of the ith cluster. Furthermore, let µ = (µ1, . . . , µp)
′ be a fixed location vector of

interest. The multivariate normal one-way random effects is often used to treat cluster
correlated data. This model can be written as

Xij = µ + ai + ǫij , i = 1, . . . , n ; j = 1, . . . , mi, (1)
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where a1, . . . ,an are independent and identically distributed (iid) as multivariate normal
random p-vectors with expectation 0 and positive semidefinite covariance matrix Σa and
where the ǫij ’s are iid (and independent of the ai’s) as multivariate normal random p-
vectors with expectation 0 and positive definite covariance matrix Σǫ. Clearly, for that
model, E[Xij ] = µ and

Cov[Xij ,Xkl] =







Σa + Σǫ if i = k, j = l
Σa if i = k, j 6= l
0 if i 6= k

In this paper, we consider a more general multivariate location model for which (1) is
a special case. This model can be written as

Xij = µ + ǫij , i = 1, . . . , n ; j = 1, . . . , mi, (2)

where the ǫij ’s are angularly symmetric identically distributed continuous random p-
vectors. By angularly symmetric, it is meant that, if || · || denote the Euclidean norm,
ǫij/||ǫij || and −ǫij/||ǫij || are identically distributed. Assume also that ǫij and ǫkl are in-
dependent if i 6= k and possibly dependent if i = k. That is, the observations are possibly
correlated within clusters. Furthermore, assume that (ǫiji

, ǫij′i
) and (ǫkjk

, ǫkj′
k
) are iden-

tically distributed for any i, k = 1, . . . , n and where ji, j
′

i and jk, j
′

k are indices chosen in
{1, . . . , mi} and {1, . . . , mk} respectively. Note that this assumption on bivariate distribu-
tions is weaker than the regular assumption that the ǫij ’s are exchangeable within clusters.
Note also that the existence of the first two moments is not required in model (2) nor is
the assumption that the errors are symmetrically distributed (only angular symmetry is
needed).

Assuming model (2), we wish to confront the hypotheses

H0 : µ = 0 and H1 : µ 6= 0. (3)

An affine-invariant multivariate sign test is introduced in Larocque (2003) where affine-
invariance is achieved by using the so-called “Tyler’s transformation matrix”; Tyler (1987).
However, the symmetrized version of this transformation, proposed by Dümbgen (1998),
will be used in this paper. The reason is that, unlike Tyler’s transformation, Dümbgen’s
transformation does not need a separate location estimate to be valid under the alternative
as Tyler’s transformation do. Moreover, Dümbgen’s shape matrix will also be used to com-
pute canonical correlations in order to estimate cluster weights as explained in Section 4.
The Appendix contains details about these transformations.

Let {j1, . . . , jn} be a vector consisting of n indices (one for each cluster) such that

jk ∈ {1, . . . , mk}, k = 1, . . . , n. Define ÂD to be the Dümbgen’s transformation matrix
obtained from X1j1 ,X2j2 , . . . ,Xnjn . In practice, the vector of indices {j1, . . . , jn} may be
chosen at random among all such vectors which is the same as choosing one index at
random for each cluster.
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Define the transformed points to be

Yij = ÂDXij i = 1, . . . , n ; j = 1, . . . , mi.

Moreover, define

Uij = Yij/||Yij || i = 1, . . . , n ; j = 1, . . . , mi.

to be the “signs” (unit vectors) of the transformed observations that are sometimes called
“standardized signs”. Note that in the particular case of one-dimensional observations
(p = 1), ÂD is equal to 1 by definition and Uij is then sign(Xij).

The test statistic proposed in Larocque (2003) is

SN = NŪ′Σ̂−1
U

Ū (4)

where

Ū =
1

N

n
∑

i=1

mi
∑

j=1

Uij (5)

is the overall unweighted average of the signs and where Σ̂U is a consistent estimator of
the asymptotic covariance matrix of

√
NŪ under H0 defined by

Σ̂U =
1

N

n
∑

i=1

UiU
′

i (6)

where

Ui =

mi
∑

j=1

Uij .

To be precise, Larocque (2003) pre-transforms the data using Tyler’s transformation

matrix instead of ÂD. The statistic SN gives equal weight to each observation. Clearly,
this would be the right way to weight the data points if they were independent within
clusters since we would then be in the usual iid setting. But other weighting schemes
might be preferable when cluster sizes are different and when observations are correlated
within clusters. This possibility was mentioned in Larocque (2003) but was not pursued
there.

We are now ready to define a generalized version of (4). Let w1, w2, . . . , wn be a sequence
of cluster weights satisfying (1/N)

∑n
i=1 miwi = 1. The weighted multivariate sign test is

a quadratic form based on the weighted average

Ūw =
1

N

n
∑

i=1

wi

mi
∑

j=1

Uij . (7)
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Let

Σ̂Uw
=

1

N

n
∑

i=1

w2
i UiU

′

i. (8)

The weighted multivariate sign test is defined by

Sw = NŪ′

wΣ̂−1
Uw

Ūw. (9)

The choice wi ≡ 1 gives equal weight to each individual observation and the resulting statis-
tic is equivalent to the one defined by (4). At the other extreme, the choice wi = N/(nmi)
gives equal weight to each cluster. Since the original statistic SN is affine-invariant, it is
straightforward to see that Sw also has that property.

We conclude this section by giving the asymptotic (as the number of clusters goes to
infinity) null distribution of Sw that can be used to apply the test in practice. In fact, this
asymptotic distribution is used in the simulation study described in Section 6.

For the rest of the paper, we will assume that the two following limits exists and are
finite.

cw1 = lim
n→∞

(

1

N

n
∑

i=1

miw
2
i

)

and cw2 = lim
n→∞

(

1

N

n
∑

i=1

mi(mi − 1)w2
i

)

. (10)

The next result is a direct generalization of Theorem 1 of Larocque (2003) and can be
proven using similar arguments.

Theorem 2.1 Assume model (2). Under H0, as n → ∞,

Sw
D−→ χ2

p.

3 Asymptotic efficiency and optimal weights

In this section, the asymptotic distribution of Sw is obtained under a local alternative
multivariate normal model. Then, optimal weights are derived and the test using these
optimal weights is compared to the unweighted sign test SN using Pitman asymptotic
efficiency.

Let µN = µ/
√

N where µ = (µ1, µ2, . . . , µp) (6=0) is a fixed p-vector. Without loss of
generality, assume that µ

′
µ = 1. The sequence of local alternatives considered is

H1n : Xij = µN + ǫij , i = 1, . . . , n ; j = 1, . . . , mi (11)

where the ǫij ’s are multivariate normal random p-vectors with expectation 0 and positive
definite covariance matrix V ar(ǫij) = Σ11. Moreover, observations from different clusters
are independent and the covariance between two vectors from the same cluster (j 6= j′) is
Cov(ǫij , ǫij′) = Σ12.
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Consider the 2p vector Z formed by stacking any 2 vectors from the same cluster. Then
the covariance matrix of Z is

(

Σ11 Σ12

Σ12 Σ11

)

.

Let V and Λ be the orthogonal matrix and the diagonal matrix corresponding to the eigen-

value decomposition Σ
−1/2
11 Σ12Σ

−1/2
11 = VΛV′. The diagonal of Λ contains the canonical

correlations (ρ1, ρ2, . . . , ρp) for two vectors from the same cluster. We will assume that
they are placed in descending order ρ1 ≥ ρ2 ≥ . . . ≥ ρp.

Hence, if we define the standardized vectors Σ
−1/2
11 Xij = X∗

ij = (X∗

ij1, . . . , X
∗

ijp)
′, this

model specifies that for j 6= j′, Corr(X∗

ijk, X
∗

ij′k) = ρk, that is the correlation between the

kth components from two standardized observations from the same cluster is ρk. We will
see shortly that the asymptotic distribution of the test statistic, under the sequence (11),
depends on the covariance structure (Σ11 and Σ12) only through the ρk’s.

Define

F (ρ) =
F (1/2, 1/2; p/2 + 1; ρ2)

F (1/2, 1/2; p/2 + 1; 1)
(12)

where F (a, b; c; d) is the hypergeometric function of Gauss; Abramowitz and Stegun (1970).
Let

d =
√

2
Γ((p + 1)/2)

Γ(p/2)
. (13)

Note that F (ρ) and d depend also on the dimension p but we use this simplified notation
since no confusion is possible.

Theorem 3.1 Under the sequence (11), as n → ∞,

Sw
D−→ χ2

p(δSw
)

where

δSw
=

d2

p

p
∑

j=1

µ2
j

cw1 + ρjF (ρj)cw2
. (14)

To maximize the power of the test, we must seek the weights that make the noncentrality
parameter as large as possible. We call these the optimal weights for the normal model. But
we clearly see from (14) that in general, the optimal weights will depend on the direction
of the shift µ which is unknown. There are many ways to get around that.

Firstly, assume that all the ρ’s are the same, that is, ρj = ρ for all j. Then the
noncentrality parameter becomes

δSw
= µ

′
µ

d2

p

1

cw1 + ρF (ρ)cw2
=

d2

p

1

cw1 + ρF (ρ)cw2
. (15)
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In that case, it is shown in the Appendix that the optimal weights, maximizing the non-
centrality parameter, are

w
(o1)
i =





1

N

n
∑

j=1

mj

1 + ρF (ρ)(mj − 1)





−1

1

1 + ρF (ρ)(mi − 1)
. (16)

We thus see that the optimal weights are inversely proportional to the cluster sizes mi and
also decrease as the intracluster correlation ρ increases.

Secondly, we can try to maximize the power in the least favorable case. Recall that
ρ1 ≥ ρ2 ≥ . . . ≥ ρp. Thus ρ1 = max(ρ1, ρ2, . . . , ρp). Assume that ρ1 > ρ2, then ρ1 is the
unique maximum. The minimum value (over µ) of (14) is then attained when µ1 = ±1
and µj = 0 for all other j. In that case, the noncentrality parameter becomes

δSw
=

d2

p

1

cw1 + ρ1F (ρ1)cw2

and the weights maximizing the power in this least favorable case are

w
(o2)
i =





1

N

n
∑

j=1

mj

1 + ρ1F (ρ1)(mj − 1)





−1

1

1 + ρ1F (ρ1)(mi − 1)
. (17)

In practice, unless we have a priori knowledge, the ρ’s are unknown. Estimates are then
needed to be able to use the weights (16) or (17). One possibility is to assume that all the
ρ’s are the same (or close to each other), estimate the common value and plug it in (16) to
obtain the weights for the test statistic. Another possibility is to look for protection against
the worst possible case and estimate max(ρ1, ρ2, . . . , ρp). Then again, this estimate can
be plugged into (17) to obtain the weights. But the important thing is that the estimate
of the common ρ value (or the maximum ρ value) must be affine-invariant if we want
the test statistic to remain affine-invariant. Note that the ρ’s are indeed affine-invariant
parameters. Hence, it is reasonable to use affine-invariant estimators of them. Possible
estimators will be described in the next section.

Since the possibilities are endless when the ρ’s are distinct, we will assume that ρj = ρ,
for all j, for the rest of this section to study the behavior of the Pitman asymptotic
efficiency. Scenarios with distinct ρ’s will be explored through simulations in Section 6.

Define by Sw(o1) and Sw(o2) the sign tests that use the optimal weights (16) and (17)
respectively.

By plugging the optimal weights (16) into (14), we obtain the noncentrality parameter
with the optimal weights

δSw(o1)
=

d2

p
l1 (18)
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where

l1 = limn→∞

1

N

n
∑

i=1

mi

1 + ρF (ρ)(mi − 1)
.

On the other hand, if we give the same weight to each observation (wi ≡ 1), then the
noncentrality parameter of the unweighted sign test SN is

δSN
=

d2

p

1

(1 + lρF (ρ))
(19)

where

l = limn→∞

1

N

n
∑

i=1

mi(mi − 1);

see Larocque (2003). Since the Pitman asymptotic efficiency between two tests is simply
the ratio of their noncentrality parameters, we have

ARE(Sw(o1), SN ) = l1(1 + lρF (ρ)).

In order to get an idea of the behavior of this ARE, assume that we have R different
clusters sizes m1, m2, . . . , mR. Moreover, assume that, asymptotically, a proportion α1 of
the clusters are of size m1, a proportion α2 are of size m2 and so on. Thus α1+α2+· · ·αR =
1. Then

ARE(Sw(o1), SN ) =

R
∑

r=1

(

αrmr

1 + ρF (ρ)(mr − 1)

)

1
∑R

r=1 αrmr

(

1 +

(

∑R
r=1 αrmr(mr − 1)
∑R

r=1 αrmr

)

ρF (ρ)

)

.

Figure 1 presents the value of this ARE as a function of ρ for different configurations of
cluster sizes (m1, . . . , mR) and respective proportions (α1, . . . αR) and for dimensions p =1,
3 and 10. Obviously, we can see that, as soon as ρ > 0, the weighted sign test with optimal
weights is always more efficient then the unweighted sign test. The higher ρ is, the better
Sw(o1) is compared to SN . Moreover, the higher the dimension is, the higher the ARE gets.
Possible cluster sizes range between 1 and 5 in the first column and between 1 and 10 in
the second column. The cluster size comes a binomial distribution in row 1, a uniform
distribution in row 2 and an “extreme” distribution in row 3 where only the lowest and
highest cluster size can appear each with probability 0.5. We can clearly see that the more
dispersed the distribution of the cluster is, the higher the ARE is. This is not surprising
because when all clusters are of the same size, then the two tests are equivalent.
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Figure 1: Asymptotic efficiency of the optimal weighted sign test Sw(o1) relative to the
unweighted sign test SN . The solid line corresponds to p = 1, the dashed line to p = 3 and
the dotted line to p = 10.
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4 Estimating the weights

From the last section, we have that estimates of the ρ’s are needed to compute either
the weights (16) or (17). Three approaches are described in this section. The first two
approaches are general and the third one assumes that the ρ’s are all the same.

The first two approaches consist in finding the sample canonical correlations for two
vectors from the same cluster using either a regular sample covariance matrix or a more
robust shape matrix.

Let’s begin with the simplest one that uses a sample covariance matrix. Let n0 (≤ n)
be the number of clusters with more than one observation. For simplicity and without
loss of generality, assume that these are the first n0 clusters. For each of these clusters,
choose 2 distinct observations at random. Let Xij and Xij′ be the observations selected
for cluster i, i = 1, . . . , n0. Let Zi = (X′

ij ,X
′

ij′)
′ be the 2p vector obtained by stacking the

two observations for cluster i. We will compute the sample canonical correlations between
the Xij ’s and the Xij′ ’s. Let

(

Σ̂11 Σ̂12

Σ̂21 Σ̂22

)

be the sample covariance matrix of Z1,Z2, . . . ,Zn0 . Let V̂, Ŵ and Λ̂ be the orthogonal

matrices and the diagonal matrix corresponding to the decomposition Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 =

V̂Λ̂Ŵ′. The diagonal of Λ̂ contains the sample canonical correlations (ρ̂1, ρ̂2, . . . , ρ̂p) in
descending order.

By using only two observations per cluster, we are not using all data points if some
clusters are larger than two. We are thus proposing to repeat the steps above B times
to obtain B estimates and then take their average. In what follows, (ρ̂1, ρ̂2, . . . , ρ̂p) will
refer to this average. In the simulation study of Section 6, the canonical correlations are
estimated with B = 30 repetitions.

Once we have our final estimate of the ρ’s, there are different ways to utilize them.
Firstly, we could take some sort of average of them to obtain a single value of ρ and then
use the weights (16). If all the ρ̂’s are strictly positive, we could take the geometric average

ρ̂ =





n0
∏

j=1

ρ̂j





1/p

= (det(Λ̂))1/p.

The usual arithmetic average could also be used. Secondly, if we want protection against
the worst possible case, we could take the estimate of the maximum, ρ̂1, and use the weights
(17).

The second general approach to estimate the ρ’s consist of replacing the regular covari-
ance matrix above by a more robust estimate. We propose using Dümbgen’s shape matrix
described in the Appendix. Note that if the Zi’s are from an elliptical population, then
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using this shape (or any other) estimates the same population parameters as using the
regular covariance matrix; Taskinen, Croux, Kankainen, Ollila and Oja (2005).

The third and last approach starts by assuming that all the ρ’s are the same and is
derived through the MANOVA table (see Ebel (1951) for the univariate case). Define

X̄i =
1

mi

mi
∑

j=1

Xij and X̄ =
1

N

n
∑

i=1

mi
∑

j=1

Xij

as the observations average for cluster i and the overall average. The between clusters MS
is then

MSC =
1

n − 1

n
∑

i=1

mi(X̄i − X̄)(X̄i − X̄)′.

The within clusters MS is

MSE =
1

N − n

n
∑

i=1

mi
∑

j=1

(Xij − X̄i)(Xij − X̄i)
′.

Let

c =
N −∑n

i=1 m2
i /N

n − 1
.

The proposed estimator of ρ is defined through generalized variances and is given by

ρ̂ =
|MSC − MSE|(1/p)

|MSC + (c − 1)MSE|(1/p)
.

This last approach has the advantage of being easy to implement and it uses directly
all the observations.

It is straightforward to see that all those estimates of the ρ’s are affine-invariant. Conse-
quently, the statistic Sw that uses weights with those estimated ρ’s remains affine-invariant.

5 A weighted multivariate t-test

A parallel development can easily be made for a multivariate test based on the weighted
average of the observations; a weighted multivariate t-test. Let

X̄w =
1

N

n
∑

i=1

wi

mi
∑

j=1

Xij (20)

denote a weighted average of the original data points. Let

Σ̂Xw
=

1

N

n
∑

i=1

w2
i XiX

′

i (21)
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where Xi =
∑mi

j=1 Xij . The weighted multivariate t-test is defined by

Tw = NX̄′

wΣ̂−1
Xw

X̄w. (22)

It is straightforward to show that under model (2), if µ = E(Xij), if second moments

exists and if (10) holds, then under H0, Tw
D−→ χ2

p as n → ∞. Moreover, under the local

model (11), the noncentrality parameter of the asymptotic χ2
p distribution of Tw is

δTw
=

p
∑

j=1

µ2
j

cw1 + ρjcw2
.

This noncentrality is very similar to the one of the sign test (14). As for the sign test, the
optimal weights may depend on the direction of the shift. But if we assume that all the
ρ’s are the same, that is, ρj = ρ for all j, then it becomes

δTw
=

1

cw1 + ρcw2
.

If we maximize this function with respect to the weights, we find that the optimal weights
are given by

w
(t1)
i =





1

N

n
∑

j=1

mj

1 + ρ(mj − 1)





−1

1

1 + ρ(mi − 1)
.

We will call the t-test that uses these optimal weight Tw(o1).

6 Simulation Study

In this section we will mainly compare the performance of the unweighted sign test SN ,
the optimal sign test Sw(o1) and the optimal t-test Tw(o1)in the case of finite samples.
All methods described in Section 4 for estimating the weights were tried. Moreover the
sign and t-test using the weights (17) defined through the maximum of the ρ’s were also
included and will be discussed briefly. Only a relevant subset of the results are presented
and discussed here but the complete simulation results are available upon request.

Data points were generated using the model

Xij = µ + ai + ǫij , i = 1, . . . , n ; j = 1, . . . , mi

where a1, . . . ,an are iid random p-vectors with expectation 0 and covariance matrix Σa =
ρIp and where the ǫij ’s are iid (and independent of the ai’s) random p-vectors with expec-
tation 0 and covariance matrix Σǫ = (1 − ρ)Ip.

• Two dimensions are used: p=1 and 3.
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• Two distributions are used:

1. Normal where both the ai’s and the ǫij are distributed as normal random vec-
tors.

2. t3 − t3 where both the ai’s and the ǫij have the multivariate t distribution with
3 degrees of freedom.

• Ten values of the intraclass correlation ρ are used: 0; .1; .2; .3; .4; .5; .6; .7; .8 and
.9.

• Three design are used, each of them involving 60 clusters and 330 observations:

1. Binomial for which we have 1 cluster of size 2, 4 clusters of size 3, 10 clusters of
size 4, 15 clusters of size 5, 15 clusters of size 6, 10 clusters of size 7, 4 clusters
of size 8 and 1 cluster of size 9.

2. Uniform for which we have 6 clusters of size 1, 6 clusters of size 2, . . . , 6 clusters
of size 9 and 6 clusters of size 10.

3. Extreme for which we have 30 clusters of size 1 and 30 clusters of size 10.

The vector µ was either set to 0 (null hypothesis) of to a value of the form c when
p=1 or (c, c, c) when p=3 such that the power of the unweighted sign test was between .25
and .3. Note that (when p = 3) all the ρ’s are identical under this model. Situations with
different ρ’s will be discussed later in this section.

All tests were performed at the 5% level. The proportions of rejection was calculated
with 10000 replications using the critical point from the χ2

p distribution.

For both the sign test and the t-test, the value of ρ was estimated using the three
methods described in Section 4. That is, we have three different version of the optimal
sign test and also three of the optimal t-test. But in the end, the results were very similar
whatever estimation method was used. Consequently, we present only the results for the
versions of the test that are most natural. The natural way of estimating ρ for the weighted
sign test is by taking the arithmetic average of the canonical correlations obtained with
Dümbgen’s shape matrix. The natural way of estimating ρ for the weighted t-test is
by taking the arithmetic average of the canonical correlations obtained with the regular
covariance matrix.

First, let’s have a look at the observed levels. Overall, considering all tests and all con-
figurations, 1488 observed levels were obtained and each of them was estimated with 10000
replications. The minimum value obtained is 0.028, the maximum is 0.055, the average and
median values are 0.046. Moreover, the middle 95% of the observed levels are comprised in
the interval [0.038, 0.052] and the middle 90% are in [0.041, 0.051]. Consequently, all tests
maintained reasonably their prescribed level of 5% with perhaps a very slight tendency
towards being conservative.

We can now move to the power comparisons. The results are presented in Figures 2 and 3
for p = 1 and 3 respectively. The benchmark is the unweighted sign test (the full straight
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line in all plots) and results are given in terms of difference in power (in %) compared to
the benchmark. Results for the normal distribution are given in the first column of the
figures and the second column contains the t3 − t3 distribution. The binomial, uniform
and extreme designs appear in rows 1, 2 and 3.

Comparing firstly the two sign tests, we see that the optimal sign test is always more
powerful except in a few cases when ρ = 0. The gain in power can be higher than 60% in
some cases. The improvement is very similar for both the normal and t3 − t3 distributions.
Even though the optimal weights are derived under a normal model, we see that their use
are also beneficial for the t3 − t3 distribution. Also, the results coming from the ARE
analysis are confirmed. That is, the more dispersed the clusters are, the better is Sw(o1)

compared to SN . The cluster are the most dispersed for the extreme design (last rows),
followed by the uniform design and then by the binomial design.

Comparing the optimal sign test and the optimal t-test, we see that the t-test is more
powerful for the normal distribution and the opposite is true for the t3 − t3 distribution.
Moreover, the difference in power between the two tests seems to be quite stable as ρ varies
(the two curves are almost parallel in each plot). On one hand, the difference between the
two tests seems to be constant for the t3 − t3 distribution when we move from p = 1 to
p = 3. On the other hand, the difference between the two tests is smaller when p = 3
compared to when p = 1 for normal data. This fact was also noted in Larocque (2003)
when comparing the unweighted versions of the sign and t-tests.

Even though these results are not reported here, we can mention that the power of
the tests using the weights (17) by estimating the maximum of the ρ’s is sometimes very
similar and sometimes slightly less than the power of the corresponding test that uses the
weights (16) by estimating the average of the ρ’s. But this is not surprising since all the
ρ’s are equal in the cases considered so far. The real potential value of estimating the
maximum of the ρ’s is when they are in fact different and when the shift is in the direction
of the component with the highest ρ. This is why we included such configurations in
the simulation when p = 3. More precisely, we used the same two distributions and the
same three designs. But this time, instead of having canonical correlations of the form
(ρ1, ρ2, ρ3) = (ρ, ρ, ρ) for ρ ranging between 0 and 0.9 as in the scenarios reported so far,
we used (ρ1, ρ2, ρ3) = (0.2, 0.5, 0.8). Moreover, we used four different directions for the
shifts under H1. Namely, the shifts are of the form (c, c, c), (c, 0, 0), (0, c, 0) and (0, 0, c).
A test using an estimate of the maximum of the ρ’s should be at its best when the shift is
in the direction (0, 0, c). Some results for the weighted sign test are reported in Table 1. It
gives the power of the optimal sign test that uses the weights (16) by estimating ρ with the
arithmetic average of the sample canonical correlations obtained with Dümbgen’s shape
matrix and the power of the optimal sign test that uses the weights (17) by estimating the
maximum of the ρ’s with the maximum of the sample canonical correlations obtained with
Dümbgen’s shape matrix.

We can observe that the two tests have very similar powers most of the time. For shifts
of the form (c, c, c) and (c, 0, 0), Sw(o1) is slightly better for the extreme design. The only
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Figure 2: Percent difference in power between the optimal weighted sign test Sw(o1) (dashed
line) and optimal weighted t-test Tw(o1) (dotted line) compared to the unweighted sign test
SN (full line) for p = 1.
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Figure 3: Percent difference in power between the optimal weighted sign test Sw(o1) (dashed
line) and optimal weighted t-test Tw(o1) (dotted line) compared to the unweighted sign test
SN (full line) for p = 3.



16 G–2005–74 Les Cahiers du GERAD

Table 1: Observed powers when (ρ1, ρ2, ρ3) = (0.2, 0.5, 0.8)

Direction of shift
Test Design Distribution (c, c, c) (c, 0, 0) (0, c, 0) (0, 0, c)

Sw(o1) binomial normal 0.309 0.284 0.306 0.297

Sw(o2) binomial normal 0.306 0.285 0.307 0.297

Sw(o1) binomial t3 − t3 0.282 0.334 0.274 0.328

Sw(o2) binomial t3 − t3 0.281 0.331 0.274 0.327

Sw(o1) uniform normal 0.351 0.293 0.292 0.380

Sw(o2) uniform normal 0.348 0.279 0.291 0.386

Sw(o1) uniform t3 − t3 0.306 0.309 0.339 0.321

Sw(o2) uniform t3 − t3 0.308 0.300 0.342 0.325

Sw(o1) extreme normal 0.340 0.297 0.391 0.421

Sw(o2) extreme normal 0.318 0.257 0.384 0.441

Sw(o1) extreme t3 − t3 0.347 0.301 0.340 0.412

Sw(o2) extreme t3 − t3 0.324 0.273 0.331 0.425

time that Sw(o1) seems less powerful than Sw(o2) if when the shift is of the form (0, 0, c)
for the extreme design and normal distribution where the observed powers are 0.421 and
0.441 respectively. All things being considered, it seems preferable to estimate the average
of the ρ’s instead of the maximum of the ρ’s.

7 Concluding remarks

In this paper, we extended the multivariate affine-invariant sign test of Larocque (2003) to a
whole family of weighted tests. The new tests keep all the advantages of the original test:
affine-invariance, valid under very slight assumptions, easy to compute and implement.
But by being able to incorporate cluster weights, the new family of tests can improve the
power of the original test when cluster sizes are different. Optimal weights under a general
multivariate normal model were obtained. Several ways of estimating the weights with the
data were described. Following a parallel development, a multivariate weighted t-test was
also proposed. The extent of how much more efficient the optimal sign test is compared
to the sign test that gives the same weight to each cluster was explored by calculating
Pitman efficiencies. We saw that the more dispersed the clusters are, the more efficient
the optimal test is compared to the unweighted test. These results were confirmed in a
simulation study. Moreover, the simulation showed that the optimal sign test is more
powerful than the optimal t-test for the t3 − t3 distribution but the opposite is true for
the normal distribution. But in that case, the difference between the two tests is smaller
for p = 3 than for p = 1. The simulation also demonstrated that, at least in the case
covered, it is better to use an estimate of the average of the ρ’s instead of an estimate
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of the maximum of the ρ’s. That’s why our recommendation is to favor the optimal sign
test by using the weights (16) by estimating ρ with the arithmetic average of the sample
canonical correlations obtained with Dümbgen’s shape matrix.

A Appendix

Tyler’s and Dümbgen’s transformations:

Let X1, . . . ,Xn be n random p-vectors with location µ. Tyler (1987) shape matrix,

V̂T , is the positive definite symmetric matrix with trace(V̂T ) = p such that, for any ÂT

with Â′

T ÂT = V̂−1
T ,

1

n

n
∑

i=1

(

ÂT (Xi − µ)

||ÂT (Xi − µ)||

)(

ÂT (Xi − µ)

||ÂT (Xi − µ)||

)

′

=
1

p
Ip.

This matrix exists and is unique when n > p(p − 1). ÂT is called Tyler’s transformation
matrix. For a given µ, a simple and fast algorithm to compute those matrices is given
in Oja and Randles (2004). Tyler’s transformation was first used in Randles (2000) to
construct an affine-invariant version of the spatial sign test. In Randles (2000) and in
Larocque (2003), the matrix AT is computed by setting µ to its value under the null
hypothesis, that is 0. But we see that in general, the computation of AT necessitates a
separate location estimate.

A symmetrized version of Tyler’s matrix that does not need a separate location esti-
mator was proposed in Dümbgen (1998). Dümbgen’s shape matrix, V̂D, is the positive

definite symmetric matrix with trace(V̂D) = p such that, for any ÂD with Â′

DÂD = V̂−1
D ,

2

n(n − 1)

n−1
∑

i=1

n
∑

j=i+1

(

ÂD(Xi − Xj)

||ÂD(Xi − Xj)||

)(

ÂD(Xi − Xj)

||ÂD(Xi − Xj)||

)

′

=
1

p
Ip.

Note that the algorithm to compute Tyler’s matrices can be used to compute Dümbgen’s
matrices by replacing the (Xi − µ)’s by the differences (Xi − Xj)’s.

Shape matrices can be viewed as standardized scatter matrices that retain information
about the form of the distribution but not about the scale. See Taskinen et al. (2005) for
more details.

Proof of Theorem 3.1:

The proof is based upon LeCam’s lemmas on contiguity.

Let
Λ1 = diag(ρ1F (ρ1), ρ2F (ρ2) . . . , ρpF (ρ1))

where F is defined by (12).
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We begin with a lemma that will be used in the proof of Theorem 3.1. It is a slight
generalization of lemma 1 of Larocque (2003) and can be proven using similar arguments.

Lemma A.1 Let (X′,Y′)′ be distributed as a multivariate normal random (p × 2)-vector
and suppose that each of X and Y are distributed as a multivariate normal random p-vector
with expectation 0 and covariance matrix Ip. Further assume that Cov[X,Y] = Λ where
Λ = diag(ρ1, . . . , ρp) with −1 < ρi < 1 for all i. Then

E

[

X
X′

||X||

]

=
d

p
Ip , E

[

X
Y′

||Y||

]

=
d

p
Λ and E

[

X

||X||
Y′

||Y||

]

=
1

p
Λ1

where d is defined by (13).

Since the test statistic is affine-invariant, we can assume without loss of generality, after

multiplying each data points by V′Σ
−1/2
11 , that Σ11 = Ip and Σ12 = Λ.

Define Σρ,m = ρJm + (1 − ρ)Im where Jm and Im are the m × m matrices of ones and
the identity matrix respectively. Then

Σ−1
ρ,m =

1

1 − ρ

(

Im − ρ

1 + (m − 1)ρ
Jm

)

. (23)

Let Z∗

i be the pmi vector formed by stacking up all the observations in cluster i in
such a way that all the first components appear first, then the second components and so
on. That is Z∗

i = (Xi11, Xi21, . . . , Ximi1, Xi112, Xi22, . . . , Ximi2, . . . , Xi1p, Xi2p, . . . , Ximip)
′.

The covariance matrix of Z∗

i is Σi = diag(Σρ1,mi
,Σρ2,mi

, . . . ,Σρp,mi
). Let

µ
∗

m = (µ1, . . . , µ1, µ2, . . . , µ2, µp, . . . , µp)
′ be the pm vector where each µ is repeated m

times. Let

Zijk =
Xijk

1 + (mi − 1)ρk

and Zij = (Zij1, . . . , Zijp)
′. Following tedious but straightforward calculations using (23),

we have that
µ
∗
′

mi
Σ−1

i Z∗

i = µ
′Zi

where Zi =
∑mi

j=1 Zij .

Define Ci1 = diag( 1
(1+(mi−1)ρ1) , . . . ,

1
(1+(mi−1)ρp)) and

Ci2 = diag( ρ1

(1+(mi−1)ρ1) , . . . ,
ρp

(1+(mi−1)ρp)).

Let Q = Qn(Z∗

1, . . . ,Z
∗

n) denote the likelihood function under model (11). Let P =
Pn(Z∗

1, . . . ,Z
∗

n) denote the null likelihood function, that is, when µ =0 in model (11). We
have

ln

(

Q

P

)

=
1√
N

µ
′

n
∑

i=1

Zi −
1

2

1

N

n
∑

i=1

miµ
′Ci1µ.
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Under H0, ÂD converges in probability to Ip as n → ∞. Hence, we have that, under H0,
the statistic Sw computed using Yij = Xij is asymptotically equivalent to Sw computed

using Yij = ÂDXij . Moreover, since the sequence (11) is contiguous to H0, they are
also asymptotically equivalent under that sequence. Thus, we can assume that Uij =
Xij/||Xij || ∀i, j for the rest of the proof.

Under H0, E(
√

NŪw) = 0 and

V (
√

NŪw) =
1

N

n
∑

i

miw
2
i

Ip

p
+

1

N

n
∑

i

mi(mi − 1)w2
i

Λ1

p

which converges to
1

p
(Ipcw1 + Λ1cw2)

as n goes to ∞.

Next, using lemma A.1,

EH0

[

ln

(

Q

P

)√
NŪw

]

=
µ
′

N

n
∑

i=1

mi
∑

j=1

n
∑

k=1

mk
∑

l=1

wkEH0 [ZijU
′

kl]

=
µ
′

N

d

p

n
∑

i=1

wimi(Ci1 + (mi − 1)Ci2)

=
µ
′d

p
.

Hence, under the sequence (11),

√
NŪw

D−→ Np

(

µ
d

p
,
1

p
(Ipcw1 + Λ1cw2)

)

and Theorem 3.1 follows since

(

µ
d

p

)

′
(

1

p
(Ipcw1 + Λ1cw2)

)

−1(

µ
d

p

)

=
d2

p

p
∑

j=1

µ2
j

cw1 + ρjF (ρj)cw2
.

Optimal weights:

It will be shown here that (16) are the optimal weights. For a finite n, the optimal
weights are the solution to

max
w1,...,wn

(

n
∑

i=1

miw
2
i + ρ

n
∑

i=1

mi(mi − 1)w2
i

)

−1

subject to
n
∑

i=1

miwi = N.
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This comes from the finite sample version of the noncentrality parameter (15). Setting w =
(w1, . . . , wn)′, m = (m1, . . . , mn)′ and A = diag(m1(1+ρ(m1−1)), . . . , mn(1+ρ(mn−1))),
this problem can be written as

min
w

(w′Aw) subject to w′m = N.

This can be solved directly using the standard Lagrange multiplier rule and the solution
is given by (16).
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