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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
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GERAD and Département de mathématiques et de génie industriel
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Abstract

Let G = (V,E,w) be a graph with vertex and edge sets V and E, respectively,
and w : E → IR+ a function which assigns a positive weigth or length to each edge of
G. G is called a realization of a finite metric space (M,d), with M = {1, ..., n} if and
only if {1, ..., n} ⊆ V and d(i, j) is equal to the length of the shortest chain linking
i and j in G ∀i, j = 1, ..., n. A realization G of (M,d), is said optimal if the sum of
its weights is minimal among all the realizations of (M,d). Consider a partition of M

into two nonempty subsets K and L, and let e be an edge in a realization G of (M,d);
we say that e is a bridge linking K with L if e belongs to all chains in G linking a
vertex of K with a vertex of L. The Metric Bridge Partition Problem is to determine
if the elements of a finite metric space (M,d) can be partitioned into two nonempty
subsets K and L such that all optimal realizations of (M,d) contain a bridge linking
K with L. We prove in this paper that this problem is polynomially solvable. We also
describe an algorithm that constructs an optimal realization of (M,d) from optimal
realizations of (K, d|K) and (L, d|L).

Résumé

Soit G = (V,E,w) un graphe ayant V comme ensemble de sommets et E comme
ensemble d’arêtes, et soit w : E → IR+ une fonction qui attribue un poids positif,
appelé longueur, à chaque arête de G. Le graphe G est une réalisation d’un espace
métrique fini (M,d), avec M = {1, ..., n}, si et seulement si {1, ..., n} ⊆ V et d(i, j) est
égal à la longueur de la châıne la plus courte reliant i et j dans G ∀i, j = 1, ..., n. Une
réalisation G de (M,d) est dite optimale si la somme des poids dans G est minimale
parmi toutes les réalisations de (M,d). Considérons une partition de M en deux sous-
ensembles non vides K et L, et soit e une arête dans une réalisation G de (M,d). Nous
dirons que e est un pont qui relie K avec L si e appartient à toute châıne de G qui
relie un sommet de K à un sommet de L. Le problème de la partition d’une métrique à
l’aide d’un pont consiste à déterminer s’il existe une partition des éléments d’un espace
métrique fini (M,d) en deux sous-ensembles K et L tel que toute réalisation de (M,d)
contienne un pont reliant K avec L. Nous prouvons dans cet article que ce problème
peut être résolu en temps polynomial. Nous décrivons également un algorithme qui
construit une réalisation optimale de (M,d) sur la base de réalisations optimales de
(K, d|K) et (L, d|L).

Acknowledgments: The research of the second author was supported by grant
PA002-104974/1 from the Swiss National Science Foundation.
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1 Introduction

A metric space is a couple (M, d) such that M is a set and d is a function defined on M×M

such that d(x, y) = d(y, x) > 0 ∀x 6= y, d(x, x) = 0 ∀x, and d(x, z) ≤ d(x, y) + d(y, z)
∀x, y, z. Moreover, (M, d) is a finite metric space if M has a finite number of elements.

Let G = (V, E, w) be a graph, with vertex and edge sets V and E, respectively, and
w : E → IR+ a function which assigns a positive weight or length to each edge of G.
Furthermore, let dG(i, j) denote the length of a shortest chain in G linking vertices i and
j. We say that G is a realization of a finite metric space (M, d), with M = {1, ..., n} if and
only if {1, ..., n} ⊆ V and dG(i, j) = d(i, j) ∀i, j = 1, ..., n. The elements in V \M are called
auxiliary vertices. A realization of (M, d) is called optimal when the sum of its weights
is minimal among all the realizations of (M, d). For illustration, a metric space together
with an optimal realization G are shown in Figure 1. All edges of the graph have length
one, and the black points a, b, c, d, e are five auxiliary vertices while the white ones are the
elements of M .

The embedding of finite metric spaces in graphs has applications in varied fields as
computational biology [7, 9] (e.g., constructing phylogenetic trees from genetic distances
among living species), electrical networks [4], coding techniques [3], psychology [2], internet
tomography [1], and compression softwares [8].

The problem of finding optimal realizations of metric spaces was first proposed by
Hakimi and Yau [4] in 1964 who also gave a polynomial algorithm for the special case
where the metric space has a realization as a tree. While every finite metric space has an
optimal realization [5, 6], finding such realizations is an NP-hard problem [10].

Optimal realizations can be constructed using building blocks. More precisely, for a
graph G, we recall that a cutpoint, respectively a bridge, is a vertex, respectively an edge,
whose removal strictly increases the number of connected component of G; a block is a
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Figure 1: A metric space with an optimal realization



2 G–2005–67 Les Cahiers du GERAD

maximal two-connected subgraph or a bridge in G. Imrich et al. [5] have proved the
following theorem.

Theorem 1 [5] Let G be an optimal realization of a finite metric space (M, d), let G1, · · · ,
Gk be the blocks of G, and let Mi be the union of the points of M in Gi together with the
cutpoints of G in Gi. If every Gi is an optimal realization of the metric space induced by
G on Mi, then G is also optimal.

For example an optimal realization of the metric space of Figure 1 can be obtained by
putting together optimal realizations of the metric spaces induced on {1, 2, 3, a}, {a, b},
{4, 5, b, c}, {6, c}, {6, d}, {7, 8, d, e}, and {9, 10, 11, e}.

It is therefore interesting to be able to recognize metric spaces which contain at least one
bridge in all optimal realizations. This is exactly the topic of our paper. More precisely,
consider a partition of M into two nonempty subsets K and L, and let e be an edge in a
realization G of (M, d). We say that e is a bridge linking K with L if e belongs to all chains
in G linking a vertex of K with a vertex of L. The Metric Bridge Partition Problem is to
determine if the elements of a given finite metric space (M, d) can be partitioned into two
nonempty subsets K and L such that all optimal realizations of (M, d) contain a bridge
linking K with L. For example, on the basis of the distance matrix of Figure 1 (and without
any knowledge of the optimal realization), we would like to be able to state that all optimal
realizations contain a bridge linking K = {1, 2, 3, 4, 5, 6} with L = {7, 8, 9, 10, 11}, or K =
{1, 2, 3, 4, 5} with L = {6, 7, 8, 9, 10, 11}, or K = {1, 2, 3} with L = {4, 5, 6, 7, 8, 9, 10, 11}.
We prove in this paper that the Metric Bridge Partition Problem is polynomially solvable.

2 Definitions and Known Results

It is well-known that the unique optimal realization of a metric space on three points i, j, k

is a tree T . The hub of i, j, k, denoted hijk, is the point in T such that:

dT (hijk, i) = 1

2
(d(i, j) + d(i, k)− d(j, k)),

dT (hijk, j) = 1

2
(d(j, i) + d(j, k)− d(i, k)),

dT (hijk, k) = 1

2
(d(k, i) + d(k, j)− d(i, j)).

Assume that the distance d(i, j) is larger than or equal to d(i, k) and d(j, k). If d(i, j) <

d(i, k) + d(j, k), then T has three leaves i, j and k, and one auxiliary vertex corresponding
to the hub hijk, else T is a chain linking i and j that traverses k = hijk (see Figure 2).

Let sijkℓ denote the sum d(i, j) + d(k, ℓ). It is also well-known that the optimal realiza-
tion of a metric space on four points i, j, k, ℓ is a unique tree if and only if two of the sums
sijkℓ, sikjℓ, siℓjk are equal and not smaller than the third. Moreover, if sijkℓ < sikjℓ = siℓjk,
then the tree has a bridge (hijk, hikℓ) of length sikjℓ−sijkℓ > 0 linking {i, j} with {k, ℓ}. The
three possible configurations are represented in Figure 3 (the other cases are equivalent).
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Figure 2: Optimal realizations of three points
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Figure 3: Optimal realizations of four points

Definition 1 A finite metric space (M, d) is reducible if and only if all its optimal real-
izations contain a vertex of degree one (i.e, a vertex with exactly one neighbor).

In other words (see for example [5]), a finite metric space (M, d) is reducible if and
only if M contains an element i, called endpoint, such that d(i, j) + d(i, k) − d(j, k) > 0
for all j, k 6= i. An optimal realization of a reducible metric space (M, d) can easily be
obtained from an optimal realization of a metric space (M ′, d′) which has fewer endpoints
or fewer elements than M . More precisely, consider an endpoint i in a reducible metric
space (M, d), and define α =min{1

2
(d(i, j) + d(i, k) − d(j, k))}, the minimum being taken

over all j, k 6= i. There are two possible cases:

• If there is an element j ∈ M with d(i, j) = α, then set M ′ equal to M\{i}, and set
d′ = d|M ′ (i.e., d′ is the distance matrix induced by d on M ′). An optimal realization
of (M, d) can be obtained from an optimal realization of (M ′, d′) by adding a vertex
i and an edge of length α linking i with j.

• If there is no element j ∈ M with d(i, j) = α, then set M ′ = M\{i} ∪ {a} and
define d′(j, k) = d(j, k) for all j, k 6= a, d′(a, j) = d(i, j) − α for all j 6= a. An
optimal realization of (M, d) can be obtained from an optimal realization of (M ′, d′),
by adding a vertex i and an edge of length α linking i with a.

Definition 2 Consider a finite metric space (M, d), a partition of M into two non-empty
subsets K, L and a mapping f : M → IR+. The triplet (K, L, f) is said nice if
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• d(x, y) ≤ f(x) + f(y) for all x, y in M , equality holding whenever x ∈ K and y ∈ L,
and

• f(x) > 0 at least once in K and once in L.

The above definition is motivated by the following result proved in [5] and [6].

Theorem 2 [6, 5] Suppose (M, d) is a finite metric space to which there exists a nice
triplet (K, L, f). Then every optimal realization G of (M, d) has a cut-point c or a bridge
with a point c on it such that all chains linking K with L go through c, and dG(x, c) =
f(x) ∀x ∈M .

3 New Results

We start with a sufficient condition for the existence of a bridge in all optimal realizations
of a finite metric space (M, d). It is a corollary of Theorem 2.

Corollary 1 Suppose (M, d) is a finite metric space to which there exist a partition of M

into two non-empty subsets K, L and two different mappings f : M → IR+ and g : M →
IR+ such that both (K, L, f) and (K, L, g) are nice triplets. Then every optimal realization
G of (M, d) has a bridge.

Proof. Let (K, L, f) and (K, L, g) be two nice triplets with f 6= g, and let G be any
optimal realization of (M, d). We know from Theorem 2 that all chains linking K with L

go through two points c and c′ such that dG(x, c) = f(x) and dG(x, c′) = g(x) ∀x ∈ M .
Since f 6= g, we conclude that c 6= c′, which means that all chains linking K with L traverse
a bridge containing points c and c′. 2

The next Theorem also provides a sufficient condition for the existence of a bridge in
every optimal realization of a finite metric space (M, d).

Theorem 3 Suppose (M, d) is a finite metric space to which there exists a partition of M

into two non-empty subsets K, L with |K| > 1 and |L| > 1, and assume the existence of
four elements x, y ∈ K and z, t ∈ L such that

(1) sxzyt − sxyzt ≤ sikjℓ − sijkℓ ∀i, j ∈ K and k, ℓ ∈ L

(2) sijkℓ < sikjℓ = siℓjk ∀i, j ∈ K and k, ℓ ∈ L.

Then every optimal realization of (M, d) has a bridge (hxyz, hxzt) linking K with L.

Proof. Notice first that we know from (2) that the optimal realization of the metric
space induced by four elements i, j ∈ K and k, ℓ ∈ L is a tree U with dU (hijk, hikℓ) =
sikjℓ − sijkℓ = siℓjk − sijkℓ > 0 (see Section 2). Let T be the optimal realization of the
metric space induced by x, y, z and t, and define
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f(i) =

{

d(z, i)− dT (z, hxyz) if i ∈ K

d(x, i)− dT (x, hxyz) if i ∈ L

and

g(i) =

{

d(z, i)− dT (z, hxzt) if i ∈ K

d(x, i)− dT (x, hxzt) if i ∈ L

Consider any element i 6= x in K, and let U denote the optimal realization of the metric
space induced on x, z, t and i. By (1), we have dU (hxiz, hxzt) ≥ dT (hxyz, hxzt), and since
dU (hxzt, z) = dT (hxzt, z), we have

f(i) = d(z, i)− dT (z, hxyz)
= dU (z, hxzt) + dU (hxzt, hxiz) + dU (hxiz, i)− dT (z, hxyz)
≥ dT (z, hxzt) + dT (hxzt, hxyz) + dU (hxiz, i)− dT (z, hxyz)
= dU (hxiz, i) ≥ 0.

Since f(x) = d(z, x) − dT (z, hxyz) = dT (x, hxyz) ≥ 0, we have f(i) ≥ 0 for all i ∈ K.
Consider now any element i 6= z in L, and let U denote the optimal realization of the metric
space induced on x, y, z and i. Again, dU (hxyz, hxzi) ≥ dT (hxyz, hxzt) and dU (x, hxyz) =
dT (x, hxyz). Hence,

f(i) = d(x, i)− dT (x, hxyz)
= dU (x, hxyz) + dU (hxyz, hxzi) + dU (hxzi, i)− dT (x, hxyz)
≥ dT (x, hxyz) + dT (hxyz, hxzt) + dU (hxzi, i)− dT (x, hxyz)
= dT (hxyz, hxzt) + dU (hxzi, i) > dU (hxzi, i) ≥ 0.

Since f(z) = d(x, z) − dT (x, hxyz) = dT (z, hxyz) > 0, we have f(i) > 0 for all i ∈ L.
Consider now two elements i ∈ K and j ∈ L. We have

f(i) + f(j) = d(z, i)− dT (z, hxyz) + d(x, j)− dT (x, hxyz)
= d(z, i) + d(x, j)− d(x, z).

It follows that if i = x or/and j = z then f(i) + f(j) = d(i, j). Otherwise, let U

denote the optimal realization of the metric space induced by x, z, i and j. We have
d(z, i) + d(x, j)− d(x, z) = dU (z, i) + dU (x, j)− dU (x, z) = dU (i, j) = d(i, j). We conclude
that f(i) + f(j) = d(i, j) for all i ∈ K and j ∈ L.

We know from (2) that hxyz = hxyi for all i ∈ K, and hxzt = hizt for all i ∈ L. Consider
now two elements i and j in L, and let U denote the optimal realization of the metric space
induced by x, y, i and j. We have

f(i) + f(j) = d(x, i) + d(x, j)− 2dT (x, hxyz)
= dU (x, i) + dU (x, j)− 2dU (x, hxyi)
= dU (i, j) + 2dU (hxyi, hxij) > dU (i, j) = d(i, j).
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Consider finally two elements i and j in K, and let U denote the optimal realization
of the metric space induced by i, j, z and t. Since dU (hijz, hizt) ≥ dT (hxyz, hxzt) and
dU (hizt, z) = dT (hxzt, z), we have

f(i) + f(j) = d(z, i) + d(z, j)− 2dT (z, hxyz)
= dU (i, j) + 2dU (hijz, hizt) + 2dU (hizt, z)− 2dT (z, hxyz)
≥ d(i, j) + 2dT (hxyz, hxzt) + 2dT (hxzt, z)− 2dT (z, hxyz) = d(i, j).

Since 0 < d(x, y) ≤ f(x) + f(y) we know that f(x) or/and f(y) is strictly positive. We
can therefore conclude that (K, L, f) is a nice triplet. The proof that (K, L, g) is a nice
triplet is similar and can be obtained by permuting the roles of x, y and K with those of
z, t and L.

Notice that f 6= g since

g(i) = f(i) + dT (z, hxyz)− dT (z, hxzt) = f(i) + dT (hxyz, hxzt) > f(i) ∀i ∈ K

g(i) = f(i) + dT (x, hxyz)− dT (x, hxzt) = f(i)− dT (hxyz, hxzt) < f(i) ∀i ∈ L.

By Corollary 1, we know that each realization G of (M, d) has a bridge (u, v) linking K

with L. It follows from Theorem 2 that dG(i, u) = f(i) and dG(i, v) = g(i) for all i ∈ M .
Since f(i) = dT (i, hxyz) and g(i) = dT (i, hxzt) for i = x, y, z, we conclude that u = hxyz

and v = hxzt. 2

We now give a necessary condition for the existence of a bridge.

Theorem 4 Suppose (M, d) is an irreducible finite metric space. If there is a partition of
M into two non-empty subsets K, L such that all optimal realizations of (M, d) contain a
bridge (u, v) linking K with L, then

(1) |K| > 1 and |L| > 1,

(2) sijkℓ < sikjℓ = siℓjk ∀i, j ∈ K and k, ℓ ∈ L,

(3) ∃x, y ∈ K and z, t ∈ L such that
•sxzyt − sxyzt ≤ sikjℓ − sijkℓ ∀i, j ∈ K and k, ℓ ∈ L

•i ∈ K ⇔ d(x, i)− d(z, i) ≤ d(x, y)− d(z, y).

Proof. Consider a partition of M into two non-empty subsets K, L such that all optimal
realizations of (M, d) contain a bridge (u, v) linking K with L. If |K| = 1 then the unique
element in K is a vertex of degree 1 in all optimal realizations of (M, d). But this is
impossible since (M, d) is irreducible. Hence |K| > 1, and |L| > 1 by symmetry.

Consider now any four elements i, j ∈ K and k, ℓ ∈ L and let G be any optimal
realization of (M, d). Since all chains linking K with L in G traverse the bridge (u, v), we
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have

sikjℓ = d(i, k) + d(j, ℓ)
= dG(i, u) + dG(u, v) + dG(v, k) + dG(j, u) + dG(u, v) + dG(v, ℓ)
= d(i, ℓ) + d(j, k) = siℓjk

> dG(i, u) + dG(j, u) + dG(v, k) + dG(v, ℓ)
≥ dG(i, j) + dG(k, ℓ) = d(i, j) + d(k, ℓ) = sijkℓ.

Consider now four elements x, y in K and z, t in L such that sxzyt− sxyzt ≤ sikjℓ− sijkℓ for
all i, j in K and k, ℓ in L, and let T be the optimal realization of the metric space induced
on x, y, z and t. Also, consider any i ∈ M . If i = x, then d(x, i) − d(z, i) = −d(z, x) ≤
d(x, y)− d(z, y), and if i = z, then d(x, i)− d(z, i) = d(x, z) > d(x, y)− d(z, y). So assume
i 6= x, z, and let W be the optimal realization of the metric space induced on x, z, i.

• If i ∈ K, then let U be the optimal realization of the metric space induced on x, z, t

and i. Since dU (hxiz, hxzt) ≥ dT (hxyz, hxzt) and dU (hxzt, z) = dT (hxzt, z), we have

dW (x, hxiz) = dU (x, hxiz) = d(x, z)− dU (hxiz, hxzt)− dU (hxzt, z)
≤ d(x, z)− dT (hxyz, hxzt)− dT (hxzt, z) = dT (x, hxyz).

• If i ∈ L, then let U be the optimal realization of the metric induced by x, y, z and i.
We have

dW (x, hxiz) = dU (x, hxiz) = dU (x, hxyz) + dU (hxyz, hxzi)
= dT (x, hxyz) + dU (hxyz, hxzi) > dT (x, hxyz).

We therefore conclude that

i ∈ K ⇔ dW (x, hxiz) ≤ dT (x, hxyz)
⇔ 1

2
(d(x, z) + d(x, i)− d(z, i)) ≤ 1

2
(d(x, z) + d(x, y)− d(z, y))

⇔ d(x, i)− d(z, i) ≤ d(x, y)− d(z, y).

2

4 Algorithms

The following algorithm determines if a given finite irreducible metric space (M, d) contains
a bridge.

Theorem 5 The MetricBridgePartition algorithm works correctly and is polynomial.

Proof. Correctness of the algorithm follows from the results of the previous section. In-
deed, if the algorithm stops with four elements x, y, z, t and a partition of M into two sets
K and M\K, then properties (1) and (2) of Theorem 3 are satisfied, and we conclude that
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Algorithm 1 MetricBridgePartition

Require: A finite irreducible metric space (M, d);
Ensure: Four elements x, y, z, t ∈ M and a set K such that there is a bridge linking K

with M\K, or a message indicating that no optimal realization of (M, d) has a bridge;

for all x, y, z, t ∈M such that sxyzt < sxzyt = sxtyz do

K ← {x, y} and L← {z, t};
for all i ∈M\{x, y, z, t} do

if d(x, i)− d(z, i) ≤ d(x, y)− d(z, y) then

K ← K ∪ {i}
else

L← L ∪ {i}
end if

end for

if sxzyt − sxyzt ≤ sikjℓ − sijkℓ and sijkℓ < sikjℓ = siℓjk ∀i, j ∈ K k, ℓ ∈ L then

STOP: return x, y, z, t and K.
end if

end for

return a message indicating that no optimal realization of (M, d) has a bridge.

every optimal realization of (M, d) has a bridge linking K with L. Moreover, if there exists
a partition of M into two sets K and L such that every optimal realization of (M, d) has a
bridge, then we know from Theorem 4 that such a partition will be found. The algorithm
is polynomial since its complexity is O(|M |8). 2

The MetricBridgePartition algorithm can be used to decompose a given finite metric
space (M, d) into metric spaces (M1, d1), · · · , (Mr, dr) such that no optimal realization of
(Mi, di) (i = 1, · · · , r) has a bridge. According to Theorem 1, an optimal realization of
(M, d) can then be obtained by connecting optimal realizations of (M1, d1), · · · , (Mr, dr)
with bridges. More precisely, assume the existence of the three following algorithms:

• algorithm NoBridge constructs an optimal realization of a finite metric space if such
a realization has no bridge;

• algorithm Reduce transforms any finite reducible metric space (M, d) into an irre-
ducible metric space (M ′, d′);

• given a finite reducible metric space (M, d) and an irreducible metric space (M ′, d′)
obtained by applying Reduce on (M, d), and given also an optimal realization G′ of
(M ′, d′), algorithm Extend constructs an optimal realization G of (M, d).
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As explained in Section 2, algorithms Reduce and Extend are easy to implement. As-
sume now that algorithm MetricBridgePartition produces an output x, y, z, t, K when
applied on a metric space (M, d). This means that there is a bridge (hxyz, hxzt) linking K

with L = M\K in all optimal realizations of (M, d). According to the proof of Theorem
3, such an optimal realization G can be obtained as follows.

• Compute f(i) = d(z, i) − 1

2
(d(x, z) + d(y, z) − d(x, y)) for all i ∈ K, and g(i) =

d(x, i)− 1

2
(d(x, z) + d(x, t)− d(z, t)) for all i ∈ L.

• Construct a metric space (K ′, dK′) as follows: if there is an element i ∈ K with
f(i) = 0 then set K ′ = K and u = i, and define dK′ = d|K ; else build K ′ by
adding an auxiliary element u to K, and define dK′(i, j) = d(i, j) for all i, j ∈ K and
dK′(i, u) = f(i) for all i ∈ K.

• Construct a metric space (L′, dL′) as follows: if there is an element i ∈ L with g(i) = 0
then set L′ = L and v = i, and define dL′ = d|L; else build L′ by adding an auxiliary
element v to L, and define dL′(i, j) = d(i, j) for all i, j ∈ L and dL′(i, v) = g(i) for
all i ∈ L.

• Construct two optimal realizations GK′ and GL′ of (K ′, dK′) and (L′, dL′).

• Construct an optimal realization G of (M, d) by linking GK′ and GL′ with an edge
(u, v) of length sxzyt − sxyzt.

Algorithm OptimalRealization uses MetricBridgePartition recursively to build an
optimal realization of any finite metric space (M, d). Figure 4 illustrates its use on the
example of Figure 1. The possible outputs (up to symmetry) of MetricBridgePartition

applied on (M, d) are

• x = 1, y = 3, z = 4, t ∈ {6, 7, 8, 9, 10, 11}, K = {1, 2, 3};

• x ∈ {1, 2, 3}, y = 5, z = 6, t ∈ {7, 8, 9, 10, 11}, K = {1, 2, 3, 4, 5};

• x ∈ {1, 2, 3, 4, 5}, y = 6, z = 7, t ∈ {9, 10, 11}, K = {1, 2, 3, 4, 5, 6}.

Assume the algorithm produces the output x = 1, y = 3, z = 4, t = 6, K = {1, 2, 3}. Since
f(1) = 1, f(2) = 2, and f(3) = 1, we construct a metric space M1 on {1, 2, 3, u}. Algorithm
MetricBridgePartition applied on M1 produces a message indicating that no optimal
realization of M1 contains a bridge. An optimal realization G1 of M1 is therefore obtained
by applying the NoBridge algorithm. Since g(4) = 1, g(5) = g(6) = 2, g(7) = 4, g(8) =
g(9) = g(11) = 5, g(10) = 6, we construct a metric space M2 on {4, 5, 6, 7, 8, 9, 10, 11, v}.
Then, the possible outputs (up to symmetry) of MetricBridgePartition applied on M2

are

• x = v, y = 5, z = 6, t ∈ {7, 8, 9, 10, 11}, K = {4, 5, v};

• x ∈ {4, 5, v}, y = 6, z = 7, t ∈ {9, 10, 11}, K = {4, 5, 6, v}.

Assume the output is x = v, y = 5, z = 6, t = 7, K = {4, 5, v}.
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Algorithm 2 OptimalRealization

Require: A finite metric space (M, d);
Ensure: An optimal realization G of (M, d);

if (M, d) is reducible then

Apply Reduce on (M, d) to build an irreducible metric space (M ′, d′);
else

(M ′, d′)← (M, d);
end if

Apply MetricBridgePartition on (M ′, d′);
if the output indicates that no optimal realization of (M ′, d′) has a bridge then

Apply NoBridge on (M ′, d′) to build an optimal realization G′ of (M ′, d′);
else

Let x, y, z, t, K be the output of MetricBridgePartition;
Build the metric spaces (K ′, dK′) and (L′, dL′) as explained above;
Get GK′ and GL′ by applying OptimalRealization on (K ′, dK′) and (L′, dL′);
Build G′ by linking GK′ and GL′ with an edge (u, v) of length sxzyt − sxyzt;

end if

if (M, d) 6= (M ′, d′) then

Apply Extend to G′ to build an optimal realization G of (M, d);
else

G← G′.
end if

• Since f(4) = 2, f(5) = 1, and f(v) = 1, we construct a metric space M3 on
{4, 5, v, u′}. Since MetricBridgePartition detects that no optimal realization of
M3 has a bridge, we apply NoBridge on M3 to get an optimal realization G3.

• Since g(6) = 0, we consider the metric space M4 induced on {6, 7, · · · , 11} and set
v′ = 6. M4 is first reduced to a metric space M5, where an auxiliary element a

replaces element 6. An optimal realization G5 of M5 is then obtained by applying
NoBridge (since G5 has no bridge), and an optimal realization of M4 is then obtained
by applying Extend on G5.

Finally, G3 and G4 are linked together with an edge (u′, v′ = 6) of length 1 to produce an
optimal realization G2 of M2; G1 and G2 are linked together with an edge (u, v) of length
1 to produce an optimal realization G of the original metric space (M, d).
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5 Final Remarks and Conclusion

We have proved that the Metric Bridge Partition Problem is polynomially solvable. The
proposed algorithm can be used to decompose any metric space (M, d) into metric spaces
(M1, d1), · · · , (Mr, dr) such that no optimal realization of (Mi, di) (i = 1, · · · , r) has a
bridge. An optimal realization of (M, d) can then easily be obtained by adding some edges
linking optimal realizations of (M1, d1), · · · , (Mr, dr).

An ideal algorithm, as indicated in Theorem 1, should decompose a metric space into
blocks (i.e., maximal two-connected subgraphs or bridges). The proposed algorithm is not
able to detect cutpoints that do not belong to a bridge. For example, we have not been
able to further decompose M5 in the example of Figure 4, while its optimal realization G5

has two blocks sharing the cutpoint b. Our algorithm for the solution of the Metric Bridge
Partition Problem relies on the fact that if there is a bridge (u, v) linking K and L, it is
possible to decide if an element of M belongs to K or L by computing its distance to u and
v. We do not know how to make such a partition using only a cutpoint u. Future work
will consist in studying the more general Metric Cutpoint Partition Problem, which is to
determine if the elements of a metric space (M, d) can be partitioned into two nonempty
subsets K and L such that all optimal realizations of (M, d) contain a cutpoint linking K

with L. The complexity of this problem is still unknown.
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