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GERAD and Méthodes quantitatives de gestion
HEC Montréal
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Abstract

Clusterwise regression is a technique for clustering data. Instead of using the clas-
sical homogeneity or separation criterion, clusterwise regression is based upon the
accuracy of a linear regression model associated to each cluster. This model has many
advantages, specially for the purpose of data mining, however, the underlying math-
ematical model is difficult to solve due to its large number of local optima. In this
paper, we propose the use of the Variable Neighborhood Search metaheuristic (VNS)
to improve the quality of the solution. Two perturbation strategies are described and
one of them yields a substantial improvement if compared to multistart (the error is
reduced by a factor of more than 1.5 on average for the 10 clusters problem).

Résumé

La régression par classes est une technique de classification des données. Au lieu
d’utiliser les critères classiques d’homogénéité et de séparation, la régression par classes
est basée sur l’adéquation d’un modèle de régression linéaire associé à chaque classe.
Ce modèle a beaucoup d’avantages, particulièrement pour le data mining. Toutefois,
le modèle mathématique sous-jacent est difficile à résoudre à cause de son grand nom-
bre d’optima locaux. Dans cet article, nous proposons l’utilisation de la recherche à
voisinages variables (VNS) pour améliorer la qualité de la solution. Deux stratégies
de perturbation sont décrites et une d’elles donne des améliorations substantielles par
rapport au multistart (l’erreur est réduite par un facteur de plus de 1,5 en moyenne
pour le problème à 10 classes).





Les Cahiers du GERAD G–2005–61 – Revised 1

1 Introduction

Clustering helps researchers to understand the core information underlying data by group-
ing observations in clusters. Clustering may therefore be used to group similar observations
(homogeneity criterion) and to separate different observations (separation criterion). These
two different criterion are used in hierarchical clustering implemented with respectively the
complete or single linkage. Most of the classical clustering algorithms, like k−means [16]
are based upon the measure of distance between objects and therefore need a special at-
tention for the scaling part of the preparation task and the removal of irrelevant variables.

However, clustering may also be used to discover patterns in data. In this case, one
aims at grouping observations according to their ability to fit the same model. This last
application of clustering is becoming more important due to the expansion of data mining,
the aim of which is to find useful information in a huge amount of data that was not
collected for the purpose of the study. This last point indicates that the data preparation
(cleaning, scaling and missing values treatment) part of the task is critical. Data mining
requires the use of powerful algorithms to provide good solutions.

It would be surprising that the same data and the same treatment will provide useful
informations for every purpose. For instance, if a company that wants to take advantage
of the operational data collected during the years, clustering the transactions could be
of interest for the marketing division, but also for the distribution division. There is
no reason to believe the same clusters will provide useful information to both at the same
time. Indeed, the marketing division will probably be interested in clustering the consumer
according to the price they are ready to pay while the distribution division will be interested
in the distribution method, which is related to the nature of the product bought and the
geographical position of the customer in order to plan the implantation of a new depot for
instance.

In this paper, we concentrate upon the clusterwise linear regression for which an al-
gorithm was already proposed in 1979 by Stäth [18]. By its structure, the clusterwise
regression is useful for data mining: it tends to naturally assign a small weight to irrel-
evant variables and will automatically adapt the model to inappropriate scaling by the
choice of the regression coefficients. Furthermore, if a variable is important for a given
cluster, it will be considered while it will be assigned a small weight for the clusters where
it is not. Indeed the clustering may still be affected by some inaccuracy in the data but the
result will not be affected as much as it would be in case of k −means or other similarity
based technique. Being less sensitive to the quality of the input data, clusterwise regression
is more suitable for the discovery of unknown structure in data without prior knowledge,
which is a concern for data-mining. The technique is also well suited to market segmen-
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tation and product pricing [1, 3, 4, 22, 23]. The regression models obtained may involve
different variables from a segment to another. This variety suggests that a single regression
model would not give precise insight on the customers concerns. If two customers buy the
same product for different purposes or in different contexts (home use or professional use
for example), there is no reason to think the price they are ready to pay will be defined by
the same demand function or even use the same information.

The interest in clusterwise linear regression is demonstrated by the publications on
the topic. Some of them were application oriented either considering the minimum sum
of squares criterion [1, 22], the minimum sum of absolute deviations [20] or the more
probabilistic fuzzy clustering approach [21].

Due to a its combinatorial structure and the regression model, clusterwise regression
models are hard to optimize. For this reason, researchers have been working on the algo-
rithmic aspect of the problem by the use of metaheuristics as simulated annealing [7] or a
bio-mimetic approach (close to genetic algorithms) [1] or other heuristics as a relaxation
resolution based upon a mathematical programming approach [15]. A slightly different ap-
proach to clusterwise regression, called fixed points clusters was also proposed by Hennig
[12, 13].

2 Problem formulation

In this paper, we consider the minimum sum of squares model of Späth; [18]. This problem
was mathematically formulated by Lau et al. as follows:

Min e =
n∑

i=1

K∑
k=1

zik(yi −
m∑

j=1

bjkxij + b0k)2 (1)

Subject To
K∑

k=1

zik = 1 ∀i = 1 . . . n (2)

zik ∈ {0, 1} ∀i = 1 . . . n ∀k = 1 . . .K. (3)

where xij and yi are respectively the value of the variable j and the value of the dependent
variable for the observation i. bjk is the jth regression coefficients for the cluster k and zij

is a binary variable that equals 1 if and only if the observation i belongs to cluster k. n is
the number of observations, m the number of independent variables considered and K the
number of clusters. The objective (1) is to minimize the sum of squared prediction errors
computed for each observation using the equation of the corresponding cluster. Constraints
(2) ensures each observation is assigned to exactly one cluster. From the optimization point
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of view, this problem has real valued variables corresponding to the regression aspect of
the problem and binary variables corresponding to its clustering aspect.

3 Resolution approach: the Variable Neighborhood Search

The resolution approach we propose here is based upon the Variable Neighborhood Search
(VNS) metaheuristic [10, 17] as it proves a good capability to handle combinatorial op-
timization problems. It has been successfully applied to various kind of combinatorial
optimization problems such as vehicle routing [2], graph theory [5] or, more related to
clustering, location problems [8]. In clustering, it was applied to the minimum sum of
squared errors problem, similar to k −means, global k −means [11] or J −means [9].

Except the local search LS and the perturbation P k of magnitude k, VNS only needs
the parameters kmax and the stopping criterion to be defined. For this study, we used
kmax = K − 1 and the stopping criterion was the total CPU time elapsed.

The algorithm is the following:

1. Initialization:

– construct an initial solution S by randomly assigning each observation to a
cluster

– for each cluster k, compute coefficients bjk and b0k of the regression model fitting
its data

– set the perturbation magnitude k to 1

– set the best solution S∗ ← S to the initial solution and the best objective value
e∗ to the corresponding total error.

2. Repeat until the stopping condition is met

(a) let S′ = LS(S) be the solution obtained by applying a local search to the current
solution S, e and e′ being the errors respectively corresponding to solution S

and S′.

(b) If e′ < e∗ (the best known solution is improved)
k ← 1, S∗ ← S′ and e∗ ← e′

else
k ← k mod(kmax) + 1

(c) S ← S∗

(d) S ← P k(S) (apply a perturbation of magnitude k to S).
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3.1 Local Search

The local search used is based upon the principle of the alternate search used in the K-
means algorithm and involves two main steps:

1. Compute the regression model corresponding to each cluster.

2. Move observations to the cluster that best fits them; if no observation needs to be
moved, the local search is complete; otherwise go back to 1.

This so called alternate local search alternatively optimizes the variables bjk (step 1) and
zik (step 2). It is very fast but unfortunately leads to a solution that strongly depends
upon the initial solution. It therefore could not be used alone if one needs correct results.

3.2 Perturbation schemes

The VNS algorithm was implemented using the two perturbations P k(S) described below.

• Merge : Apply k times the following:

1. Choose randomly 2 clusters,

2. assign randomly all the observations in these 2 clusters to one or the other
cluster.

3. Apply the alternate local search to a restricted version of the problem consisting
in only these 2 clusters.

• Split : Apply k times the following:

1. Choose randomly a cluster,

2. Assign randomly all its observations to other clusters.

3. Choose randomly another cluster,

4. Split this cluster in two using a random solution and a local search.

The last step of each perturbation scheme consists in optimizing a restricted problem,
i.e., the objects not bellonging to any of the two considered clusters are not affected.

As a benchmark, the multistart algorithm which consists in replacing VNS’s perturba-
tion by a new random solution was also implemented.

4 Numerical experiments

In order to test the VNS algorithm, we compared the implementations using the split and
the merge perturbation schemes to the multistart using the same local search.
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4.1 The data used to test the algorithm

Unfortunately, the data used for previous experiments on clusterwise linear regression are
not publicly available. It was therefore not possible to compare our results with the other
algorithms. We thus decided to use Monte Carlo simulation as a first way to evaluate the
algorithm and then to apply it to a real data that was suitable for clusterwise regression
and freely available. The so called “housing” dataset from UCI repository [14] was used.
This dataset consists in 506 observations with 14 continuous variables.

4.2 Monte Carlo simulation

The goal of this simulation is to explore the importance of each characteristic of the data
such as the number of observations n, the dimension m, the number of clusters K and the
noise which is related to the parameter s in the data generation.

The data generation (xij , yi) process was the following given n, K, m and s the standard
deviation of residual.

1. Generate the models

• for k = 1 to K do: let cjk ∀j = 1 . . .m be a uniform 0-10 variable.
Let c0k be a uniform 0-50 variable.

2. Generate the data

• For i = 1 to n do:

– Let xij ∀j = 1 . . .m be a uniform 0-10 random variable.
– Choose randomly k the cluster to which the observation i belongs.
– Let yi = c0k +

∑m
j=1 cjkxij + e where e is a N(0, s) random variable.

Each algorithm was run on 10 data sets for each set of parameters (the same data was
used for all algorithms) for a maximum CPU time of 5 minutes on a sun computer with
opteron 250 processor (2.4 GHz) and 8Go RAM running the solaris 10 operating system.
The average SSE among 10 runs for each perturbation type as well as multistart is recorded
and displayed in the following sections in order to show the sensitivity of each strategy
to different parameters. For each dataset generated, the minimum SSE obtained among
the merge, split and multistart strategies is recorded and the average of these minimums
is referred to as minimum. This average minimum is used as reference when drawing the
graphics.
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4.2.1 Impact of the number of observations

In order to evaluate the importance of the number of observations, the problems were
generated with the following parameters: K = 10, m = 10 and s = 50 and n varying from
5000 to 30000. Each configuration was replicated and the average value obtained from the
10 runs is displayed on Table 1 and represented on Figure 1.

Table 1: Average and Minimum SSE for 10 runs according to the number of observations
and perturbation mode.

n merge split multistart minimum
5000 307328 248931 436981 248931

10000 676801 518502 804222 518502
20000 1548192 1113761 1659555 1113761
30000 2385738 1813867 2421368 1809383

Figure 1: Relative SSE using minimum as reference when varying n.

4.2.2 Impact of the dimension

In order to evaluate the importance of the dimension, the problems were generated with
the following parameters: n = 5000, K = 10, s = 50 and m varying from 5 to 30. Each
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configuration was replicated and the average value obtained from the 10 runs is displayed
on Table 2 and represented on Figure 2.

Table 2: Average and Minimum SSE for 10 runs according to the dimension m and per-
turbation mode.

m merge split multistart minimum
5 307328 248931 436981 248931

10 502750 314573 676736 314573
20 599359 423232 691113 417074
30 571127 560251 601441 523695

Figure 2: Relative SSE using minimum as reference when varying m.

4.2.3 Impact of the number of clusters

In order to evaluate the importance of the number of clusters K, the problems were gen-
erated with the following parameters: n = 5000, m = 5, s = 50 and K varying from 5 to
20. Each configuration was replicated and the average value obtained from the 10 runs is
displayed on Table 3 and represented on Figure 3.
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Table 3: Average and Minimum SSE for 10 runs according to the number of clusters and
perturbation mode.

K merge split multistart minimum
5 710068 710039 806867 710013

10 303748 248930 436981 248931
15 221448 135403 296804 135403
20 158968 85506 196035 85506

Figure 3: Relative SSE using minimum as reference when varying K.

4.2.4 Impact of the noise

In order to evaluate the importance of the noise in data, the problems were generated with
the following parameters: n = 5000, m = 5, K = 10 and the noise level s varying from 0
to 100. Each configuration was replicated and the average value obtained from the 5 runs
is displayed on Table 4 and represented on Figure 4.

4.3 The “housing” data

Table 5 shows the average SSE among the 10 successive runs for each perturbation used in
VNS as well as the multistart implementation. In order to better compare the performance
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Table 4: Average and Minimum SSE for 10 runs according to the noise level s and pertur-
bation mode.

s merge split multistart minimum
0 0 0 831 0

10 87488 80317 106488 80316
20 148554 130133 204989 130133
50 307374 248931 436981 248931

100 676142 543922 959074 543922

Figure 4: Relative SSE using minimum as reference when varying s.

of the various strategies, Figure 5 represent the average error value among the 10 runs for
each strategy compared to the best solution obtained for the same problem regardless the
method used.

This figure is directly drawn from data on Table 5. From Figure 5, we notice that on
10 clusters, on average, the objective value obtained by multistart is about twice the value
obtained using VNS and the merge perturbation.
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Table 5: Average SSE for 10 runs of 300 sec each according to the number of clusters and
the perturbation method used. The minimum found is provided as reference.

Number of clusters Merge Split Multistart Min
2 3246.07 3248.14 3248.33 3232.24
3 1404.18 1404.82 1433.2 1374.17
4 658.59 676.31 769.37 625.44
5 349.2 376.7 457.13 300.16
7 126.49 159.37 198.86 104.24

10 37.76 52.69 70.98 32.71

Figure 5: Relative average (among 10 runs) errors obtained with each searching strategy.
The “Merge” strategy is used as reference

5 Conclusion

The first remark from these numerical experiments is that VNS systematically performs
better than multistart. For some parameters or instances, the multistart is more than 2
times worse than VNS and the split perturbation scheme systematically performs much
better than merge.
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Unexpectedly, the monte carlo simulation shows that clusterwise regression is to be
easier when the number of observations increases. This phenomenon is probably due to
the robustness of the regression model that is less likely to change when moving objects
from a cluster to another. We notice also, which is not so surprising, that increasing the
dimension make the problem easier. This remark would probably not hold if the error level
was increased together with the dimension. Indeed, increasing the dimension while leaving
the noise level constant makes more separated clusters and the problem is then easier to
solve. On the contrary, increasing either the noise level or the number of clusters increases
the difficulty of the problem. Indeed, increasing the noise level or the number of clusters
makes the optimization more difficult since observations from different clusters are not as
well separated. It is not a surprise that more the clusters are separated, more the problem
is easy to solve. In the case of the number of clusters, this phenomenon is even stronger
due to the combinatorial complexity which is also increased.
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[10] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applica-
tions. European Journal of Operations Research, 130:449–467, 2001.

[11] P. Hansen, E. Ngai, B.K. Cheung, and N. Mladenović. Analysis of global k-means, an
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[19] H. Späth. A fast algorithm for clusterwise linear regression. Computing, 29:175–181,
1981.
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